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ENERGY DIFFUSION IN STRONGLY DRIVEN QUANTUMCHAOTIC SYSTEMSP. V. Elyutin *Department of Physi
s, Lomonosov Mos
ow State University119992, Mos
ow, RussiaSubmitted 21 June 2005The energy evolution of a quantum 
haoti
 system under the perturbation that harmoni
ally depends on timeis studied in the 
ase of a large perturbation, in whi
h the transition rate 
al
ulated from the Fermi golden ruleex
eeds the frequen
y of the perturbation. It is shown that the energy evolution retains its di�usive 
hara
ter,with the di�usion 
oe�
ient that is asymptoti
ally proportional to the magnitude of the perturbation and tothe square root of the density of states. The results are supported by numeri
al 
al
ulation. Energy absorptionby the system and quantum�
lassi
al 
orrelations are dis
ussed.PACS: 05.45.-a, 42.50.Hz1. INTRODUCTIONThe problem of sus
eptibility of 
haoti
 systems toperturbations has attra
ted mu
h attention in the lastde
ade [1�9℄. This problem is fundamental be
ause itin
ludes the determination of the response of a ma-terial system to an imposed external ele
tromagneti
�eld, the setup that is typi
al for many experiments.Due to the sensitivity of 
lassi
al phase traje
tories orquantum energy spe
tra and stationary wave fun
tionsof 
haoti
 systems to small 
hanges of their parameters,the problem is 
hallengingly di�
ult. A 
onsistent andnon
ontroversial pi
ture 
overing (albeit qualitatively)all the essential 
ases of the response has not yet beendrawn at present. From the standpoint of general the-ory, the problem is related to the appli
ability of the
on
ept of quantum�
lassi
al 
orresponden
e to 
haoti
systems, whi
h is a long-standing question in its ownright [10; 11℄.We study a one-parti
le system with the Hamilto-nian of the formĤ = Ĥ0 � F x̂ 
os(!0t);where Ĥ0(p̂; r̂) is the Hamiltonian of the unperturbedsystem; p̂ and r̂ are the operators of Cartesian 
ompo-nents of the parti
le momentum and position. The 
las-si
al system with the Hamiltonian fun
tion H0(p; r) is*E-mail: pvelyutin�mtu-net.ru

assumed to be strongly 
haoti
, that is, nearly ergodi
on the energy surfa
es in a wide range of energy val-ues, a system with d � 2 degrees of freedom. In theperturbation operatorV̂ (t) = �F x̂ 
os(!0t);the a
tive variable x̂ is one of the Cartesian 
oordi-nates of the parti
le, 
oupled to the external uniformfor
e �eld. The amplitude F is 
alled the �eld in whatfollows. We 
onsider the semi
lassi
al 
ase, where thePlan
k 
onstant ~ is small in 
omparison with the a
-tion s
ale of the system H0.Under the in�uen
e of the perturbation, the energyvalue E(t) � H0(t)varies in a quasirandom way. These variations 
anfrequently be des
ribed as the pro
ess of energy dif-fusion [12; 13℄, when for the ensemble with the mi
ro-
anoni
al initial energy distribution H0(0) = E, theenergy dispersion in
reases linearly with time,h�E2(t)i = 2Dt;where D(E;F; !0) is the energy di�usion 
oe�
ient.If the external �eld F is su�
iently small in 
om-parison with the appropriately averaged values of thefor
es a
ting on a parti
le in the unperturbed system,then the energy di�usion 
oe�
ient D in the 
lassi
almodel 
an be expressed through the 
hara
teristi
s of207
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haoti
 motion of the a
tive 
oordi-nate as D = �2!20F 2Sx(E;!0); (1)where Sx(E;!0) is the power spe
trum of the a
tive
oordinate (the Fourier transform of its auto
orrela-tion fun
tion) for the motion over the surfa
e with the
onstant energy value E [9℄. The same expression (1)in the 
ase of a weak perturbation 
an be obtainedin the 
lassi
al limit from the quantum model. Theevolution of the quantum system 
an be treated as asequen
e of one-photon transitions between stationarystates jni ! jki of the unperturbed system, a

ompa-nied by the absorption or emission of the quanta ~!0.For small ~, the energy spe
trum of Ĥ0 is quasi
ontin-uous, and hen
e the transition rates are given by theFermi golden rule (FGR)_WF = �2~F 2jxnkj2�(Ek); (2)where xnk is the matrix element of the a
tive 
oordi-nate and �(Ek) is the density of states near the �nalstate of the transition. Although the matrix elementsxnk in quantum 
haoti
 systems �u
tuate wildly withthe variation of k [10; 11℄, the averaged squared quan-tity jxnkj2 in the limit as ~! 0 is smooth; it is propor-tional to the power spe
trum Sx(E;!0) of the 
oordi-nate [14; 15℄, jxnkj2 � Sx(E;!0)~�(E) : (3)From Eqs. (2) and (3), we have the transition rate_WF = �2~2 F 2Sx(E;!): (4)Then for the energy dispersion for small t, we haveh�E2i = 2(~!0)2 _WF t;whi
h brings us ba
k to Eq. (1) for the energy di�usion
oe�
ient. It 
an be shown that the same expressionfor D also holds for large t [9℄.The energy absorption in 
haoti
 systems o

urs asan epiphenomenon of the energy di�usion [4℄. With thedependen
e of the power spe
trum Sx(E;!) and thedensity of states �(E) on energy taken into a

ount,the di�usion be
omes biased, and the energy absorp-tion rate Q is given by the formula [2; 4℄Q = 1� ddE (�D): (5)Although D does not depend on the Plan
k 
onstant ~for weak �elds, the appli
ability 
ondition for Eq. (2)does. The FGR is, after all, only a formula of the

�rst-order perturbation theory. It is based on the as-sumption that the transition pro
ess has a resonant
hara
ter, i.e., that the width � of the energy distri-bution of states populated from the original one, givenby the Weisskopf �Wigner formula [16℄� = ~ _W;is small in 
omparison with the energy quanta ~!0.From Eq. (4), it is evident that in the 
lassi
al limit~! 0, this appli
ability 
ondition is violated.By analogy with other models, beyond the limitsof the appli
ability of the perturbation theory, one 
anexpe
t a slow-down of the growth of the energy dif-fusion 
oe�
ient D and of the energy absorption rateQ. For example, for a two-level system with relaxation,the perturbative quadrati
 dependen
e of the absorp-tion rate Q / F 2 turns into a �eld-independent valueQ0 in the domain 
2 � �1�2, where 
 is the Rabi fre-quen
y and �1 and �2 are longitudinal and transverserelaxation rates respe
tively [17℄. The rate of transi-tions from the dis
rete to 
ontinuous energy spe
trum(whi
h are basi
ally 
ovariant with the energy absorp-tion rate Q), studied in the 
ontext of the theory ofphotoionization, �rst slows its growth with the transferfrom the multiphoton to the tunneling regime and then
an even de
rease with the further in
rease of F � thee�e
t that is known as atom stabilization by a strong�eld [18℄.In what follows, we use the border value of the �eldFb, de�ned by the 
ondition_WF (Fb) = !0:For the weak �eld, F � Fb, the FGR is appli
able,whereas the domain of the strong �eld, F � Fb, mustbe treated di�erently. The slow-down of the energy dif-fusion in quantum 
haoti
 systems in strong harmoni
�elds was �rst demonstrated by Cohen and Kottos [5℄.However, their analyti
 estimates and data of numeri-
al experiments are in quantitative disagreement withthe results in the present paper.It must be noted that the strong �eld regime is eas-ily attainable in experiments. For example, for the ex-
itation of multiatomi
 mole
ules with infrared laserradiation, the border �eld 
orresponds to the intensityvalue I � 109 W � 
m�2, whi
h has been rea
hed inexperiments long time ago [19℄.2. THEORYFor the system with the HamiltonianĤ = Ĥ0 + V̂ 
os(!0t);208
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 systemswe take the wave fun
tion in the form of the expansionin the basis of stationary states f'mg of Ĥ0,	(t) =Xm am'm(r)e�i!mt: (6)For the amplitudes fam(t)g, we then obtain the systemof equationsidakdt =Xk 
km 
os(!0t)ei!kmtam; (7)where the quantities
kn = ~�1Fxknare the Rabi frequen
ies of transitions. We use the ini-tial 
onditions am(0) = Æmn: at the initial time instant,only one of the stationary states, 'n, is populated. Fol-lowing Refs. [14; 15℄, we assume that xnk are indepen-dent random Gaussian variables with zero mean andthe dispersion given by Eq. (3). System of equations (7)is treated as a member of the 
orresponding statisti
alensemble.We 
on
entrate on the pro
ess of energy di�usion.Then in the zeroth approximation, we 
an restri
t our-selves by 
onsideration of the probability density evo-lution in a narrow energy range around the initial stateand use the power spe
trum and the density of statesvalues at this energy,Sx(!) � Sx(En; !)and � � �(En):For the 
al
ulation of the absorption 
oe�
ient, theglobal dependen
e on energy must be restored.The power spe
trum Sx(!) has the symmetry prop-erty Sx(�!) = Sx(!):The dependen
e Sx(!) in the domain ! > 0 in typi-
al strongly 
haoti
 systems, su
h as nonlinear os
illa-tors [20℄ and billiards [21; 22℄, has the form of an asym-metri
 peak. We de�ne the peak value of the Rabifrequen
y simply as 
, the frequen
y of the maximumas ~!, and the 
hara
teristi
 width of the peak as �.Typi
ally, the ratio ~!=� is about few units.Immediately after swit
hing the perturbation on,all amplitudes (ex
ept that of the initially populatedstate) grow in absolute value linearly in time. At thisballisti
 stage, the energy dispersion grows quadrati-
ally in time, h�E2i � K1~3~!2
2��t2; (8)

where K1 is a numeri
al 
onstant. This stage is limitedby the depletion of the initial population and lasts untilthe depletion timetd � 
�1(~��)�1=2:At this time instant, 
onsiderably populated levels arespread over the energy range �E � ~~! that 
ontainsmany levels (be
ause � / ~�d with d � 2). We expe
tthat at the next stage, the ensemble-averaged probabi-lity density is a smooth fun
tion with a 
hara
teristi
s
ale �E � ~~!.It is 
onvenient to write the indi
es in Eq. (7) asarguments of fun
tions. We use the frequen
y distan
efrom the initial level as a basi
 independent variable !,and thus ak is denoted as a("), where" = Ek �En~ :Dummy variables � and �0 have the same meaning. Byformal integration of Eq. (7) and subsequent re
ursivesubstitution, we obtain the equation for the rate of
hange of the lo
al probability density w(") = ja(")j2:dw(")dt =X�;�0 
("; �) exp (i("��)t) 
os(!0t)a(�; t)�� tZ dt0
("; �0) exp (�i("� �0)t0)�� 
os(!0t0)a�(�0; t0) + 
.
. (9)Summation in this formula goes over dis
rete values of� and �0, and this equation is still exa
t.We now assume that the amplitudes a(�; t) arerandom pro
esses that are not 
orrelated for di�erentstates: ha(�; t)a�(�0; t0)i / Æ��0 :Then for the averaged probability density, we 
an re-tain only diagonal terms in Eq. (9):dhw(")idt =X� h
2("; �)i 
os(!0t)�� tZ dt0 exp (i("� �)(t� t0))�� 
os(!0t0)ha(�; t)a�(�; t0)i+ 
.
. (10)Under the assumption that the averaged hw("; t)i is asmooth fun
tion of " and a slowly varying fun
tion oft, we 
an rewrite the produ
t of amplitudes asha(�; t)a�(�; t0)i+ 
.
. = 2hw(�; t)iB(t � t0); (11)14 ÆÝÒÔ, âûï. 1 209



P. V. Elyutin ÆÝÒÔ, òîì 129, âûï. 1, 2006where B(�) is the normalized (B(0) = 1) auto
orrela-tion fun
tion of the probability amplitudes.By repla
ing the averaged square of the Rabi fre-quen
y by its value from Eq. (3) (whi
h depends onlyon the di�eren
e " � �), substituting the summationover the states by the integration weighted with thedensity of states, and averaging over the time intervalsthat are mu
h larger than the �eld period, we obtainthe equationdw(")dt = Z d�
2("� �)�(�)�� 1Z0 d� 
os("� �)� 
os(!0�)B(�)w(�): (12)Hen
eforth, we drop the angular bra
kets and deal onlywith ensemble-averaged quantities. If the rate of vari-ations of w(�; t) is small in 
omparison with the de
ayof 
orrelations of the amplitudes given by B(�), we 
antreat Eq. (12) as a summation over the probability �owthat 
omes from the di�erent parts of the frequen
yrange with a 
onstant rate,_W (� ! ") = 
2("� �)�� 1Z0 d� 
os("� �)� 
os(!0�)B(�): (13)This approximate expression to some extent repla
esthe Fermi golden rule for strong perturbations.To 
onstru
t the kineti
 equation, we must takeboth in
oming and outgoing probability �ows into a
-
ount. By taking the total probability �ow into a

ountand expanding w(") in the Taylor series, we obtain adi�usion equation with the probability di�usion 
oe�-
ient in the energy s
aleD � 1Z�1 d� ~3�2
2(�)�J(�; !0); (14)whereJ(�; !0) = 1Z0 d� 
os(��) 
os(!0�)B(�): (15)The problem now redu
es to the 
al
ulation of the in-tegral J(�; !0). For su�
iently long times, the averageprobability density, whi
h is governed by the di�usionequation, varies slowly, and we 
an treat the systemin Eq. (7) as a set of equations in whi
h all am(t) arenon
orrelated random pro
esses with the same statis-ti
al properties. Then by averaging the equation for

the squared time derivative of amplitudes, we obtainthe expression for the mean squared frequen
y of thesepro
esses, whi
h also gives an estimate for the squareof the 
orrelation de
ay rate 
,h!2i = 12 Z 
2(�)~� d� � 
2: (16)From Eq. (16) for the de
ay 
orrelation rate, we havethe estimate 
 � K2
p�~�; (17)where K2 is a numeri
al 
onstant. In the strong-�elddomain, the auto
orrelation fun
tion is the fastest 
om-ponent in the integrand in Eq. (15). We then haveJ � 
�1 � �K2
p�~���1 :Substituting this expression in Eq. (14), we obtain theestimate of the energy di�usion 
oe�
ientD � K3~2~!2
p�~�; (18)where K3 is a numeri
al 
onstant. We must re
all thatEq. (18) is valid only for nearly resonant perturbationfrequen
ies j!0 � ~!j � �. Here, we do not analyze thedependen
e of D on the perturbation frequen
y !0 ina wider domain, postponing it until further studies.3. NUMERICAL EXPERIMENTTo 
he
k the analyti
 results in the pre
eding se
-tion, we integrated the system of equations in (7)numeri
ally. The number of equations varied fromN = 300 to N = 1200 with the purpose to suppressthe e�e
t of the boundary. The envelope of the Rabifrequen
ies was taken in the double-Lorentzian form
m;n = 
 � �2(!m � !n + ~!)2 + �2++ �2(!m � !n � ~!)2 + �2 � : (19)All 
al
ulations were performed for the �resonant�perturbation frequen
y !0 = ~! and the peak width� = 0:3~!.Figure 1 shows the distribution of the probabilityas a fun
tion of the dimensionless frequen
y "0 = "=~!for di�erent time instants. It is 
learly seen that evenfor relatively short timet = 5~!�1 = 2:2td;210
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Fig. 1. The dependen
e of the logarithm of theprobability density w on the dimensionless frequen
y"0 = "=~! for the time values t = 5~!�1 (a), 10~!�1(b), and 15~!�1 (
). The grassy lines are the values oflnw("0) averaged over 10 di�erent sets of matrix el-ements, solid lines are �tted parabolas. To avoid theoverlap of graphs, the plots in 
ases (b) and (
) areshifted upwards by 3 and 6 units respe
tively
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Fig. 2. Dependen
e of the auto
orrelation fun
tion Bof the probability amplitudes on the dimensionless timeshift � 0 = � ~! for three di�erent sets of parameters with~!~� = 30 (bla
k squares), ~!~� = 60 (open 
ir
les),and ~!~� = 120 (bla
k triangles) and the same value of
p�~� = 0:618~!. The statisti
al errors are about thesize of the data symbolsthe distribution has a very a

urate Gaussian form,with deviations noti
eable only for j"0j � 7:5. There-fore, we quantitatively support our 
on
lusion aboutthe di�usive 
hara
ter of the energy evolution.Figure 2 depi
ts the form of the normalized auto-
orrelation fun
tion of the probability amplitudes. The
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Fig. 3. The dependen
e of the ratio R = D=2 _WF ofthe energy di�usion 
onstant D to the doubled Fermitransition rate _WF = (�=2)
2~� on the logarithm ofthe ratio of the Rabi frequen
y to its boundary valueL = 
=
b, 
b = (2~!=�~�)1=2. The dashed line rep-resents the 
urve R = A exp(�L) that 
orresponds tothe theoreti
al dependen
e in Eq. (18); it is �tted tothe last three pointsvalues of B(�) have been 
al
ulated numeri
ally forthree sets of parameters with di�erent values of � butwith the same value of the produ
t 
p~��. It is 
learlyseen that B(�) for these sets are nearly identi
al, as ex-pe
ted. The de
ay rate 
 taken from the equationB(
�1) = exp(�1)is 
 = 0:77
p~��;this supports the estimate in Eq. (17).Figure 3 represents the dependen
e of the ratioR = D=2 _WF of the energy di�usion 
onstant D tothe doubled Fermi transition rate _WF = (�=2)
2~� onthe logarithm of the ratio of the Rabi frequen
y to itsboundary value L = 
=
b, 
b = (2~!=�~�)1=2. It isseen that for the weak �eld, this ratio 
omes 
lose tothe asymptoti
 limit (unity), de
reases in the vi
inity ofthe boundary, and de
ays as F�1 for su�
iently strong�elds. The agreement with the theoreti
al estimates isquite 
onvin
ing. 4. CONCLUSIONFrom the 
omparison of the numeri
al data withthe theoreti
al estimates, we 
an 
on
lude that the ap-proa
h in Se
. 2 gives a reasonably a

urate des
rip-tion of the energy evolution pro
ess in strong �elds, inspite of numerous simplifying approximations used inthe 
al
ulation.211 14*
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ura
y and to derive the equationfor the 
orrelation fun
tion B(�) from �rst prin
iples,the model of the random pro
ess must be improved.We used the model of the stationary pro
ess, whereaswe 
an 
on
lude from Eq. (7) that the model of periodi
random pro
ess would be more appropriate.The main 
on
lusion of our 
al
ulation is a qualita-tive one: by substituting Eq. (3) in Eq. (14), we obtainD � K3~~!2F [Sx(!0)�℄1=2 :This quantity in the 
lassi
al limit h ! 0 vanishesalong with the energy absorption rate Q (see Eq. (5)).This means a violation of the quantum�
lassi
al 
or-responden
e for the absorption and, more generally, ofthe linear sus
eptibility of 
haoti
 systems to harmoni
external �elds.The author a
knowledges the support by the�Russian S
ienti�
 S
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