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STEM CELL PROLIFERATION AND DIFFERENTIATION ANDSTOCHASTIC BISTABILITY IN GENE EXPRESSIONV. P. Zhdanov *a;baDepartment of Applied Physis, Chalmers University of TehnologyS-41296, Göteborg, SwedenbBoreskov Institute of Catalysis, Russian Aademy of Sienes630090, Novosibirsk, RussiaReeived 23 August 2006The proess of proliferation and di�erentiation of stem ells is inherently stohasti in the sense that the outomeof ell division is haraterized by probabilities that depend on the intraellular properties, extraellular medium,and ell�ell ommuniation. Despite four deades of intensive studies, the understanding of the physis behindthis stohastiity is still limited both in details and oneptually. Here, we suggest a simple sheme showingthat the stohasti behavior of a single stem ell may be related to (i) the existene of a short stage of deisionwhether it will proliferate or di�erentiate and (ii) ontrol of this stage by stohasti bistability in gene expressionor, more spei�ally, by transriptional �bursts�. Our Monte Carlo simulations indiate that this sheme mayoperate if the number of mRNA (or protein) generated during the high-reative periods of gene expression isbelow or about 50. The stohasti-burst window in the spae of kineti parameters is found to inrease withdereasing the mRNA and/or regulatory-protein numbers and inreasing the number of regulatory sites. FormRNA prodution with three regulatory sites, for example, the mRNA degradation rate onstant may hangein the range �10%.PACS: 87.16.-b, 05.40.-a, 05.65.+b1. INTRODUCTIONAdult stem ells, possessing the ability for self-renewal and generation of more speialized ells, were�rst identi�ed in the hematopoieti (blood-forming)system in the early 1960s [1℄. Later on, stem ellnihes were found to exist in the skin [2℄, gut [3℄ andbrain [4℄ (for general readership, see Ref. [5℄). Despitefour deades of intensive studies and high urrent inter-est in potential appliations in treatment of numeroussevere diseases, tissue engineering, diagnosti purposes,drug testing, et. [6℄, the understanding of the meha-nism(s) of proliferation and di�erentiation of stem ellsis still limited both in details and oneptually [7℄.One of the reasons of oneptual di�ulties in thisarea is that the proess of proliferation and di�erenti-ation of stem ells is inherently stohasti in the sensethat the outome of ell division (whether it results intwo stem ell or a stem ell and a di�erentiated ell) is*E-mail: zhdanov�atalysis.ru

haraterized by probabilities that depend on the intra-ellular properties, extraellular medium, and ell�ellommuniation. Whether these probabilities are deter-mined by omplex (e.g., haoti) kinetis, whih an bedesribed by deterministi equations, or by stohastikinetis due to a small number of reatants partiipat-ing in some of the steps is still not lear.To illustrate the last point more expliitly, it is in-strutive to brie�y disuss the models used in desrib-ing the kinetis of proliferation and di�erentiation ofstem ells.(i) The simplest approah is based on the use of�xed probabilities for stem-ell self-renewal, di�erenti-ation, and death. The orresponding stohasti modelshave been widely used sine the mid-60s (see the ear-liest models [8℄ and reent reviews [9℄ ontaining nu-merous relevant referenes). The advantage of this ap-proah is that it allows one to easily perform analytialand numerial alulations or Monte Carlo (MC) simu-lations with the various fators (e.g., ell�ell ommu-niation or aggregation of ells due to adhesion [10℄)180



ÆÝÒÔ, òîì 131, âûï. 1, 2007 Stem ell proliferation and di�erentiation : : :ompliating the stem-ell kinetis taken into aount.But suh models do not desribe expliitly what hap-pens inside ells.(ii) To larify general priniples of proliferation anddi�erentiation, one an represent a ell by a set of non-linear hemial reations without speifying their bio-hemial funtion. This strategy was realized in a se-ries of papers by Kaneko and o-workers [11℄. In theirmodels, the internal dynamis of a single ell typiallyexhibits osillations, haos, and/or oexistene of mul-tiple attrators, with only one attrator for randomlyhosen initial onditions. The emphasis is made onthe behavior of an ensemble of ells interating via ex-hange of some of the reatants. With suh intera-tions, the models predit di�erentiation from a �stem�ell to other ell types. Thus, di�erentiation is essen-tially onsidered a olletive feature of stem ells havinginternal osillatory dynamis.(iii) Di�erentiation of stem ells was interpreted interms of a Boolean network model of geneti regula-tory networks [12℄. With presribed rules of swithesof the gene states, this model predits state irles orattrators. Di�erentiation is viewed as resulting froma transient or persistent perturbation that auses a ellto �jump� from one attrator to another attrator. Al-though the terminology and mathematis are here quitedi�erent from those in item (ii), the general onept isbasially the same.(iv) Reent kineti models tend to utilize ell-spe-i� data (see reviews [9, 13℄). For example, the mean-�eld kineti models [14, 15℄ are foused on signal net-works, based on the known omponents of epidermalgrowth fator reeptor signal pathways (this reeptoris often onsidered to play an important role in prolif-eration and di�erentiation). In suh models, the pro-liferation or di�erentiation events are usually assumedto our if the onentration of some of the reatantsis higher or lower than the ritial onentration (see,e.g., Ref. [15℄). Pratially, this means that under �xedexternal onditions, the fate of a ell is deterministi.Under transient external onditions, e.g., due to ell�ell ommuniation, the models are able to desribeboth proliferation and di�erentiation in an ensembleof ells. (See Refs. [16, 17℄ for a disussion of variousaspets of bistability in ell signaling.)In general, the proliferation and di�erentiation ofstem ells is usually believed to be related to gene ex-pression. During the past deade, this proess wastheoretially analyzed in numerous papers. The orre-sponding models an be divided into three overlappinggroups, foused respetively on (i) general priniplesof gene expression inluding stohasti e�ets [18�21℄

(see Ref. [22℄ for diret observation of stohasti burstsin protein prodution during gene expression), (ii) ex-pression of spei� genes [19, 23, 24℄, and (iii) omplexgeneti networks [20; 21; 23; 25℄. Although stem ellsare often mentioned in these studies, the details of howdi�erentiation is governed by genes are not disussedthere.Stohasti e�ets in gene expression are ommonbeause most genes exist in single or low opy num-bers in a ell. The potential importane of suh ef-fets for proliferation and di�erentiation of stem ellsis often artiulated in general disussions of these twoproesses [21; 26℄. But the mehanisti details of theinterplay of stohastiity of gene expression and dif-ferentiation and the quantitative riteria allowing oneto understand when this interplay is possible remainvague.To illustrate the points above expliitly, it is in-strutive to brie�y present typial examples showingthe state of the art in studying the mehanisms ofdi�erentiation of spei� ells. We �rst mention theomprehensive proliferation- and di�erentiation-relatedstudies of the gene-expression map in Arabidipsis [27℄.Despite the analysis of the performane of 22000 genes(90% of the genome), the mehanisms of proliferationand di�erentiation remain hidden in this ase.Another example is adult rat neural stem ells or,more spei�ally, adult hippoampal progenitor ellsgrowing in ulture [28℄. Under appropriate onditions,these multipotent ells are able to proliferate and/orgenerate neurons and glial ells (astroytes and oligo-dendroytes) daily for at least the �rst month of ul-ture. The relative rates of these pathways are knownto depend on the growth fators (highly spei� pro-teins mostly required in low onentrations (10�9�10�11 M)) [29℄1). A detailed analysis [30℄ of the hangesof gene expression during di�erentiation of these ellsis impressive. A lear mehanisti interpretation of theresults obtained is laking, however.To omplement the theoretial works desribedabove and to guide experiments, we suggest (Se. 2)a simple oneptual sheme showing how stohastibistability in gene expression may result in stohastiproliferation and di�erentiation of a single ell. In ad-dition, we present (Se. 3) MC simulations of stohastibistability in gene expression in order to quantify someof the aspets of our general disussion or, more speif-ially, to obtain riteria for larifying the onditions of1) Di�erentiation an be readily observed by immunoyto-hemistry, i.e., by detetion of expression of proteins, spei�to eah type of di�erentiated ell.181



V. P. Zhdanov ÆÝÒÔ, òîì 131, âûï. 1, 2007realization of the sheme suggested. Taken together,the results in Ses. 2 and 3 extend the oneptual ba-sis for the understanding of the likely role of stohastiintraellular proesses in proliferation and di�erentia-tion of stem ells and may promote further steps in thediretion under onsideration.2. PROLIFERATION AND DIFFERENTIATIONThe fate of stem ells is now believed (see the pre-eding setion) to be determined by kineti swithesrelated to gene expression and/or other biohemialreations. This general sheme admits various realiza-tions. The senario disussed here is based on two keyassumptions.(i) The division of a stem ell results in the appear-ane of two stem ells or a stem ell and a di�eren-tiated ell. This means that the ell must ome to adeision whether it will proliferate or di�erentiate. Inour sheme, the deision stage is assumed to be narrowompared with the duration of the ell yle. Physi-ally, it is lear that the deision an hardly be madejust after the ell birth, beause the ell should grow af-ter the birth, with the onditions inside the ell rapidlyhanging during this phase. Therefore, the internal andexternal ontrol of the ell fate annot be robust. Thedeision an also hardly be made just before the ell di-vision, beause the ell needs time in order to developthe mahinery orresponding to the birth of either twostem ells or a stem ell and a di�erentiated ell. Thus,the deision is expeted to be made somewhere in themiddle of the ell yle2).(ii) The deision whether to proliferate or di�erenti-ate is assumed to be related to the stohasti expressionof one of the genes. In partiular, the protein synthe-sized due to the ativity of this gene is onsidered togovern the performane of a few other genes ontrollingthe ell fate. Spei�ally, the gene is assumed to op-erate in the stohasti bistable regime and to exhibitsequential periods of high and low expression (tran-sriptional bursts) due to positive feedbak betweenthe messenger ribonulei aid (mRNA) and proteinprodution and a small number of mRNA and/or pro-tein. These periods are assumed to be omparable toor somewhat longer than the duration of the deisionstage and aordingly muh shorter ompared to the2) We note that the proliferation, e.g., of di�erentiated mam-malian ells is ontrolled by regulating the progression throughthe G1 phase and entry into the S phase [31℄. There are alsoindiations that this is an early period in di�erentiation of stemells [31℄.

duration of the ell yle. The fate of a ell dependson whether the level of the gene expression during thedeision stage is high or low.If assumptions (i) and (ii) are ful�lled, the di�eren-tiation rate onstant is given bykdif = kdivP1; (1)where kdiv is the division rate onstant, andP1 = �1�1 + �2is the probability that the gene is in state 1 orrespond-ing to di�erentiation (�1 and �2 are the respetive aver-age durations of the gene ativity periods orrespond-ing to di�erentiation and proliferation). For the prolif-eration rate onstant, we havekpr = kdivP2; (2)where P2 = 1� P1 = �2�1 + �2is the probability that the gene is in state 2 orrespond-ing to proliferation.We note that Eqs. (1) and (2) do not imply that aell should somehow measure probabilities P1 and P2.Instead, for eah given ell, the orresponding stohas-ti proess of gene expression ours, and the ell fatedepends on realization of this proess. The probabil-ities P1 and P2 and the rate onstants kdif and kprare introdued for an ensemble of stem ells. In real-ity, these probabilities and rate onstants may dependon the ell onentration if the gene expression and/orother related intraellular proesses are in�uened byommuniation between ells.In general, a stem ell may generate speialized ellsof two or more types (e.g., a neural stem ell may gen-erate neurons and glial ells). In suh ases, a stemell is expeted to make two or more deisions. The�rst deision, e.g., should disriminate between prolif-eration and di�erentiation, and if di�erentiation is thehoie, the seond deision has to disriminate betweentwo types of the di�erentiated ell.The speial feature of the senario outlined above isthat the average rate of expression of the gene(s) on-trolling proliferation and di�erentiation of a stem ellmay be the same as that in di�erentiated ells. In ad-dition, the stohasti bursts in gene expression may begenerated only during a part of the ell yle inlud-ing the deision stage. This may hinder identi�ationof the mehanism of di�erentiation and simultaneouslyexplain why the identi�ation of the genes responsiblefor di�erentiation is often di�ult.182



ÆÝÒÔ, òîì 131, âûï. 1, 2007 Stem ell proliferation and di�erentiation : : :Although the senario suggested is simple, to ourknowledge, it was not expliitly disussed in detail inthe literature. In this ontext, it is of interest to lar-ify how low the number of mRNA or protein should bein order to realize the senario above and whether thisnumber depends on the details of the regulation of thegene ativity. The answers to these questions are givenin the next setion.3. STOCHASTIC BISTABILITY IN GENEEXPRESSIONExpression of the information enoded in DNA isknown [32℄ to our via a templated polymerizationalled transription, in whih the genes (segments ofthe DNA sequene) are used as templates to guidethe synthesis of shorter moleules of RNA. Later on,many of these moleules (or, more spei�ally, messen-ger RNA) serve to diret the synthesis of proteins onribosomes. The whole proess of gene expression an beregulated at all steps. In partiular, the gene transrip-tion, performed by RNA polymerase, is often ontrolledby master regulatory proteins. In the ase of positivefeedbak between the mRNA and protein prodution,the gene expression may exhibit bistability [19℄. (Forthe general disussion of various aspets of bistabilityin ellular systems with emphasis on ell signaling, seeRef. [16℄.)In our treatment, we analyze the situation wherethe gene has a few regulatory sites. The mRNA (R)prodution rate is onsidered to be high if all the reg-ulatory sites are oupied by the protein (P ). In thisase, the generi mean-�eld equations for the R and Pnumbers are given by (f., e.g., Ref. [19℄)dNRdt = k0 + k1� NPKP +NP �n � kRNR; (3)dNPdt = ksNR � kPNP ; (4)where k0 and k1 are the rate onstants of the basaland protein-regulated gene transription (n is the num-ber of regulatory sites, KP is the protein assoiation�dissoiation onstant, and (NP =(KP + NP ))n is theprobability that all the regulatory sites are oupied byP ), ks is the rate onstant of protein synthesis, and kRand kP are the respetive rate onstants of the mRNAand protein degradation.Equations (3) and (4) predit bistability if n � 2.Our alulations below are performed for n = 2 or 3.These lowest values of n are most natural. In addition,

there are indiations that the ell di�erentiation doesour with partiipation of autoativating transriptionfators like GATA-3 with n = 2 [19℄.To illustrate the stohasti kinetis exhibiting tran-sriptional bursts, we fous our attention on the asewhere NR is relatively small. To keep the analysis assimple as possible, (i) NP is onsidered to be large, (ii)the protein attahment to and detahment from mRNAare assumed to be rapid, and (iii) the protein forma-tion and degradation are assumed to be rapid as well.Conditions (i) and (ii) guarantee that the e�et of theprotein on the gene transription an be desribed inthe mean-�eld approximation even if NR is small. Con-ditions (i) and (iii) guarantee in turn that NP is loseto a steady state, i.e.,NR � kPks NP ;both in the mean-�eld and stohasti regimes (the va-lidity of this statement was veri�ed and on�rmed byindependent MC simulations). Substituting this rela-tion between NR and NP in Eq. (4) yieldsdNRdt = k0 + k1� NRKP +NR�n � kRNR; (5)where KP = KP kPks :To study �utuations, we perform MC simulationsof the kinetis orresponding to Eq. (5). Spei�ally,we use the standard MC algorithm [33℄ based on alu-lation of the total reation rate. In our ase (Eq. (5)),there are two parallel proesses, the mRNA produtionand degradation, running with the ratesW1 = k0 + k1� NRKP +NR�nand W2 = kRNR:The total rate of these proesses isWt =W1 +W2:For a given number of mRNA, we generate a randomnumber � (0 < � � 1) and exeute one of the pos-sible proesses (i.e., inrease or derease NR by one)if � < W1=Wt and � > W1=Wt, respetively. Aftereah MC trial, time is inreased by j ln�j=Wt, where �(0 < � � 1) is another random number.The time sales haraterizing elementary biohem-ial proesses inside ells are about a minute or shorter.183



V. P. Zhdanov ÆÝÒÔ, òîì 131, âûï. 1, 2007

0 5 10 15 20 25 30 35

NR

5

10

35

30

25

20

15

W1, W2,min−1

Fig. 1. Rates of the mRNA prodution W1 (thik line)and degradation W2 (thin lines), as funtions of NRfor n = 2, k1 = 60 min�1, KP = 15, and kR = 0:702,0:9, and 1:04 min�1In ontrast, the time sale of division of stem ells istypially about one day. Taking these restritions onthe time sales into aount, we use kR � 1 min�1 inour simulations (kR is onsidered to be the governingparameter). The onstants k1 and KP are hosen inorder to ensure bistability with a relatively small num-ber of mRNA. Typially, k1 is seleted to be appreia-bly larger than unity. The dependene of the resultsof simulations on k0 is weak. To be spei�, we setk0 = 0:01k1 in all the examples. The duration of theMC runs is 2000 min (this value is omparable to orsomewhat longer than the time sale of the division ofstem ells). We note that although the parameter val-ues indiated above and hosen below are biologiallyreasonable, the orresponding values are in reality dis-tributed in a wide range (due to the diversity of ells)and aordingly may of ourse be both smaller and/orlarger.Figure 1 shows the mRNA prodution and degra-dation rates as a funtion of NR in the ase of tworegulatory site (n = 2). The prodution rate is al-ulated for k1 = 60 min�1 and KP = 15. Thedegradation rate is shown for kR = 0:702, 0.9, and1:04 min�1. The values kR = 0:702 and 1.04 min�1orrespond to the boundaries of the bistability win-dow. The value kR = 0:9 min�1 is nearly at themiddle of the bistability window. With these param-eters, the steady-state numbers of mRNA are low.Typially, NR is about 30 for the high-ative gene-expression regime and NR is about 5 for the low-ativeregime. Although the bistability window is relatively
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ÆÝÒÔ, òîì 131, âûï. 1, 2007 Stem ell proliferation and di�erentiation : : :onstants. For example, ks depends on the number ofribosomes, and this parameter alone ould easily varyby a fator of 2 or more. But this variation is primarilyrelated to the growth of a ell. Spei�ally, the numberof ribosomes inreases simultaneously with the inreasein the ellular volume. This results in the derease ofthe mRNA onentration, whih in turn ompensatesthe inrease in the number of ribosomes. Thus, the sit-uation is not so dramati as one ould expet. On theother hand, the hanges related to the ellular growthmay of ourse in�uene the stohasti bistability of thegene expression. For the appliability of the proposedmehanism of di�erentiation, the stohasti bursts ingene expression should be generated during the dei-sion stage at least. At the late stages, the bursts maydisappear (if this is the ase, the identi�ation of themehanism of di�erentiation may be ompliated).Conerning the robustness of the suggested shemeof the ell-fate determination, it is also appropriate tonote that our analysis of stohasti bistability in geneexpression is foused on the generi situation where thepositive feedbak between the mRNA and protein pro-dution ours due to a few sites regulating the mRNAprodution. In more spei� situations, e.g., with addi-tional steps in protein proessing and/or the interplayof two or more genes (for relevant mean-�eld models,see [16, 36℄ and the referenes therein), the stohasti-burst window may perhaps be wider and if this is thease, it may help to realize the sheme under onsider-ation.To relate our analysis to experiments, we repeat (f.Se. 2) that the speial feature of the suggested senariois that the average rate of expression of the gene(s) on-trolling proliferation and di�erentiation of a stem ellmay be the same as that in di�erentiated ells. In ad-dition, the stohasti bursts in gene expression may begenerated only during a part of the ell yle inlud-ing the deision stage. This may hinder identi�ationof the mehanism of di�erentiation. Conerning moreonstrutive preditions, we note, e.g., that the degra-dation of proteins usually ours in speial ompart-ments alled lysosomes [32℄. Thus, the orrespondingrate onstant (in Eq. (4)) is proportional to the ratio ofthe volume of lysosomes and the ell volume. Takinginto aount that the duration of the transriptionalbursts depends on this rate onstant, one an try tostudy orrelations between this ratio (or other kinetiparameters in Eqs. (3) and (4)) and the di�erentia-tion probabilities. Although the observation of suhorrelations annot guarantee that the mehanism sug-gested is operative, it might be interpreted in favor ofthe mehanism.
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