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ENTROPY, FREE ENERGY AND PHASE TRANSITIONSIN THE LATTICE LOTKA�VOLTERRA MODELO. A. Chihigina *Lomonosov Mosow State University119992, Mosow, RussiaG. A. Tsekouras, A. ProvataInstitute of Physial ChemistryNational Center for Sienti� Researh �Demokritos�15310, Athens, GreeeReeived April 3, 2006A thermodynami approah is developed for reative dynami models restrited to substrates of arbitrary di-mensions, inluding fratal substrates. The thermodynami formalism is suessfully applied to the lattieLotka �Volterra (LLV) model of autoatalyti reations on various lattie substrates. Di�erent regimes ofreations desribed as phases, and phase transitions are obtained using this approah. Preditions of the ther-modynami theory on�rm extensive numerial kineti Monte Carlo simulations on square and fratal latties.Extensions of the formalism to multispeies LLV models are also presented.PACS: 82.60.-s, 05.45.Df, 82.65.+r1. INTRODUCTIONNonlinear reative proesses restrited to low-dimensional supports have been under intensive inves-tigation for the last thirty years, beause of their im-portane for appliations in physis, hemistry, biolo-gy, and eology [1�13℄. Low-dimensional systems areespeially important in heterogeneous atalyti pro-esses where reations an only take plae if the re-ative speies are adsorbed on the surfae of the at-alyst. They also give the possibility to answer fun-damental questions about the behavior of open sys-tems and about mehanisms of self-organization. Toinvestigate the mehanisms of produing omplexityand self-organization in reative dynamis, several ab-strat models have been developed, whih retain onlythe most important features for produing omplex-ity [14�22℄.The lattie Lotka �Volterra (LLV) model has at-trated attention during the past years due to the largevariety of patterns that it generates on low-dimensionalsupport under variations of parameters and boundary*E-mail: hihigina�hotmail.om, hihigina1�yandex.ru

onditions [21�26℄. The LLV model involves two kindsof reating moleules (X1 and X2) and empty lattiesites S. When two reatants X1 and X2 oupy twonearest-neighbor sites, X1 an be transformed into X2with a probability ks,X1 +X2 ks! 2X2: (1)The reatant X2 an desorb from the surfae with aprobability k1 provided that there is a seond emptysite S in the neighborhood,X2 + S k1! 2S: (2)X1 may adsorb on the surfae from a bulk phase witha probability k2 provided that another X1 is alreadyadsorbed on a neighboring site,S +X1 k2! 2X1: (3)In this sheme, the partiles reat when they are at-tahed to the lattie and do not di�use to nearest neigh-bor empty sites. In the traditional mean-�led (MF)approah, the LLV system an be desribed by the dy-namial system [22, 23℄715



O. A. Chihigina, G. A. Tsekouras, A. Provata ÆÝÒÔ, òîì 130, âûï. 4 (10), 2006dx1(t)dt = k2x1s� ksx1x2; (4a)dx2(t)dt = ksx2x1 � k1x2s; (4b)ds(t)dt = k1x2s� k2x1s; (4)where the variables x1(t); x2(t), and s are the par-tial onentrations of partiles X1; X2, and empty sitesS. The notation hereafter follows Ref. [23℄. Di�usionterms are not inluded in Eq. (4) beause the parti-les are not allowed to di�use. The LLV onstrutionimmediately implies that there is a onstant of motion:C = x1 + x2 + s = 1: (5)This onstant C orresponds to the total overageof eah lattie site, whih either ontains partiles (X1or X2) or is empty (S). We an set C = 1. UsingEq. (5), we an redue the number of variables to two,x1 and x2:dx1(t)dt = k2x1 �1� x1 � k2 + ksk2 x2� ; (6a)dx2(t)dt = �k1x2 �1� x2 � k1 + ksk1 x1� : (6b)The behavior of this system is losely related to thebehavior of the original Lotka �Volterra system, de-veloped for the desription of predator�prey dynam-is [1, 2℄, but the latter system is not suitable forrealization on a lattie beause it does not take thespatial onstraints into aount (onstant number oftotal, empty, and oupied lattie sites). The dyna-mial system in (6a) has four �xed points, three ofwhih are saddle points and one is a enter. The sad-dle points are (0; 0), (0; 1), (1; 0), and the enter is(k1=(k1+k2+ks); k2=(k1+k2+ks)). The enter is sur-rounded by a ontinuum of losed trajetories, whoseamplitudes depend solely on the initial onditions [22℄.Equations (4) and (6a) desribe an idealisti modelwhere eah partile reats with the mean �eld of allother partiles in the system. This is not the ase inheterogeneously atalyzed systems, where the partilesare attahed to the substrate sites and an only reatwith their nearest neighbors. These loal interationsindue important spatiotemporal �utuations that an-not be adequately desribed by the MF equations. Tostudy suh minimal-omplexity models, to explore thespatiotemporal strutures they demonstrate when re-strited to low-dimensional substrates, and to under-stand the qualitative and quantitative deviations from

the mean-�eld behavior, omputer simulations havebeen extensively used in reent years [10�12; 14�20℄.Although the MF equations predit osillatory be-havior for all values of the kineti parameters, kinetiMonte Carlo (KMC) simulations of the LLVmodel havedemonstrated either osillatory behavior or poisoningby one of the three speies, depending on the substratedimension D and the kineti onstants ks; k1, and k2[23℄. The main purpose of this work is to desribe thetransitions of the LLV system from osillatory to poi-soning regimes and bak as a kind of phase transitions,aording to the laws of thermodynamis. To developthe thermodynami approah, we �rst need to intro-due the e�etive temperature T , energy U , and en-tropy S as funtions of D; ks; k1; k2. Then we ande�ne the free energy F and analyze its dependene onthe dimension and kineti onstants as order parame-ters.In the next setion, we introdue the thermody-nami approah to reative dynamis and de�ne thepotential and kineti energy, the e�etive temperature,the entropy, and the free energy. In Se. 3, we presentthermodynami alulations for the LLV system at var-ious parameter values. In Se. 4, we ompare the ther-modynamis with numerial KMC results on the LLVsystem. In Se. 5, we generalize the thermodynamiformalism to multispeies LLV systems. Finally, in theonluding setion, we reapitulate our main resultsand disuss open problems.2. THERMODYNAMIC FORMALISMA. The energyTo develop the thermodynami formalism, we �rstdesribe the qualitative di�erene between the threespeies by a quantitative di�erene of three energystates. We onsider a Brownian partile that an movein three potential wells under the in�uene of thermalnoise. Eah potential well orresponds to one of thespeies as illustrated in Fig. 1 and the whole systemorresponds to one lattie site. Thus, one lattie sitean hange its state from X1 to X2 and S as depitedin Fig. 1.The potential energy of a well is onneted with theesape probability for one time step (or kineti on-stant) by the Kramers formula [27℄:k2 = exp UskT ; (7)k1 = exp U2kT ; (8)716
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Fig. 1. The LLV model represented as a Brownian par-tile transition from one potential well to anotherks = exp U1kT ; (9)where k is the Boltzmann onstant. From Eqs. (7)�(9), the energies Us; U1, and U2 an be expressed asfuntions of the ki and the temperature.B. Steady statesTo �nd the average energy, we alulate the steadyprobability distribution Ps; P1, and P2 under the nor-malization onditionPs + P1 + P2 = 1: (10)We onsider the Markov matrix of transitions for onestep, B̂ = fbijg, were bij is the probability of transitionto state i from state j, asB̂ = 0B� bss bs1 bs2b1s b11 b12b2s b21 b22 1CA : (11)These probabilities are de�ned in terms of the kinetionstants asB̂ = 0B� 1� k2 0 k1k2 1� ks 00 ks 1� k1 1CA : (12)The eigenvalues � may be obtained from the equationB̂0B� PsP1P2 1CA = �0B� PsP1P2 1CA : (13)

With 1� � = �, Eq. (13) transforms into the equationdet Ĉ = 0; (14)where the matrix Ĉ isĈ = 0B� � � k2 0 k1k2 � � ks 00 ks � � k1 1CA : (15)From Eq. (14), we �nd three eigenvalues: �0 = 1,whih orresponds to the steady state, and �1;2 < 1.Substituting �0 in Eq. (13), we obtain the steady prob-ability distribution asP2 = �k1 ; Ps = �k2 ; P1 = �ks ; (16)where � = ksk1k2ksk1 + k1k2 + k2ks : (17)C. Average energy and temperatureUsing Eqs. (7)�(9) and (16), we an �nd the averagepotential energy for one Brownian partile, whih rep-resents one lattie site �jumping� between the statesX1, X2, and S, ashUi =Xi UiPi = kT�� ln k2k2 + ln k1k1 + ln ksks � == kT�Xj ln kjkj : (18)The average kineti energy is equal to kT=2, in aor-dane with the theorem on equal distribution of energyamong the degrees of freedom, beause the motion ofthe imaginary partile is one-dimensional.The temperature in our desription is not a realtemperature, but an e�etive one. It haraterizes theintensity of the Brownian partile motion, whih is re-garded as a di�usion-like proess. Here, it is not possi-ble to de�ne the temperature in the usual way throughthe entropy [28; 29℄, beause the state is not equilib-rium [30℄. However, its dependene on the kineti on-stants an be assumed to be approximately linear dueto the di�usive harater of motion, and an be de-sribed by the Einstein formula hx2i = 2Dt [31℄. It isknown that hx2i is proportional to the probability of a�xed step in a �xed time, while the di�usion oe�ientD is proportional to the temperature. Therefore, thetemperature an be assumed diretly proportional tothe sum of the transition probabilities:T = �(ks + k1 + k2): (19)The onstant � is de�ned in terms of time steps.717



O. A. Chihigina, G. A. Tsekouras, A. Provata ÆÝÒÔ, òîì 130, âûï. 4 (10), 2006D. The entropyTo de�ne the entropy, we use the information in-terpretation, whih is useful in omplex systems andgives good agreement with experiments [32�34℄. Theunertainty of one transition with a probability kj isI(kj) = kj ln kj + (1� kj) ln (1� kj): (20)The entropy for one interation is de�ned by the sumof all transitional unertainties, all of whih are mul-tiplied by two probabilities: the probability that thepartile under onsideration is in the state to open thistransition for a neighbor partile, and the probabilitythat this neighboring partile is in the state for thistransition. Then the entropy for one site in the lattieis equal to the entropy for one interation multipliedby the number of all possible ombinations of partilesinterating with the partile under onsideration. It isnn!, where nn is the average number of nearest neigh-bors. The partiles are not indistinguishable, they aremarked by the speial plae they oupy on the lattie.It is not easy to �nd the number of nearest neigh-bors, or oordination number, nn [35℄. In the �rst-order approximation and for hyperubi latties of di-mension D, the average number of nearest neighborsis 2D. It varies for other types of latties: triangu-lar, polygonal, et. It also varies signi�antly due to�utuations around the average for random and fra-tal latties. In lattie dynamis in general, the oordi-nation number also has loal �utuations, whih mayontribute signi�antly to the reation of patterns andloal strutures.In the �rst-order approximation, however, we anwrite the entropy for all kinds of latties asS = �nn!k[I(k1)P2Ps+I(k2)PsP1+I(ks)P1P2℄; (21)where nn = 2D for hyperubi latties and is alulatednumerially for fratal latties.E. Free energyWe an now de�ne the free energy as the sum of thepotential, kineti, and entropy terms:F (k1; k2; ks; D) = hUi+ kT=2� ST: (22)In the ase whereD = 2 (square lattie), the free energydependene on one of the kj has a maximum, whihde�nes two phases: osillations and poisoning. Thisinterpretation, as desribed above, is semiphenomeno-logial.

3. THERMODYNAMIC CALCULATIONS OFTHE LLV MODELUsing the thermodynami formalism developedabove, we now attempt to desribe the phase transition(from poisoned to nonpoisoned states) of the LLV sys-tem. To validate our low-dimensional results, we om-pare them with Monte Carlo simulations in Ref. [23℄.In this referene, the authors show that small values,e.g., of k2 lead to poisoning by X1. The mehanism de-sribed in Ref. [23℄ is as follows: beause of small k2, theX1 partiles are produed very infrequently; as a result,X2 attains a very low onentration and at a ertainpoint, S an almost dominate the lattie by destroyingall X2. At the same time, the remaining lusters of X1start to grow and gradually invade the entire lattie.By the same mehanism, when low k1 are onsidered,the S states poison the lattie, and similarly for low ks,the X2 states dominate. In intermediate ases, wherek2 is small but ks is also su�iently small, the smallluster of X2 an be left inside X1-dominated regions.Only small lusters (when ks is small) an survive anddo not reah the S-region. Then X2 grows and we haveX2-poisoning.Beause the kineti onstants kj are related to poi-soning by the orresponding partiles, we an onsiderthe kineti onstants as order parameters. A phasetransition ours when the free energy, whih is a fun-tion of the kj , passes a maximum. Low values of kj(at the left-hand side of the maximum) orrespond topoisoning by the respetive partiles, while large val-ues of kj orrespond to osillations. This way, we ande�ne the �nal, steady-state behavior of the system forall values of the kineti onstants.Figure 2 illustrates the free energy F (k2) at k1 = 0:8
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F

Fig. 2. The free-energy dependene on k2 for a two-dimensional lattie at k1 = 0:8 and ks = 0:1, 0:3, 0:5,0:7, 0:9 from top down718
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Fig. 3. The free-energy dependene on ks for a two-dimensional lattie at k2 = 0:05 and k1 = 0:5, 0:6,0:7, 0:8, 0:9 from top downand di�erent values of ks = 0:1, 0.3, 0.5, 0.7, 0.9 fromtop down, for a square lattie. We an see that fork2 = 0:05, whih is onsidered in the next setion,X1-poisoning ours for ks > 0:2. The higher the val-ues of k2, the less poisoning is observed. At k2 = 0:075,we have poisoning only for ks > 0:8, and there is nopoisoning at k2 = 0:1.To deide whether X2-poisoning is possible, we on-sider F (ks), presented in Fig. 3 for the same lattie,k2 = 0:05, and di�erent values of k1. Poisoning is onlyobserved at ks = 0:1 and for large values of k1 > 0:6.These results are also presented in Fig. 8 for ompari-son with numerial KMC results.The dimensionality also de�nes the shape of thefree-energy dependene, and we therefore analyze thein�uene of the substrate dimensionality in autoat-alyti proesses. As the substrate dimensionality de-reases, the free-energy maximum moves right and�nally disappears, suh that more poisoning statesemerge. This is partly due to the dependene of thenumber of neighbors on the dimensionality.Figure 4 presents the free energy F (ks) for the samekineti onstants and for di�erent numbers of near-est neighbors nn; nn = 2 orresponds to the one-dimensional ase and nn = 4 to the two-dimensionallattie. For small dimensions, the system is poisonedfor all values of the kineti onstants.In partiular, in D = 1, osillations are impossible.This beomes obvious from the shape of the free en-ergy, whih has no turning (maximum) points for anyvalues of k1, k2 or ks. This is shown in Fig. 5 for F (ks)at k2 = 0:6 and di�erent values of k1. Some osilla-tions ould have been possible only for very small k1,in whih ase we expet poisoning by X2. But if we

0:2 0:4 0:6 0:8 1:0ks�2�4�6�8F
0

Fig. 4. The free-energy dependene on ks for di�erentnumbers of nearest neighbors nn = 2, 2:5, 3, 3:5, 4from top down at k1 = 0:6, k2 = 0:4

�3:5�3:0�2:5�2:0�1:5�1:0�0:5 0:2 0:4 0:6 0:8 1:0ks
F 123

450

Fig. 5. The free-energy dependene on ks for a one-dimensional lattie at k2 = 0:6 and k1 = 0:1 (1 ),0:3 (2 ), 0:5 (3 ), 0:7 (4 ), 0:9 (5 )onsider F (k1), this small k1 is on the left-hand side ofthe maximum showing poisoning by S. The same re-sults, for D = 1, were also obtained in [22℄ using KMCsimulations and theoretial arguments.4. COMPARISON WITH KINETIC MONTECARLO SIMULATIONSIn [23℄, a set of LLV simulations was performed withvery low values of k2 (k2 = 0:05 and k2 = 0:075) atdi�erent values of k1 and ks for fratal (D = 1:893)and two-dimensional square lattie substrates. In thiswork, we produed new sets of results for k2 = 0:05 andk2 = 0:1 using a speeded version of the KMC algorithmin [23℄. The KMC sheme used here is as follows.719
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x2Fig. 6. Numerial results. Poisoning states fork2 = 0:05. The simulations were performed on a two-dimensional square lattie substrate
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O. A. Chihigina, G. A. Tsekouras, A. Provata ÆÝÒÔ, òîì 130, âûï. 4 (10), 2006that interations in�uene only the entropy. ) Forfratal substrates, we used the approximate (numeri-ally alulated) average number of neighbors. d) Allthermodynami parameters in our model are e�etiveand annot therefore be measured experimentally. In-stead, they are introdued as funtions of the kinetionstants using phenomenologial interpretations.Another soure of disagreement between the ther-modynami approah and the KMC simulations is thestatistial �utuations in the simulations, whih is es-peially important for fratal substrates. For example,some poisoning states an be ahieved only asymptoti-ally, after very long simulations times, while numerialexperiments have a �nite time of alulation. Some ad-ditional poisoning is possible beause of limited lattiesizes (�nite-size e�ets).In the ase of one-dimensional systems, both ther-modynami and KMC approahes agree, preditingpoisoning for all values of the kineti onstants [22℄.5. GENERALIZATION FOR MULTISPECIESLLV SYSTEMSThe entire formalism presented in Se. 2 an be gen-eralized to the ase of M speies. We onsider the setof M transitionsXi +Xi+1 ki! 2Xi+1; i = 1; : : : ;M (23)with the orresponding kineti onstants ki. All pa-rameters have the yli symmetry: AM+j = Aj .The potential energies onsidered as funtions of theki and the temperature are given byUi = kT ln ki < 0: (24)The steady probability distribution orresponds toPi = �ki ; (25)where � =  MXi=1 1ki!�1 : (26)The average potential energy for one partile is esti-mated as hUi =Xi UiPi = kT�Xi ln kiki : (27)The temperature an be generalized asT = �Xi ki; (28)

while the entropy takes the formS = �nn!kXi I(ki)PiPi+1; (29)where I(ki) is de�ned in Eq. (20).In the ase of many speies, the dependene on theinitial onditions beomes more important. Poisoningby several speies is possible in this ase. But the maintendeny indiated by numerial simulations is an in-rease in poisoning states. This an also be obtainedqualitatively from our thermodynami theory. The en-tropy is bilinear in the probabilities, Eq. (29), and theaverage energy is linear, Eq. (27). As the number ofspeies M inreases, the steady-state probabilities de-rease due to normalization. Thus, the e�et of higherM is the same as dereasing the dimensionalityD, lead-ing to poisoning.6. CONCLUSIONSThe thermodynami approah an be useful in non-linear reative systems restrited to low-dimensionalsupports, beause it allows onsidering transitions fromhemial osillations to poisoning regimes and bak asphase transitions indued by the presene of the sup-port. The main idea is to introdue an imaginaryBrownian partile whose energies orrespond to dif-ferent kinds of reating speies. The potential energyan be de�ned through the kineti onstants using theKramers formula. The average kineti energy an beobtained from the theorem on equal distribution of en-ergy among all degrees of freedom. The temperaturean be estimated aording to the Einstein di�usionequation. The entropy an be written as a measureof unertainty in its informational interpretation. In-troduing e�etive thermodynamial parameters allowsde�ning the free energy in terms of the kineti on-stants. The maximum of this free energy funtion sep-arates the poisoning and osillatory regimes. Takingrelatively small values of a kineti onstant leads topoisoning by the orresponding speies.The new thermodynami approah allows diret in-vestigation of the in�uene of the substrate dimen-sions. Within this formalism, the behavior of the LLVmodel was onsidered when realized on square-lattieand fratal substrates. For the LLV model, it wasshown that the lower the dimensionality of the sub-strate, the higher the possibility of poisoning. For one-dimensional systems, there are no osillatory regimes.All thermodynami results have been on�rmed by nu-merial kineti Monte Carlo simulations.722
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