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The energy evolution of a quantum chaotic system under the perturbation that harmonically depends on time
is studied in the case of a large perturbation, in which the transition rate calculated from the Fermi golden rule
exceeds the frequency of the perturbation. It is shown that the energy evolution retains its diffusive character,
with the diffusion coefficient that is asymptotically proportional to the magnitude of the perturbation and to
the square root of the density of states. The results are supported by numerical calculation. Energy absorption
by the system and quantum-—classical correlations are discussed.
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1. INTRODUCTION

The problem of susceptibility of chaotic systems to
perturbations has attracted much attention in the last
decade [1-9]. This problem is fundamental because it
includes the determination of the response of a ma-
terial system to an imposed external electromagnetic
field, the setup that is typical for many experiments.
Due to the sensitivity of classical phase trajectories or
quantum energy spectra and stationary wave functions
of chaotic systems to small changes of their parameters,
the problem is challengingly difficult. A consistent and
noncontroversial picture covering (albeit qualitatively)
all the essential cases of the response has not yet been
drawn at present. From the standpoint of general the-
ory, the problem is related to the applicability of the
concept of quantum—classical correspondence to chaotic
systems, which is a long-standing question in its own
right [10, 11].

We study a one-particle system with the Hamilto-
nian of the form

H = Hy — Fi cos(wot),

where ﬁg(f)., r) is the Hamiltonian of the unperturbed
system; p and r are the operators of Cartesian compo-
nents of the particle momentum and position. The clas-
sical system with the Hamiltonian function Hy(p,r) is
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assumed to be strongly chaotic, that is, nearly ergodic
on the energy surfaces in a wide range of energy val-
ues, a system with d > 2 degrees of freedom. In the
perturbation operator

V(t) = —Fi cos(wot)

3

the active variable Z is one of the Cartesian coordi-
nates of the particle, coupled to the external uniform
force field. The amplitude F' is called the field in what
follows. We consider the semiclassical case, where the
Planck constant A is small in comparison with the ac-
tion scale of the system Hy.

Under the influence of the perturbation, the energy
value

E(t) = Ho(t)

varies in a quasirandom way. These variations can
frequently be described as the process of energy dif-
fusion [12,13], when for the ensemble with the micro-
canonical initial energy distribution Hg(0) = E, the
energy dispersion increases linearly with time,

(AE?(t)) = 2Dt,

where D(E, F,wq) is the energy diffusion coefficient.
If the external field F' is sufficiently small in com-
parison with the appropriately averaged values of the
forces acting on a particle in the unperturbed system,
then the energy diffusion coefficient D in the classical
model can be expressed through the characteristics of
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the unperturbed chaotic motion of the active coordi-
nate as

D=3 (1)

where S, (E,wp) is the power spectrum of the active
coordinate (the Fourier transform of its autocorrela-
tion function) for the motion over the surface with the
constant energy value E [9]. The same expression (1)
in the case of a weak perturbation can be obtained
in the classical limit from the quantum model. The
evolution of the quantum system can be treated as a
sequence of one-photon transitions between stationary
states |n) — |k) of the unperturbed system, accompa-
nied by the absorption or emission of the quanta hwy.
For small 7, the energy spectrum of H, is quasicontin-
uous, and hence the transition rates are given by the
Fermi golden rule (FGR)

ngQSm(E,wg),

Wp = (2)
where 2, is the matrix element of the active coordi-
nate and p(E}y) is the density of states near the final
state of the transition. Although the matrix elements
ZTpk in quantum chaotic systems fluctuate wildly with
the variation of k [10, 11], the averaged squared quan-
tity |2,k |? in the limit as i — 0 is smooth; it is propor-
tional to the power spectrum S, (E,wq) of the coordi-
nate [14, 15],

™
TF Pl (B,

Sm (E, wg)
hp(E)

From Egs. (2) and (3), we have the transition rate

|2n]? &~

(3)

= L F2S,(E,w).

Vi = 4
Wp 72 (4)

Then for the energy dispersion for small ¢, we have
(AE?) = 2(Tiw)*Wrt,

which brings us back to Eq. (1) for the energy diffusion
coefficient. It can be shown that the same expression
for D also holds for large ¢ [9].

The energy absorption in chaotic systems occurs as
an epiphenomenon of the energy diffusion [4]. With the
dependence of the power spectrum S, (E,w) and the
density of states p(E) on energy taken into account,
the diffusion becomes biased, and the energy absorp-
tion rate @) is given by the formula [2, 4]

Q= (5)
Although D does not depend on the Planck constant &
for weak fields, the applicability condition for Eq. (2)
does. The FGR is, after all, only a formula of the
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first-order perturbation theory. It is based on the as-
sumption that the transition process has a resonant
character, i.e., that the width A of the energy distri-
bution of states populated from the original one, given
by the Weisskopf— Wigner formula [16]

A =hW,

is small in comparison with the energy quanta hwy.
From Eq. (4), it is evident that in the classical limit
h — 0, this applicability condition is violated.

By analogy with other models, beyond the limits
of the applicability of the perturbation theory, one can
expect a slow-down of the growth of the energy dif-
fusion coefficient D and of the energy absorption rate
(). For example, for a two-level system with relaxation,
the perturbative quadratic dependence of the absorp-
tion rate Q o< F? turns into a field-independent value
Qo in the domain Q2 > I'1T'y, where  is the Rabi fre-
quency and I'y and T's are longitudinal and transverse
relaxation rates respectively [17]. The rate of transi-
tions from the discrete to continuous energy spectrum
(which are basically covariant with the energy absorp-
tion rate @), studied in the context of the theory of
photoionization, first slows its growth with the transfer
from the multiphoton to the tunneling regime and then
can even decrease with the further increase of F' — the
effect that is known as atom stabilization by a strong
field [18].

In what follows, we use the border value of the field
Fy, defined by the condition

WF(Fb) = Wwp.

For the weak field, F <« F3, the FGR is applicable,
whereas the domain of the strong field, F' > Fj, must
be treated differently. The slow-down of the energy dif-
fusion in quantum chaotic systems in strong harmonic
fields was first demonstrated by Cohen and Kottos [5].
However, their analytic estimates and data of numeri-
cal experiments are in quantitative disagreement with
the results in the present paper.

It must be noted that the strong field regime is eas-
ily attainable in experiments. For example, for the ex-
citation of multiatomic molecules with infrared laser
radiation, the border field corresponds to the intensity
value I ~ 10° W - ecm~2, which has been reached in
experiments long time ago [19].

2. THEORY
For the system with the Hamiltonian

H = Hy + V cos(wot)

3
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we take the wave function in the form of the expansion
in the basis of stationary states {¢,,} of Hp,

(t) = Zam@m(r)eiiwmt' (6)

For the amplitudes {a, (t)}, we then obtain the system
of equations
ZE = Z Qpm cos(wot)e“rmta,, (7)
k

where the quantities
Qpn = h_lkan

are the Rabi frequencies of transitions. We use the ini-
tial conditions @, (0) = d,,,: at the initial time instant,
only one of the stationary states, ¢,,, is populated. Fol-
lowing Refs. [14, 15], we assume that x,; are indepen-
dent random Gaussian variables with zero mean and
the dispersion given by Eq. (3). System of equations (7)
is treated as a member of the corresponding statistical
ensemble.

We concentrate on the process of energy diffusion.
Then in the zeroth approximation, we can restrict our-
selves by consideration of the probability density evo-
lution in a narrow energy range around the initial state
and use the power spectrum and the density of states
values at this energy,

Sz(w) =8, (Ep,w)

and
p = p(En).

For the calculation of the absorption coefficient, the
global dependence on energy must be restored.
The power spectrum S, (w) has the symmetry prop-
erty
Se(—w) = Sz (w).

The dependence S, (w) in the domain w > 0 in typi-
cal strongly chaotic systems, such as nonlinear oscilla-
tors [20] and billiards [21, 22], has the form of an asym-
metric peak. We define the peak value of the Rabi
frequency simply as €2, the frequency of the maximum
as w, and the characteristic width of the peak as I
Typically, the ratio @ /T is about few units.

Immediately after switching the perturbation on,
all amplitudes (except that of the initially populated
state) grow in absolute value linearly in time. At this
ballistic stage, the energy dispersion grows quadrati-
cally in time,

(AE?) ~ K BP0 Q2T pt2, (8)

14 ZKDBT®, Brim. 1

where K is a numerical constant. This stage is limited
by the depletion of the initial population and lasts until
the depletion time

ta ~ Q7Y (RDp) /2.

At this time instant, considerably populated levels are
spread over the energy range AE ~ ha that contains
many levels (because p oc h~% with d > 2). We expect
that at the next stage, the ensemble-averaged probabi-
lity density is a smooth function with a characteristic
scale AE > h.

It is convenient to write the indices in Eq. (7) as
arguments of functions. We use the frequency distance
from the initial level as a basic independent variable w,
and thus ay, is denoted as a(e), where

Ek_En
E= ———.
h

Dummy variables 7 and 1’ have the same meaning. By
formal integration of Eq. (7) and subsequent recursive
substitution, we obtain the equation for the rate of
change of the local probability density w(e) = |a(g)|?:

duc}lig) = Qe ) exp (i(e=n)t) cos(wot)a(r. 1) x

n.n’

t
« /dt’Q(a,n’)exp(—i(a—n’)t’) «
x cos(wot')a*(n',t') + c.c.  (9)

Summation in this formula goes over discrete values of
n and n’, and this equation is still exact.

We now assume that the amplitudes a(n,t) are
random processes that are not correlated for different
states:

<a(77’ t)a’* (77,’ t,)> X 57]77"

Then for the averaged probability density, we can re-
tain only diagonal terms in Eq. (9):

= (0%, m) coslnt) x

« /dt’ exp (i(e = n)(t — ) x
x cos(wot')(a(n, t)a* (n,t")) + c.c. (10)

Under the assumption that the averaged (w(e,t)) is a
smooth function of ¢ and a slowly varying function of
t, we can rewrite the product of amplitudes as

(a(n, )a* (,1)) + c.c. = 2(w(n, ) B(t —¢), (1)
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where B(7) is the normalized (B(0) = 1) autocorrela-
tion function of the probability amplitudes.

By replacing the averaged square of the Rabi fre-
quency by its value from Eq. (3) (which depends only
on the difference ¢ — ), substituting the summation
over the states by the integration weighted with the
density of states, and averaging over the time intervals
that are much larger than the field period, we obtain
the equation

dw(e)
dt

= /dn (e —n)p(n) x

X /dT cos(e —n) 7 cos(weT)B(T)w(n). (12)

Henceforth, we drop the angular brackets and deal only
with ensemble-averaged quantities. If the rate of vari-
ations of w(n,t) is small in comparison with the decay
of correlations of the amplitudes given by B(7), we can
treat Eq. (12) as a summation over the probability flow
that comes from the different parts of the frequency
range with a constant rate,

W(n—e)=0%c—n)

X
e —n)7cos(wor)B(T). (13)

o0
X /dT cos(
0

This approximate expression to some extent replaces
the Fermi golden rule for strong perturbations.

To construct the kinetic equation, we must take
both incoming and outgoing probability flows into ac-
count. By taking the total probability flow into account
and expanding w(e) in the Taylor series, we obtain a
diffusion equation with the probability diffusion coeffi-
cient in the energy scale

/ dn I* > Q% () pJ (n, wo),

D=~ (14)
where
J(n,wo) = /dT cos(nt) cos(woT)B(T). (15)

The problem now reduces to the calculation of the in-
tegral J(n,wp). For sufficiently long times, the average
probability density, which is governed by the diffusion
equation, varies slowly, and we can treat the system
in Eq. (7) as a set of equations in which all a,(t) are
noncorrelated random processes with the same statis-
tical properties. Then by averaging the equation for
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the squared time derivative of amplitudes, we obtain
the expression for the mean squared frequency of these
processes, which also gives an estimate for the square
of the correlation decay rate 7,

W= / 02 () hp dy = . (16)

From Eq. (16) for the decay correlation rate, we have

the estimate
v~ KyQy/Thp,

where K5 is a numerical constant. In the strong-field
domain, the autocorrelation function is the fastest com-
ponent in the integrand in Eq. (15). We then have

T~y (KQQ\/F—hp)il .

Substituting this expression in Eq. (14), we obtain the
estimate of the energy diffusion coefficient

D ~ K3h202Q+\/Thp,

(17)

(18)

where K3 is a numerical constant. We must recall that
Eq. (18) is valid only for nearly resonant perturbation
frequencies |wp — @| < T. Here, we do not analyze the
dependence of D on the perturbation frequency wp in
a wider domain, postponing it until further studies.

3. NUMERICAL EXPERIMENT

To check the analytic results in the preceding sec-
tion, we integrated the system of equations in (7)
numerically. The number of equations varied from
N = 300 to N = 1200 with the purpose to suppress
the effect of the boundary. The envelope of the Rabi
frequencies was taken in the double-Lorentzian form

1‘*2
(Wm — wp +@)2 +1"2+
1'\2
(W —wp — )2 4+ T2

Qo =

+

(19)

All calculations were performed for the «resonanty»
perturbation frequency wy w and the peak width
' =0.3%.

Figure 1 shows the distribution of the probability
as a function of the dimensionless frequency ¢’ = ¢/@
for different time instants. It is clearly seen that even
for relatively short time

t =501 =2.2t,,
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Fig.1. The dependence of the logarithm of the
probability density w on the dimensionless frequency
¢ = /& for the time values t = 507" (a), 1007*
(b), and 1557 (¢c). The grassy lines are the values of
Inw(e') averaged over 10 different sets of matrix el-
ements, solid lines are fitted parabolas. To avoid the
overlap of graphs, the plots in cases (b) and (c) are

shifted upwards by 3 and 6 units respectively

04 o ]
02} o, ]

"o, o)

o 4
0 A sasaogamOAR AR An
WOXLO0&g0400

_02 1 1 1 1
0 2 4 6 8

Fig.2. Dependence of the autocorrelation function B

of the probability amplitudes on the dimensionless time

shift 7' = 7& for three different sets of parameters with

whp = 30 (black squares), whp = 60 (open circles),

and &hp = 120 (black triangles) and the same value of

Qy/Thp = 0.618%. The statistical errors are about the
size of the data symbols

the distribution has a very accurate Gaussian form,
with deviations noticeable only for |¢'| > 7.5. There-
fore, we quantitatively support our conclusion about
the diffusive character of the energy evolution.

Figure 2 depicts the form of the normalized auto-
correlation function of the probability amplitudes. The
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Fig.3. The dependence of the ratio R = D/2Wr of
the energy diffusion constant D to the doubled Fermi
transition rate Wr = (7/2)Q%hp on the logarithm of
the ratio of the Rabi frequency to its boundary value
L =Q/Q, Q = (20/7hp)"/?. The dashed line rep-
resents the curve R = Aexp(—L) that corresponds to
the theoretical dependence in Eq. (18); it is fitted to
the last three points

values of B(7) have been calculated numerically for
three sets of parameters with different values of p but
with the same value of the product Q/Ap. Tt is clearly
seen that B(7) for these sets are nearly identical, as ex-
pected. The decay rate v taken from the equation

B(y™') = exp(-1)

® ~ = 0.770\/ITp:

this supports the estimate in Eq. (17).

Figure 3 represents the dependence of the ratio
R = D/QWF of the energy diffusion constant D to
the doubled Fermi transition rate Wy = (7/2)Q2hp on
the logarithm of the ratio of the Rabi frequency to its
boundary value L = Q/Qy, Q, = (20/7hp)'/?. Tt is
seen that for the weak field, this ratio comes close to
the asymptotic limit (unity), decreases in the vicinity of
the boundary, and decays as F~! for sufficiently strong
fields. The agreement with the theoretical estimates is
quite convincing.

4. CONCLUSION

From the comparison of the numerical data with
the theoretical estimates, we can conclude that the ap-
proach in Sec. 2 gives a reasonably accurate descrip-
tion of the energy evolution process in strong fields, in
spite of numerous simplifying approximations used in
the calculation.

14*
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To improve the accuracy and to derive the equation
for the correlation function B(7) from first principles,
the model of the random process must be improved.
We used the model of the stationary process, whereas
we can conclude from Eq. (7) that the model of periodic
random process would be more appropriate.

The main conclusion of our calculation is a qualita-
tive one: by substituting Eq. (3) in Eq. (14), we obtain

D ~ K3h@®F [S,(wo)T]2.

This quantity in the classical limit A — 0 vanishes
along with the energy absorption rate Q (see Eq. (5)).
This means a violation of the quantum-—classical cor-
respondence for the absorption and, more generally, of
the linear susceptibility of chaotic systems to harmonic
external fields.

The author acknowledges the support by the
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