## ДИНАМИКА ЗАРЯЖЕННЫХ СГУСТКОВ В САМОСОГЛАСОВАННОМ ПОЛЕ

## А. С. Чихачев\*

Государственный научный центр «Всероссийский электротехнический институт» 111250, Москва, Россия

Поступила в редакцию 30 мая 2006 г.

Рассмотрена проблема самосогласованного описания плотных сгустков заряженных частиц, характеризуемых нестационарными полями. Рассмотрены классическая и квантовая задачи. Результаты могут быть применены при изучении кластеров в лазерных полях, а также для изучения ускорения многозарядных ионов и экстремальных состояний вещества.

PACS: 52.35.-g, 03.65.-w, 41.20.-q

Изучение динамики плотных заряженных сгустков частиц, взаимодействующих с самосогласованными полями, представляется актуальным в связи с появлением таких новых задач, как поведение кластеров в лазерных полях [1], ускорение многозарядных тяжелых ионов [2], экстремальных состояний вещества (например, пылевой плазмы [3]).

Обычно изучение динамики сгустков оказывается достаточно прозрачным при наличии интегралов движения частиц. Для стационарных задач существует интеграл энергии, играющий важную роль при исследовании стационарных систем.

В случае нестационарных задач возможно использование обобщений интеграла энергии для явно зависящих от времени систем — одним из таких обобщений является широко известный инвариант Куранта – Снайдера. При помощи этого инварианта изучался квантовомеханический осциллятор с переменной частотой (см. [4]). Кроме того, следует отметить ряд классических задач, относящихся прежде всего к ускорительной технике (см. [5, 6]).

Широкое распространение для решения физических задач получило использование переменных масштабов. Так, введение зависящего от координат масштаба времени позволяет свести задачу Кеплера к задаче об осцилляторе [7, 8].

При решении нестационарного уравнения Шредингера часто используются нестационарные координаты, в которых масштаб зависит от времени. Отметим работы [9–14]. В работах [9,10] точное решение получено с помощью разделения переменных и записаны выражения для пропагатора нестационарного уравнения. В работе [11] изучалось решение в форме интеграла по траекториям. В работах [12,13] исследовались точные решения нестационарного уравнения Шредингера в условиях, когда разделение переменных невозможно, однако использование переменного масштаба позволяет упростить вид уравнения. В работе [14] рассматривались собственные решения уравнения Шредингера в нестационарных координатах и нестационарный классический ансамбль частиц в статистической механике.

В настоящей работе для описания динамики сферических симметричных сгустков, взаимодействующих с собственным полем, будет использоваться обобщение интеграла энергии в нестационарных координатах.

1. Выражение

$$I = \frac{m}{2}\xi^{2}(t)\dot{\mathbf{r}}^{2} - \frac{m}{2}\frac{d}{dt}\left(\xi^{2}(t)\right)\mathbf{r}\cdot\dot{\mathbf{r}} + V\left(\frac{\mathbf{r}}{\xi(t)}\right) + \frac{mr^{2}}{4}\frac{d^{2}}{dt^{2}}\left(\xi^{2}(t)\right) \quad (1)$$

является интегралом движения, если энергия

$$H = \frac{m\dot{\mathbf{r}}^2}{2} + \frac{1}{\xi^2(t)} V\left(\frac{\mathbf{r}}{\xi(t)}\right),\tag{2}$$

<sup>&</sup>lt;sup>\*</sup>E-mail: churchev@mail.ru

а  $\xi(t)$  удовлетворяет условию

$$\frac{d^3}{dt^3}\xi^2(t) \equiv 0$$

Здесь m — масса частицы,  $\xi(t)$  — функция времени, **r**, **r** — радиус-вектор и скорость частицы. Из последнего условия следует, что

$$\xi(t) = \sqrt{at^2 + 2bt + c},$$

где a, b, c — константы. Если  $\xi(t) \equiv \sqrt{c}$ , то выражение (1) совпадает с выражением для энергии. Формулу (1) можно также переписать следующим образом:

$$I = \frac{m}{2} (\dot{\mathbf{r}}\xi - \dot{\xi}\mathbf{r})^2 + V\left(\frac{\mathbf{r}}{\xi(t)}\right) + \frac{m\lambda r^2}{2\xi},\qquad(3)$$

где  $\lambda = ac - b^2$ .

Отметим также, что соотношение (1) можно преобразовать к виду

$$I = \frac{m}{2} \left(\frac{d\rho}{d\tau}\right)^2 + V(\rho) + \frac{m\lambda}{2}\rho^2, \qquad (4)$$

где

$$\tau = \int \frac{dt'}{\xi^2(t')}, \quad \boldsymbol{\rho} = \frac{\mathbf{r}}{\xi}.$$

В переменных  $\rho$ ,  $\tau$  функция *I* не зависит от времени  $\tau$  явно и является энергией. Характерно, что к потенциальной энергии при этом добавляется член  $(m\lambda/2)\rho^2$ .

Выражение (2) для энергии использовалось в большом количестве работ, изучавших квантовомеханические системы (см. [9–11]). В работе [10] приведен также ряд обобщений выражения (3) для интеграла движения. Одному из таких обобщений соответствует следующее выражение для энергии:

$$H = \frac{m\dot{\mathbf{r}}^2}{2} + \frac{1}{\xi^2}V\left(\frac{\mathbf{r}}{\xi(t)}\right) + \frac{\omega_0^2}{2}\mathbf{r}^2$$

Уравнение движения при этом имеет вид

$$m\ddot{\mathbf{r}} + \frac{1}{\xi^3}\nabla V + \omega_0^2 \mathbf{r} = 0$$

Интеграл движения (3) в этом случае также справедлив, если  $\xi(t)$  удовлетворяет уравнению

$$\ddot{\xi}(t) + \omega_0^2 \xi = \frac{\lambda}{\xi^3}.$$

При V ≡ 0 рассматриваемый инвариант является инвариантом Куранта–Снайдера.

Впервые, по-видимому, инвариант типа (3) описан в работах [15]. 2. Пусть имеется сферически-симметричный бесстолкновительный сгусток заряженных частиц, взаимодействующих с собственным электрическим полем. При заряде частицы, равном -e, потенциале  $\Phi$  поля запишем

ЖЭТФ, том **130**, вып. 5 (11), 2006

$$V = -e\Phi\xi^2 > 0.$$

При этом

$$\Delta_r \Phi = 4\pi e n = -\frac{e}{\xi^4(t)} \Delta_\rho V(\rho),$$

где  $\Delta_r \Phi$  вычисляется по компонентам **r**, а  $\Delta_{\rho} V$  — по компонентам  $\rho$ . При интегрировании в фазовом пространстве функции распределения f, зависящей от инварианта

$$I = \frac{m}{2}\mathbf{u}^2 + V + \frac{m\lambda r^2}{2\xi^2} \quad (\mathbf{u} = \dot{\mathbf{r}}\xi - \mathbf{r}\dot{\xi}),$$

для плотности *п* можно получить:

$$n = \int d\dot{\mathbf{r}} f(I) = \frac{1}{[\xi(t)]^3} \int d\mathbf{u} f(I)$$

Вследствие различия показателей степени функции  $\xi(t)$ : -3 в выражении для плотности и -4 в выражении для  $\Delta V$ , следует считать, что f удовлетворяет уравнению

$$\frac{df}{dt} = -\nu(t)f,\tag{5}$$

где  $\nu(t) = \dot{\xi}/\xi$ . Тогда

$$f = \chi_0 \exp\left(-\int \nu(t') dt'\right) F(I) = \frac{\chi_0}{\xi(t)} F(I).$$
(6)

Здесь  $\chi_0$  — нормировочная константа, F(I) — функция интеграла движения I. Положим

$$F(I) = \frac{1}{\sqrt{I_0 - I}} \,\sigma(I_0 - I),\tag{7}$$

где  $\sigma(x)=1,\,x\geq 0,\,\sigma(x)=0,\,x<0.$  Тогда плотность частиц

$$n = \chi_0 \exp\left(-\int \nu(t') dt'\right) \int \frac{d\dot{\mathbf{r}}}{\sqrt{I_0 - I}} \sigma(I_0 - I) = \\ = \left(\frac{2}{m}\right)^{3/2} \frac{\chi_0}{\xi^4} \left(V_0^2 - \frac{2V}{m} - \lambda\rho^2\right) \times \\ \times \sigma \left(V_0^2 - \frac{2V}{m} - \lambda\rho^2\right). \quad (8)$$

Уравнение для  $V = -\xi^2 e \Phi$  вида

$$\frac{1}{\rho}\frac{d^2}{d\rho^2}\rho V = -4\pi e^2 n\xi^4 \tag{9}$$

можно представить следующим образом:

$$\frac{1}{\rho} \frac{d^2}{d\rho^2} \rho V = -\frac{4\pi e^2 n_0}{V_0^2} \times \left(V_0^2 - \frac{2V}{m} - \lambda\rho^2\right) \sigma \left(V_0^2 - \frac{2V}{m} - \lambda\rho^2\right), \quad (10)$$

где

$$V_0^2 = \frac{2I}{m}, \quad n_0 = 2\pi \left(\frac{2}{m}\right)^{2/3} \chi_0.$$

9/2

Обозначим

$$\alpha = 4\pi e^2 n_0, \quad \beta = \frac{8\pi e^2 n_0}{mV_0^2}, \quad \gamma = \frac{4\pi e^2 n_0 \lambda}{V_0^2}$$

Тогда

$$\begin{split} V &= \frac{\alpha}{\beta} - 6\frac{\gamma}{\beta^2} - \frac{\gamma}{\beta}\rho^2 + \frac{A}{\rho}\operatorname{sh}\left(\sqrt{\beta}\,\rho\right) \quad \text{при} \quad \rho < \rho_*, \\ V &= \frac{B}{\rho} \quad \text{при} \quad \rho > \rho_*. \end{split}$$

Величина  $\rho_*$  определяется равенством

$$1 - \frac{2V(\rho_*)}{mV_0^2} - \frac{\lambda\rho_*^2}{V_0^2} = 0.$$

Сшивка решений при  $\rho > \rho_*$  и  $\rho < \rho_*$  приводит к следующему соотношению:

$$\frac{\operatorname{ch}\left(\sqrt{\beta}\,\rho_*\right)}{\operatorname{sh}\left(\sqrt{\beta}\,\rho_*\right)} = \frac{\rho_*\sqrt{\beta}}{2} + \frac{1}{\sqrt{\beta}\,\rho_*} - \frac{\alpha\beta}{6\gamma\sqrt{\beta}\,\rho_*}.\tag{11}$$

При этом

$$A = \frac{6\gamma}{\beta^2 \sqrt{\beta}} \frac{\left(\sqrt{\beta} \rho_*\right)}{\operatorname{sh}\left(\sqrt{\beta} \rho_*\right)}, \quad B = \rho_* \left(\frac{\alpha}{\beta} - \frac{\gamma}{\beta} \rho_*^2\right).$$

Если  $\sqrt{\beta} \rho_* < 1$ , то

$$\sqrt{eta}\,
ho_* = \sqrt{rac{lphaeta}{3\gamma}}\,.$$

При  $\sqrt{\beta} \rho_* \gg 1$ 

$$\sqrt{\beta} \,\rho_* = 1 + \sqrt{\frac{\alpha\beta}{6\gamma}}$$

Если  $\alpha\beta/3\gamma\ll 1$ , то

$$\rho_* \approx \sqrt{\frac{\alpha}{3\gamma}}, \quad A = \frac{6\gamma}{\beta^2\sqrt{\beta}}, \quad B = 2\left(\frac{\alpha}{3\beta}\right)^{3/2} > 0.$$

При  $\rho < \rho_*$  имеем

$$V = \frac{mV_0^2}{2} \left( 1 - \frac{3\lambda m}{4\pi e^2 n_0} - \frac{\rho^2}{\rho_1^2} + \frac{3\lambda m}{4\pi e^2 n_0} \frac{\rho_0}{\rho} \frac{\rho_*/\rho_0}{\operatorname{sh}(\rho_*/\rho_0)} \right)$$

где

$$\rho_0 = \sqrt{\frac{mV_0^2}{8\pi e^2 n_0}}, \quad \rho_1 = \frac{V_0}{\sqrt{\lambda}}$$

При  $\rho > \rho_*$  величина  $V = B/\rho$ . Уравнение непрерывности имеет вид

$$\operatorname{div}\mathbf{j} + \frac{\partial n}{\partial t} = -\frac{\dot{\xi}}{\xi} \, n. \tag{12}$$

Правая часть этого уравнения описывает поглощение частиц.

При переходе к переменным **r**, t видим, что радиус сгустка растет со временем при  $\lambda > 0$ , причем из-за поглощения полное число частиц убывает:  $N = N_0 / \xi(t)$ .

**3.** Несомненный методический интерес представляет рассмотрение динамики четырехмерного сферического сгустка.

Линейное уравнение для потенциала может быть получено, если положить

$$f = \chi_0 \delta(I - I_0). \tag{13}$$

В этом случае выражение для плотности имеет вид

$$n = \chi_0 \left(\frac{2}{m}\right)^3 \frac{\chi_0}{\xi^4} \pi^2 \left(I_0 - V - \frac{\lambda m \rho^2}{2}\right) \times \sigma \left(I_0 - V - \frac{\lambda m \rho^2}{2}\right). \quad (14)$$

При этом из-за наличия множителя  $\xi^4$  в знаменателе правой части (14) нет необходимости считать, что существует поглощение частиц. Уравнение для функции распределения имеет вид

$$\frac{df}{dt} = 0.$$

Будем также считать, что

$$I_0 = \frac{mV_0^2}{2}, \quad V = -e\xi^2\Phi.$$

Уравнение для V имеет вид

$$\frac{1}{\rho^3} \frac{d}{d\rho} \rho^3 \frac{dV}{d\rho} = (-\alpha + \beta V + \gamma \rho^2) \sigma (-\alpha + \beta V + \gamma \rho^2), \quad (15)$$

где

$$\alpha = 4\pi e^2 n_0, \quad \beta = \frac{8\pi e^2 n_0}{mV_0^2}, \quad \gamma = \frac{4\pi e^2 n_0 \lambda}{V_0^2}$$

Внутри сгустка

$$V = \frac{A}{\rho} I_1 \left( \sqrt{\beta} \, \rho \right) + \frac{m V_0^2}{2} - 4 \frac{m V_0^2}{2} \frac{m \lambda}{4\pi e^2 n_0} - \frac{m \lambda}{2} \rho^2,$$

а вне его

$$V = \frac{B}{\rho^2}.$$

Из условий сшивки при  $\rho = \rho_*$  следуют соотношения:

$$\frac{I_0\left(\sqrt{\beta}\,\rho_*\right)}{I_1\left(\sqrt{\beta}\,\rho_*\right)} = \frac{1}{\sqrt{\beta}\,\rho_*} + \frac{\sqrt{\beta}\,\rho_*}{2} - \frac{\alpha\beta}{4\gamma\sqrt{\beta}\,\rho_*},\qquad(16)$$

$$A = \frac{8\gamma\sqrt{\beta}\,\rho_*}{\beta^2\sqrt{\beta}\,I_1\left(\sqrt{\beta}\,\rho_*\right)}, \quad B = \frac{\rho_*^2}{\beta}(\alpha - \gamma\rho_*^2). \tag{17}$$

Также имеют смысл решения при  $\lambda > 0$  для расширяющегося сгустка, однако, в отличие от трехмерного случая, в четырехмерной модели сохраняется полное число N частиц. Уравнение непрерывности имеет вид

$$\operatorname{div}\mathbf{j} + \frac{\partial n}{\partial t} \equiv 0.$$

**4.** Рассмотрим квантовую задачу о заряженной частице.

Запишем уравнение Шредингера:

$$i\hbar\frac{\partial\Psi}{\partial t} = H\Psi = -\frac{\hbar^2}{2m}\Delta\Psi + \frac{1}{\xi^2}V\left(\frac{\mathbf{r}}{\xi}\right)\Psi.$$
 (18)

Рассмотрим сначала четырехмерный случай. Введем новые переменные:

$$\boldsymbol{\rho} = \frac{\mathbf{r}}{\xi(t)}, \quad \tau = \int \frac{dt'}{\xi^2(t')}, \quad \frac{d\tau}{dt} = \frac{1}{\xi^2}$$

Равенство (18) тогда приводится к виду

$$i\hbar\left(\frac{\partial\Psi}{\partial\tau} - \frac{\dot{\xi}}{\xi}\rho\frac{\partial\Psi}{\partial\rho}\right) = \frac{\hbar^2}{2m}\Delta\Psi + V(\rho)\Psi.$$
 (19)

В формуле (19) точка означает производную  $d/d\tau$ , оператор  $\Delta$  — в переменных  $\rho$ . Положим

$$\Psi = \exp\left(\frac{im}{\hbar}\frac{\dot{\xi}}{\xi}\frac{\rho^2}{2}\right)\frac{1}{\xi^2}\Psi_1(\boldsymbol{\rho},\tau).$$

Получим уравнение для  $\Psi_1$ :

$$i\hbar\frac{\partial\Psi_1}{\partial t} = -\frac{\hbar^2}{2m}\Delta\Psi_1 + (V+\lambda\rho^2)\Psi_1, \qquad (20)$$

где  $\lambda = ac - b^2$ .

Плотность заряда, определяемая функцией  $\Psi({\bf r},t),$  имеет вид

$$q(\mathbf{r},t) = -e|\Psi|^2 = -e|\Psi_1|^2 \frac{1}{\xi^4},$$

а уравнение для потенциала  $V=-e\xi^2\Phi(r,t)$  —

$$\frac{1}{\xi^4} \frac{1}{\rho^3} \frac{d}{d\rho} \rho^3 \frac{dV}{d\rho} = -\frac{4\pi e^2}{\xi^4} |\Psi_1|^2.$$

Поскольку в переменных  $\rho$ ,  $\tau$  задача является стационарной, можно положить

$$\Psi_1(\boldsymbol{\rho},\tau) = \exp \frac{i\chi^2 \tau}{2\hbar} \varphi(\boldsymbol{\rho}). \tag{21}$$

Здесь  $-\chi^2/2 = E$  — энергия связанного состояния.

Таким образом, имеем нелинейную систему обыкновенных дифференциальных уравнений четвертого порядка:

$$\begin{cases} -\frac{\chi}{2}\varphi = -\frac{\hbar^2}{2m}\frac{1}{\rho^3}\frac{d}{d\rho}\rho^3\frac{d\varphi}{d\rho} + (V+\lambda\rho^2)\varphi, \\ \frac{1}{\rho^3}\frac{d}{d\rho}\rho^3\frac{dV}{d\rho} = -4\pi e^2|\varphi|^2. \end{cases}$$
(22)

Далее, если в трехмерной задаче положить, как и выше,

$$\Psi = \frac{1}{\xi^2} \exp\left(\frac{im}{\hbar} \frac{\dot{\xi}}{\xi} \frac{\rho^2}{2}\right) \Psi_1,$$

то для  $\Psi_1$  получим уравнение

$$i\hbar\frac{\partial\Psi_1}{\partial\tau} = -\frac{\hbar^2}{2m}\Delta\Psi_1 + \left(V + \frac{i\hbar}{2}\frac{\dot{\xi}}{\xi} + \lambda\rho^2\right)\Psi_1.$$

Этому уравнению соответствуют растущие по  $\tau$  решения. Добавив в потенциал исходного уравнения (18) слагаемое

$$-\frac{i\hbar}{2}\frac{1}{\xi}\frac{d\xi}{dt},$$

получим уравнение, которое описывает затухающие во времени состояния, причем оказывается возможным самосогласованное описание взаимодействия с собственным полем.

При этих условиях плотность заряда имеет вид

$$q(r,t) = -e|\Psi|^2 = -e|\Psi_1|^2 \frac{1}{\xi^4}.$$
 (23)

Из формулы (23) следует, что

$$\frac{1}{\xi^4} \frac{1}{\rho} \frac{d^2}{d\rho^2} \rho V = -\frac{4\pi e^2}{\xi^4} |\Psi_1|^2$$

Уравнение для  $\Psi_1$  имеет решение следующего вида:

$$\Psi_1 = \exp \frac{i\chi^2 \tau}{2\hbar} \varphi(\rho).$$

В результате приходим к нелинейной системе типа (22):

$$\begin{pmatrix}
-\frac{\chi}{2}\varphi = -\frac{\hbar^2}{2m}\frac{1}{\rho}\frac{d^2}{d\rho^2}\rho\varphi + (V+\lambda\rho^2)\varphi, \\
\frac{1}{\rho}\frac{d^2}{d\rho^2}\rho V = -4\pi e^2|\varphi|^2.
\end{cases}$$
(24)

Система (24) отличается от (22) только видом радиальной части лапласиана, однако в трехмерной задаче оказывается необходимым наличие затухания  $\Psi$ -функции определенного вида.

Заметим, наконец, что в одномерной задаче при наличии затухания с

$$\nu(t) = \frac{3}{2} \frac{\dot{\xi}}{\xi}$$

также можно получить нелинейную систему типа (22), (24), причем оператор Лапласа оказывается просто второй производной:

$$\begin{cases} -\frac{\chi}{2}\varphi = -\frac{\hbar^2}{2m}\frac{d^2\varphi}{d\eta^2} + (V+\lambda\eta^2)\varphi, \\ \frac{d^2}{d\eta^2}V = -4\pi e^2|\varphi|^2. \end{cases}$$
(25)

Здесь  $\eta = \chi/\xi(t)$ , функции  $\varphi$  и V зависят только от  $\eta$ .

Представляется вероятным, что рассмотренные модельные задачи могут быть полезными при тестирования сложных численных программ, предназначенных для описания реальных экспериментов. Особенно интересными предложенные модели могут оказаться при исследовании нестационарных процессов, связанных с ионизацией и нейтрализацией атомных частиц, когда число заряженных частиц не является постоянным. Кроме того, использование обобщения инварианта Куранта – Снайдера, приведенное в работе [10], открывает новые возможности при исследовании плотных сгустков, характеризуемых нелинейными колебаниями частиц с переменной частотой.

Автор благодарен Э. А. Маныкину за ряд полезных дискуссий и помощь в работе.

Работа выполнена при частичной финансовой поддержке РФФИ (грант № 05-02-08030).

## ЛИТЕРАТУРА

- **1**. Б. М. Смирнов, УФН **173**, 609 (2003).
- Я. Браун, Р. Келлер, А. Холмс и др., Физика и технология источников ионов, под ред. Я. Брауна, Мир, Москва (1998).
- В. Е. Фортов, А. Г. Храпак, С. А. Храпак, В. И. Молотков, О. Ф. Петров, УФН 167, 1215 (1997);
   А. М. Игнатов, Физика плазмы 30, 256 (2004).
- 4. K. Husimi, Progr. Theor. Phys. 9, 381 (1953).
- 5. И. М. Капчинский, *Теория линейных резонансных ускорителей: Динамика частиц*, Энергоиздат, Москва (1982).
- 6. А. С. Чихачев, Кинетическая теория квазистационарных состояний сильноточных пучков заряженных частиц, Физматлит, Москва (2001).
- 7. Е. Штифель, Г. Шейфеле, Линейная и регулярная небесная механика, Наука, Москва (1975).
- 8. Е. А. Соловьев, ЯФ 35, 242 (1982).
- V. V. Dodonov, V. I. Man'ko, and D. E. Nikonov, Phys. Lett. A 162, 359 (1992).
- C. J. Effhimiou and D. Spector, Phys. Rev. A 49, 2301 (1994).
- 11. C. Grosche, SISSA Rep. Nº SISSA/2/93/FM.
- 12. Е. А. Соловьев, ТМФ 28, 240 (1976).
- 13. A. S. Chikhachev, J. Rus. Laser Res. 26, 33 (2005).
- 14. M. V. Berry and G. Klein, J. Phys. A: Math. Gen. 17, 1805 (1984).
- J. Mestschersky, Aston. Nachr. 132, 129 (1893); 159, 229 (1902).