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ELECTRON SPECTRUM IN HIGH-TEMPERATURECUPRATE SUPERCONDUCTORSN. M. Plakida *a;b, V. S. Oudovenko a;
aJoint Institute for Nu
lear Resear
h, Dubna, RussiabMax-Plan
k-Institut für Physik Komplexer Systeme, Dresden, Germany
Rutgers University, New Jersey, USARe
eived 7 July 2006A mi
ros
opi
 theory for the ele
tron spe
trum of the CuO2 plane within an e�e
tive p�d Hubbard model isproposed. The Dyson equation for the single-ele
tron Green's fun
tion in terms of the Hubbard operators isderived and solved self-
onsistently for the self-energy evaluated in the non
rossing approximation. Ele
trons
attering on spin �u
tuations indu
ed by the kinemati
 intera
tion is des
ribed by a dynami
al spin sus
epti-bility with a 
ontinuous spe
trum. The doping and temperature dependen
e of ele
tron dispersions, spe
tralfun
tions, the Fermi surfa
e, and the 
oupling 
onstant � are studied in the hole-doped 
ase. At low doping,an ar
-type Fermi surfa
e and a pseudogap in the spe
tral fun
tion 
lose to the Brillouin zone boundary areobserved.PACS: 74.20.Mn, 71.27.+a, 71.10.Fd, 74.72.-h1. INTRODUCTIONRe
ent high-resolution angle-resolved photoemis-sion spe
tros
opy (ARPES) studies revealed a 
ompli-
ated 
hara
ter of the ele
troni
 stru
ture and quasi-parti
le (QP) spe
tra in 
opper oxide super
ondu
tors.In parti
ular, a pseudogap in the ele
tron spe
trum andan ar
-type Fermi surfa
e (FS) at low hole 
on
entra-tions were revealed, a substantial wave-ve
tor and en-ergy dependent renormalization of the Fermi velo
ityof QP (�kinks" in the dispersion) was observed (see,e.g., [1�3℄ and the referen
es therein). As was origi-nally pointed out by Anderson [4℄, strong ele
tron 
or-relations in 
uprates play an essential role in explainingtheir normal and super
ondu
ting properties.A 
onventional approa
h to des
ribing strong ele
-tron 
orrelations is based on the Hubbard model [5℄.The model has some advantages in 
omparison withthe t�J model, whi
h 
an be derived from the Hub-bard model in the limit of strong 
orrelations. Namely,the Hubbard model allows studying a moderate 
or-relation limit observed experimentally in 
uprates andmore 
onsistently a

ounts for the two-subband 
har-*E-mail: plakida�theor.jinr.ru

a
ter of the ele
tron stru
ture, in parti
ular, a weighttransfer between subbands with doping.Various methods were proposed to study the ele
-tron stru
ture within the Hubbard model. But an un-biased method based on numeri
al simulations for �-nite 
lusters (see, e.g., [6℄ for a review) does not al-low studying subtle features of QP spe
tra due to poorenergy and wave-ve
tor resolutions in small-size 
lus-ters. In analyti
 
al
ulations of spe
tra, mean-�eld-type approximations are often used (see [7, 8℄ for areview), whi
h 
annot reprodu
e the above-mentionede�e
ts 
aused by the self-energy 
ontributions. In thedynami
al mean-�eld theory (DMFT) (see [9, 10℄ fora review), the self-energy is treated in the single-siteapproximation, whi
h is also unable to des
ribe wave-ve
tor-dependent phenomena. To over
ome this �awof DMFT, various types of the dynami
al 
luster the-ory were developed (see [11, 12℄ for a review). In thesemethods, only a restri
ted wave-ve
tor and energy res-olutions 
an be a
hieved, depending on the size of the
lusters, while the physi
al interpretation of the ori-gin of an anomalous ele
troni
 stru
ture in numeri
almethods is not straightforward.To elu
idate the pseudogap formation me
hanism,259 5*
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attering of 
harge 
arriers by short-range (stati
)antiferromagneti
 (AF) spin �u
tuations was 
onsid-ered in several analyti
 semi-phenomenologi
al stud-ies (see [2℄ for a review). More re
ently, with an ad-ditional momentum-dependent 
omponent of the self-energy originating from short-range AF (or 
harge) 
or-relations in
luded into the DMFT s
heme, the spin-�u
tuation s
enario of the pseudogap formation [13℄and the ar
-type FS [14℄ were supported (see [15℄ for areview). At the same time, it is important to study thee�e
ts of the 
harge 
arrier s
attering by the dynami
alspin �u
tuations, whi
h are believed to be responsiblefor the kink phenomenon [3℄. This 
an be done by
onsidering the Dyson equation for the single-parti
leGreen's fun
tion (GF) within the Hubbard model inthe limit of strong 
orrelations. For instan
e, 
al
u-lation of the ele
tron spe
trum within the �rst-orderperturbation theory for the self-energy has reprodu
edthe quantum Monte Carlo results quite a

urately [16℄,while appli
ation of the in
remental 
luster expansionfor the self-energy has enabled observing a kink stru
-ture in the QP spe
trum [17℄.The aim of the present paper is to develop a mi-
ros
opi
 theory for the ele
tron spe
trum in strongly
orrelated systems, su
h as 
uprates, whi
h 
onsis-tently takes the e�e
ts of ele
tron s
attering by dy-nami
al spin �u
tuations into a

ount. For this, we
onsider an e�e
tive Hubbard model redu
ed form thep�d model for the CuO2 plane in 
uprates. Applyingthe Mori-type proje
tion te
hnique for the thermody-nami
 GF [18℄ in terms of the Hubbard operators, wederive an exa
t Dyson equation, as was elaborated inour previous publi
ations [19�21℄. The Dyson equa-tion with the self-energy evaluated in the non
rossingapproximation (NCA) beyond the perturbation theoryapproa
h is then solved self-
onsistently.This allows us to 
al
ulate the dispersion and spe
-tral fun
tions of single-parti
le ex
itations, the FS, andthe ele
tron o

upation numbers. In parti
ular, westudy the hole-doped 
ase at various hole 
on
entra-tions. At low doping, the FS reveals an ar
-type shapewith a pseudogap in the (�; 0) region of the Brillouinzone (BZ). A strong renormalization e�e
ts of the dis-persion 
lose to the Fermi energy (�kinks") are observeddue to ele
tron s
attering by dynami
al AF spin �u
-tuations indu
ed by the kinemati
al intera
tion generi
for the Hubbard operators. Ele
tron o

upation num-bers show only a small drop at the Fermi energy. Forhigh temperature or large hole 
on
entrations, AF 
or-relations be
ome weak and a 
rossover to a Fermi-liquid-like behavior is observed.In the next se
tion, we brie�y dis
uss the model

and the derivation of the Dyson equation, and the self-energy 
al
ulation in the NCA. The results of numer-i
al solution of the self-
onsistent system of equationsfor various hole 
on
entrations and a dis
ussion are pre-sented in Se
. 3. Con
lusions are given in Se
. 4.2. GENERAL FORMULATION2.1. E�e
tive Hubbard model and DysonequationFollowing the 
ell-
luster perturbation theory (see,e.g., [19, 22, 23℄) based on a 
onsideration of the orig-inal two-band p�d model for the CuO2 layer [24℄, we
onsider an e�e
tive two-dimensional Hubbard modelfor holes with the HamiltonianH = "1Xi;� X��i +"2Xi X22i + Xi6=j;��t11ij X�0i X0�j ++ t22ijX2�i X�2j + 2�t12ij (X2��i X0�j +H:
:)	; (1)where Xnmi = jinihimj are the Hubbard operators(HOs) for the four states n;m = j0i; j�i; j2i = j "#i,� = �1=2 = ("; #), �� = ��. Here, "1 = "d � � and"2 = 2"1 + Ueff , where � is the 
hemi
al potential.The e�e
tive Coulomb energy in Hubbard model (1) isthe 
harge-transfer energy Ueff = � = �p � �d. Therespe
tive supers
ripts 2 and 1 refer to the two-holep�d singlet subband and the one-hole subband. A
-
ording to the 
ell-
luster perturbation theory, we 
antake similar values for the hopping parameters in (1):t22ij = t11ij = t12ij = tij . We determine the bare ele
trondispersion de�ned by the hopping parameter tij by the
onventional equationt(k) = 4t
(k) + 4t0
0(k) + 4t00
00(k); (2)where t, t0, and t00 are the respe
tive hopping pa-rameters for the nearest-neighbor (n.n.) (�ax;�ay),next-nearest-neighbor (n.n.n.) �(ax � ay), and�2ax;�2ay sites and 
(k) = (
os kx + 
os ky)=2,
0(k) = 
os kx 
os ky, and 
00(k) = (
os 2kx+
os 2ky)=2(the latti
e 
onstants ax = ay are equal to unity). Toobtain a physi
ally reasonable value for the 
harge-transfer gap for the 
onventional value t � 0:4 eV, wetake � = Ueff = 8t � 3:2 eV. The bare bandwidthis W = 8t � Ueff , whi
h shows that the e�e
tivep�d Hubbard model (1) 
orresponds to the strong-
orrelation limit. In what follows, the energy ismeasured in units of t with "d = 0 in "1. The 
hemi
al260



ÆÝÒÔ, òîì 131, âûï. 2, 2007 Ele
tron spe
trum in high-temperature : : :potential � depends on the average hole o

upationnumber n = 1 + Æ = *X� X��i + 2X22i + : (3)The HOs entering (1) obey the 
ompleteness relationX00i +X""i +X##i +X22i = 1, whi
h rigorously preservesthe 
onstraint of no double o

upan
y of any quantumstate jini at ea
h latti
e site i. Due to the proje
ted
hara
ter of the HOs, they have 
ompli
ated 
ommuta-tion relations hX��i ; X
Æj i� = Æij �Æ�
X�Æi � ÆÆ�X
�i �,whi
h results in the so-
alled kinemati
al intera
tion.The upper sign here refers to the Fermi-like HOs su
hasX0�i and the lower sign is for the Bose-like HOs, su
has the spin or number operators.To dis
uss the ele
troni
 stru
ture within the modelin (1), we introdu
e a thermodynami
 matrix Green'sfun
tion [18℄Ĝij�(t� t0) = hhX̂i�(t) jX̂yj�(t0)ii == �i�(t� t0)hfX̂i�(t); X̂yj�(t0)gi; (4)in terms of the two-
omponent operatorsX̂i� =  X�2iX0��i ! and X̂yi� = (X2�i X ��0i ). To 
al-
ulate GF (4), we apply the Mori-type proje
tionte
hnique by writing equations of motion for theHeisenberg operators asẐi� = [X̂i� ; H ℄ =Xj "̂ij�X̂j� + Ẑ(ir)i� ; (5)where the irredu
ible Ẑ-operator is determined by theorthogonality 
onditionhfẐ(ir)i� ; X̂yj�gi = hẐ(ir)i� X̂yj� + X̂yj� Ẑ(ir)i� i = 0 : (6)This de�nes the frequen
y matrix"̂ij = hf[X̂i� ; H ℄; X̂yj�giQ̂�1; (7)where Q̂ = hfX̂i� ; X̂yi�gi =  Q2 00 Q1 !. Theweight fa
tors Q2 = hX22i + X��i i = n=2 andQ1 = hX00i +X ����i i = 1 �Q2 in a paramagneti
 statedepend only on the hole o

upation number (3). Fre-quen
y matrix (7) determines the QP spe
tra withinthe generalized mean-�eld approximation (MFA). The
orresponding zero-order GF in the MFA is given byĜ 0� (k; !) = �!�̂0 � "̂(k)��1Q̂; (8)

where �̂0 is the unity matrix and we introdu
e the fre-quen
y matrix (7) in the k-representation "̂(k). By dif-ferentiating the many-parti
le GF hhẐirri� (t) j X̂yj�(t0)iiwith respe
t to the se
ond time t0 and applying thesame proje
tion pro
edure as in (5), we derive theDyson equation as [19℄Ĝ�(k; !)�1 = Ĝ 0� (k; !)�1 � �̂�(k; !): (9)The self-energy matrix �̂�(k; !) is here determined bya proper part (whi
h has no single zero-order GF) ofthe many-parti
le GF as�̂�(k; !) = Q̂�1hhẐ(ir)� j Ẑ(ir)y� ii(prop)k;! Q̂�1: (10)Equations (8)�(10) provide an exa
t representation forGF (4). However, to 
al
ulate it, we have to use anapproximation for self-energy matrix (10), whi
h de-s
ribes the inelasti
 s
attering of ele
trons on spin and
harge �u
tuations.It is important to point out that in the Hubbardmodel in (1), the ele
tron intera
tion with spin- or
harge �u
tuations is indu
ed by the kinemati
al inter-a
tion with the 
oupling 
onstants equal to the originalhopping parameters, as has been already pointed outby Hubbard [5℄. For instan
e, the equation of motionfor the operator X�2i is given byidX�2i =dt = [X�2i ; H ℄ = ("1 +�)X�2i ++ Xl6=i;�0 �t22il B22i��0X�02l � 2�t21il B21i��0X0��0l ���Xl6=i X02i �t11il X�0l + 2�t21il X2��l � ; (11)where B��i��0 are Bose-like operators des
ribing thenumber (
harge) and spin �u
tuations:B22i��0 = (X22i +X��i )Æ�0� +X���i Æ�0�� == �Ni2 + Szi � Æ�0� + S�i Æ�0�� ;B21i��0 = �Ni2 + Szi � Æ�0� � S�i Æ�0�� : (12)Therefore, in 
ontrast to spin-fermion models, wherethe ele
tron intera
tion with spin or 
harge �u
tuationsis spe
i�ed by �tting 
oupling 
onstants [3℄, this inter-a
tion is �xed by the hopping parameters in Hubbardmodel (1).2.2. Mean-Field approximationThe single-parti
le ex
itations in the MFA are de-�ned by frequen
y matrix (7). Using equations of mo-261
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trum for holesin two subbands as"1;2(k) = 12[!2(k) + !1(k)℄� 12�(k);�(k) = f[!2(k) � !1(k)℄2 + 4W (k)2g1=2; (13)where the original ex
itation spe
tra in the Hubbardsubbands and the hybridization parameter are!1(k) = 4t�1
(k) + 4t0�1
0(k) � �;!2(k) = 4t�2
(k) + 4t0�2
0(k) + �� �;W (k) = 4t�12
(k) + 4t0�12
0(k); (14)where we omitted the t00 
ontribution in (2) and intro-du
ed the renormalization parameters�1(2) = Q1(2) "1+ C1Q21(2)# ; �1(2) = Q1(2) "1+ C2Q21(2)# ;�12 =pQ1Q2 �1� C1Q1Q2 � ;and �12 =pQ1Q2 �1� C2Q1Q2 � :As in the Hubbard I approximation, we negle
t thenumber �u
tuations hÆNiÆNji(i6=j) but take the 
ontri-butions from the spin 
orrelation fun
tions for the n.n.and the n.n.n. sites into a

ount:C1 = hSiSi�ax=ay i; C2 = hSiSi�ax�ay i: (15)The renormalization of QP spe
tra (13) and (14)
aused by strong spin 
orrelations in the underdopedregion results in a suppression of the n.n. hopping,whi
h 
hanges the shape of the spe
tra and redu
es thebandwidth. For instan
e, if we 
onsider the limit 
aseof the long-range AF Néel state with the n.n. 
orrela-tion fun
tion C1 � �1=4 at half-�lling, Q1 = Q2 = 1=2,we obtain �1(2) = 0. This results in the 
omplete sup-pression of the n.n. hopping and the transformationof spe
tra (14) into the n.n.n. hopping / t0
0(k), aswas dis
ussed in [19℄.For the diagonal 
omponents of the zero-order GFin (8), we haveG 011(22)(k; !) = Q1(2) [1� b(k)℄! � "1(2)(k) + Q1(2) b(k)! � "2(1)(k) ; (16)where the parameterb(k) = "2(k)� !2(k)"2(k) � "1(k) = 12 � !2(k) � !1(k)2�(k) (17)determines the 
ontribution due to hybridization.

2.3. Self-energy 
orre
tionsDyson equation (9) for the GF 
an be 
onvenientlywritten asĜ�(k; !) = �!�̂0 � "̂(k)� ~��(k; !)��1 Q̂; (18)where the self-energy is given by~��(k; !) = hhẐ(ir)� j Ẑ(ir)y� ii(prop)k;! Q̂�1: (19)In self-energy matrix (19), to make the problemtra
table, we 
an negle
t the o�-diagonal 
omponents~�12;�(k; !) in 
omparison with the hybridization pa-rameters W (k) in (14). This enables us to write thediagonal 
omponents of the full GF in (18) in the formsimilar to (16):Ĝ11(22)(k; !) = Q1(2) [1� b(k)℄! � "1(2)(k) � ~�11(22)(k; !) ++ Q1(2) b(k)! � "2(1)(k)� ~�22(11)(k; !) ; (20)where the hybridization parameters b(k) are deter-mined by the formula similar to (17), whi
h gives ana

urate approximation for low doping at n � 1.We now 
al
ulate self-energy (19) in the non
rossingapproximation (NCA) or the self-
onsistent Born ap-proximation (SCBA) by negle
ting vertex renormaliza-tion. As follows from equation of motion (11), the Ẑ(ir)�operators determined by (5) are essentially a produ
tof Fermi-like Xj(t) and Bose-like Bi(t) operators. Inthe SCBA, these ex
itations of di�erent types in themany-parti
le GF in (19) are assumed to propagateindependently of ea
h other. Therefore, they 
an bede
oupled in the time-dependent 
orrelation fun
tionsfor latti
e sites (i 6= j; l 6= m) ashBi(t)Xj(t)BlXmi � hXj(t)XmihBi(t)Bli: (21)Using the spe
tral representation for these 
orrelationfun
tions, we obtain the following formula for the di-agonal self-energy 
omponents ~�11(22)(k; !) = �(k; !)(whi
h are the same for two subbands):�(k; !) = 1N Xq +1Z�1dzK(!; zjq;k� q)��� 1� Im[G1(q; z) +G2(q; z)℄: (22)The 
orresponding subband GFs are given byG1(2)(q; !) = 1! � "1(2)(q) ��(q; !) : (23)262
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tron spe
trum in high-temperature : : :The kernel of integral equation (22) has the formK(!; zjq;k� q) = jt(q)j2 12� +1Z�1 d
! � z �
 ���th z2T + 
th 
2T � Im�s
(k� q;
); (24)where the intera
tion is de�ned by the hopping param-eter t(q) in (2). The spe
tral density of bosoni
 ex
i-tations is determined by the dynami
 sus
eptibility ofthe Bose-like operators Bi(t) in (21) � the spin andnumber (
harge) �u
tuations:�s
(q; !) = � �hhSqjS�qii!+14 hhÆNqjÆN�qii!� ; (25)where we introdu
e the 
ommutator GF for the spinSq and the number ÆNq = Nq � hNqi operators.We thus obtain a self-
onsistent system of equationsfor GFs (23) and self-energy (22). A similar system ofequations was obtained within the 
omposite-operatormethod [16℄. In Hubbard model (1), we have two 
on-tributions to self-energy (22) determined by the twoHubbard subbands, while in the t�J model studied byus in [20℄, only one subband is 
onsidered. However,depending on the position of the 
hemi
al potential, asubstantial 
ontribution to the self-energy 
omes onlyfrom the GF of the subband that is 
lose to the Fermienergy. The 
ontribution from the GF of the other sub-band, whi
h is far from the Fermi energy, is suppresseddue to a large 
harge-transfer energy � in the denom-inator of those GF. Negle
ting the latter 
ontribution,we obtain a self-
onsistent system of equations for oneGF 
lose to the Fermi energy and the 
orrespondingself-energy fun
tion similar to that in the t�J model[20℄. 3. RESULTS AND DISCUSSION3.1. Self-
onsistent system of equationsTo solve the system of equations for self-energy (22) and GFs (23), we must spe
ify amodel for the spin-
harge sus
eptibility (25). Be-low, we take only the spin-�u
tuation 
ontribution�s(q; !) = �hhSq j S�qii! into a

ount, for whi
h weadopt a model suggested in numeri
al studies [25℄:Im�s(q; ! + i0+) = �s(q) �00s (!) == �01 + �2(1 + 
(q)) th !2T 11 + (!=!s)2 : (26)

Stati
 spin 
orrelation fun
tions (29), the 
oe�
ientC(�) in (30), and the AF 
orrelation length � in (26)at various hole 
on
entrations n = 1 + ÆÆ0.03 0.05 0.10 0.15 0.20 0.30C1 �0:36 �0:26 �0:21 �0:18 �0:14 �0:10C2 0.27 0.16 0.11 0.09 0.06 0.04C(�) 22.0 5.91 3.58 2.67 1.93 1.40� 8.0 3.40 2.50 2.10 1.70 1.40The q-dependen
e in �s(q) is determined by the AF
orrelation length �, whose doping dependen
e is de-�ned below. The stati
 sus
eptibility �0 at the AFwave ve
tor Q = (�; �) is �xed by the normalization
onditionhS2i i = 1N Xi hSiSii == 1� 1Z�1 dzexp (z=T )� 1�00s (z) 1N Xq �s(q); (27)whi
h gives the following value for this 
onstant:�0 = 2!s hS2i i( 1N Xq 11 + �2[1 + 
(q)℄)�1 : (28)In (27), we introdu
ehS2i i = 3hSzi Szi i = 34 h(1�X00i �X22i )i = 34(1�jÆj);where Æ � hX22i i at the hole doping and Æ � �hX00i iat the ele
tron doping.Spin 
orrelation fun
tions (15) in single-parti
le ex-
itation spe
tra (13) in the MFA are de�ned by equa-tionsC1 = 1N Xq Cq 
(q); C2 = 1N Xq Cq 
0(q): (29)The stati
 
orrelation fun
tion Cq 
an be 
al
ulatedfrom the same model (26) asCq = hSqS�qi = C(�)1 + �2[1 + 
(q)℄ ; (30)where C(�) = �0 (!s=2).To spe
ify the doping dependen
e of the AF 
orre-lation length �(Æ) at low temperature, we �t the 
orre-lation fun
tion C1 
al
ulated from (29) to the numer-i
al results of an exa
t diagonalization for �nite 
lus-ters [26℄. The values of the AF 
orrelation length, the263
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al
ulated values of C2, and the 
orrelation fun
tionC(�) = hSqS�qi at the AF wave ve
tor q = Q = (�; �)are given in the Table.To perform numeri
al 
al
ulations, we introdu
e theimaginary frequen
y representation for GF (23):G1(2)(q; i!n) = 1i!n � "1(2)(q)��(q; i!n) ; (31)where i!n = i�T (2n+ 1), n = 0;�1;�2; : : : For self-energy (22), we obtain the representation�(k; i!n) = � TN Xq Xm [G1(q; i!m)+G2(q; i!m)℄�� �(q;k � q j i!n � i!m) : (32)The intera
tion fun
tion is given here by the equation�(q;k � q j i!�) = �jt(q)j2 �s(k� q) Fs(i!�) (33)with the spe
tral fun
tionFs(!�) = 1� 1Z0 2xdxx2 + (!�=!s)2 11 + x2 th x!s2T : (34)We 
ompare the self-
onsistent system of equationsfor GF (31) and self-energy (32) with the results ofother theoreti
al approa
hes. In our theory based onthe HO te
hnique, we start from the two-subband rep-resentation for GF (4), whi
h rigorously takes strongele
tron 
orrelations determined by the Coulomb en-ergy Ueff into a

ount. This results in the Mott gap atlarge Ueff (see below) as in the DMFT. On the otherhand, the kinemati
al intera
tion, generi
 to HOs, in-du
es the ele
tron s
attering by spin (
harge) dynami-
al �u
tuations (25), whi
h are responsible for the pseu-dogap formation as in the two-parti
le self-
onsistentapproa
h (TPSC) [12; 27℄ or the model of short-rangestati
 spin (
harge) �u
tuations (the �k-model) [2℄.To prove this, we 
onsider the 
lassi
al limit forself-energy (32) by taking only the zero Matsubara fre-quen
y i!� = 0 into a

ount in the intera
tion (33),whi
h gives i!m = i!n in (32). In the limit of a largeAF 
orrelation length � � 1, the stati
 spin sus
epti-bility �s(q) in (26) shows a sharp peak 
lose to the AFwave-ve
tor Q = (�; �) and 
an be expanded in thesmall wave ve
tor p = q�Q:�s(q) � �01 + �2 p2 � A�2 + p2 ; (35)where we introdu
e � = ��1 and take into a

ountthat the 
onstant in (28) is given by �0 � A�2 with

A = (8�=!s)hS2i i[ln(1+4� �2)℄�1 for the square latti
e.In this limit, we obtain the equation for self-energy (32)�(k; i!n) � jg(k�Q)j2 TN Xp 1�2 + p2 ��[G1(k�Q�p; i!n)+G2(k�Q�p; i!n)℄ (36)with the e�e
tive intera
tionjg(q)j2 = A jt(q)j2 Fs(0): (37)Expanding the QP energy "1(2)(k�Q� p) �� "1(2)(k�Q)�p � v1(2);k�Q, we obtain the represen-tation for the GFs in (36) asG1(2)(k�Q� p; i!n) � fi!n � "1(2)(k�Q) ++ p � v1(2);k�Q ��(k�Q; i!n)g�1: (38)The system of equations for GFs (38) and self-energy (36) is similar to the systems derived in theTPSC approa
h [27℄ and the �k-model [2℄, apartfrom the intera
tion fun
tion and the two-subbandsystem of equations. In our approa
h, vertex (37)is determined by the hopping parameter jt(k�Q)j2,while in the TPSC and the �k-model, the 
oup-ling 
onstant is indu
ed by the Coulomb s
atter-ing, e.g., g2 = U2(hni"ni#i=n2)hS2i i=3 in [15℄. How-ever, the values of these verti
es are 
lose: the valuehpjt(k)j2ik � 2t averaged over the BZ is 
omparable tothe 
oupling 
onstant g � 2t used in [13℄. In the spin-fermion model, the self-energy is also determined byspin �u
tuations (see, e.g., [3℄) with the 
oupling 
on-stant �tted from ARPES experiments g � 0:7 eV� 2t ofthe same order. As in the TPSC theory, in the limit as� ! 1, the AF gap �AF (k) / jt(k�Q)j2 emerges inthe QP spe
tra in the subband lo
ated at the Fermi en-ergy. This result readily follows from the self-
onsistentequations for GFs (31) with self-energy (36), wherein the right-hand side, the GF in (38) is taken atp = 0. Thus, the pseudogap formation is mediatedin our approa
h by the AF short-range order similar tothe TPSC theory and the model of short-range stati
spin �u
tuations in the generalized DMFT [15℄.In what follows, we 
onsider the results of self-
onsistent 
al
ulations of GFs (31) and self-energy (32)in the hole-doped 
ase for various hole 
on
entrationsÆ = n � 1 > 0. In Se
s. 3.2�3.4, the 
al
ulations areperformed at the temperature T = 0:03t � 140 K andT = 0:3t for � = 8t, t � 0:4 eV, and t0 = �0:3t.Several results are reported for � = 4t; t0 = �0:13t,and t00 = 0:16t in Se
. 3.5. For the spin-�u
tuation en-ergy in (26), we take !s = 0:4t. The AF 
orrelationlength �(Æ) and the stati
 
orrelation fun
tions C1 andC2 in (15) are de�ned in the Table.264
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tron spe
trum in high-temperature : : :3.2. Dispersion and spe
tral fun
tionsIn ARPES measurements and QMC sim-ulations, the spe
trum of single-ele
tron ex
i-tations is determined by the spe
tral fun
tionA(el)(k; !) = A(h)(k;�!). The spe
tral fun
tion forholes 
an be written asA(h)(k; !) = � 1� Imhhak� j ayk�ii!+i0+ == [Q1 + P (k)℄A1(k; !) + [Q2 � P (k)℄A2(k; !); (39)where we de�ne the hole annihilation ak� and 
reationayk� operators in terms of the Hubbard operators asak� = X0�i +2�X ��2i and ayk� = X�0i +2�X2��i , and useall the four 
omponents of the matrix GF Ĝ��(k; !)in (18) with the diagonal 
omponents given by (20).In (39), we also introdu
e the one-band spe
tral fun
-tions determined by GFs (23):A1(2)(k; !) = � 1� ImG1(2)(q; !):The hybridization e�e
ts are taken into a

ount by theparameterP (k) = (n� 1)b(k)� 2pQ1Q2W (k)�(k) :The dispersion 
urves given by maxima of spe
-tral fun
tions (39) were 
al
ulated for the hole dopingÆ = 0:05�0:3. At the low hole doping Æ = 0:05; 0:1, thedispersion reveal a rather �at hole-doped band at theFermi energy (! = 0), as shown in the upper panel inFig. 1. The 
orresponding spe
tral fun
tion (the bot-tom panel) demonstrates weak QP peaks at the Fermienergy. With doping, the dispersion and the inten-sity of the QP peaks at the Fermi energy substantiallyin
rease, as demonstrated in Fig. 2, although a �atband in the X(�; 0)! �(0; 0) dire
tion is still observedin agreement with ARPES measurements in the over-doped La1:78Sr0:22CuO4 [28℄. To study the in�uen
e ofAF spin 
orrelations on the spe
tra, we 
al
ulate thespe
tral fun
tions at the high temperature T = 0:3t forÆ = 0:1 by negle
ting spin 
orrelation fun
tions (15)in single-parti
le ex
itation spe
tra (13) in the MFAand taking the small AF 
orrelation length � = 1:0 inthe spin sus
eptibility (26). Figure 3 shows a strongin
rease in the dispersion and the intensity of the QPpeaks at the Fermi energy as in the overdoped region,Æ = 0:3, whi
h proves a strong in�uen
e of the AFspin 
orrelations on the spe
tra. A 
rude estimationof the Fermi velo
ity from the dispersion 
urve in the
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–6Fig. 1. Dispersion 
urves (a) and spe
tral fun
-tions (b) in units of t along the symmetry dire
-tions �(0; 0) ! M(�; �) ! X(�; 0) ! �(0; 0) forÆ = 0:05�(0; 0)!M(�; �) dire
tion in Fig. 2 for the overdoped
ase gives the value VF � 7:5tÅ � 3 (eV�Å) for thehopping parameter t = 0:4 eV, whi
h 
an be 
omparedwith the experimental results VF � 2:2 (eV�Å) for over-doped La1:78Sr0:22CuO4 [28℄ and VF � 3:9 (eV�Å) foroverdoped Bi-2212 [29℄. With doping, the ele
tron den-sity of states (DOS) shows a weight transfer from theupper one-hole subband to the lower two-hole singletsubband, as shown in Fig. 4. But even in the overdoped
ase, a noti
eable part of the DOS retains in the upperone-hole subband.It is interesting to 
ompare our results with thoseobtained in the generalized DMFT [13℄, whi
h shouldbe 
lose to ea
h other as dis
ussed at the end of Se
. 3.1.265
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ΓFig. 2. The same as in Fig. 1 for the hole 
on
entrationÆ = 0:3
In fa
t, the spe
tral fun
tion shown in Fig. 8 in [13℄ fort0 = �0:4 demonstrates a similar �at QP bands in the�(0; 0)! X(�; 0) and �(0; 0)!M(�; �) dire
tions, asin our Fig. 1 and Fig. 2, a strong intensity transfer fromthe lower ele
troni
 Hubbard band (LHB) to the upperHubbard band (UHB) at the M(�; �) point of the BZand a splitting of the LHB 
lose to the X(�; 0) point.An analogous temperature and doping (�) behavior ofthe spe
tral fun
tions and the pseudogap revealed inboth theories supports the spin-�u
tuation s
enario ofthe pseudogap formation. A similar behavior was alsoobserved in the 
luster perturbation theory [12℄ (seeFig. 2a in [31℄).
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ΓFig. 3. The same as in Fig. 1 but for the hole 
on
entra-tion Æ = 0:1 and at the high temperature T = 0:3t3.3. Fermi surfa
e and o

upation numbersThe Fermi surfa
e for the two-hole subband was de-termined by the 
onventional equation"2(kF) +Re�(kF; ! = 0) = 0; (40)as shown in Fig. 5, and was then 
ompared withthose obtained from maxima of the spe
tral fun
tionAel(k; ! = 0) on the (kx; ky)-plane for Æ = 0:1; 0:2shown in Fig. 6. The FS 
hanges from a hole ar
-typeat Æ = 0:1 to an ele
tron-like one at Æ = 0:3. Experi-mentally, an ele
tron-like FS was observed in the over-doped La1:78Sr0:22CuO4 [28℄. The doping-dependentFS transformation 
an also be observed by studyingthe ele
tron o

upation numbers. The ele
tron o

u-pation numbers in the (k)-spa
e for one spin dire
tionequal to N(el)(�;k) = 1�N(h)(�;k), where the hole o
-
upation numbers N(h)(�;k) � N(h)(k) in a

ordan
e266
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The ele
tron o

upation numbers in a quarter of theBZ (0 < kx; ky < �) are shown in Fig. 7 for Æ = 0:1 atthe low temperature T = 0:03t and at the high temper-ature T = 0:3t. With doping, the shape of Nk 
hanges,revealing a transition of the hole-like FS to the ele
tron-like one in the overdoped 
ase Æ = 0:3 as plotted inFig. 8.In the underdoped 
ase at Æ = 0:1, the de
rease inthe o

upation numbers at the Fermi level 
rossing israther small, �N(el) � 0:15, but for the high tempera-ture T = 0:3t or in the overdoped 
ase at Æ = 0:3, whenthe AF spin 
orrelations are suppressed, the o

upationnumber de
rease is mu
h larger: �N(el) � 0:45 and0.55, respe
tively. Therefore, the ar
 formation and asmall 
hange of the ele
tron o

upation numbers at theFS 
rossing at low doping further prove a large 
ontri-bution of the spin 
orrelations to the renormalizationof QP spe
tra.The obtained result 
on
erning the �destru
tion� ofthe FS 
aused by the ar
 formation shown in Figs. 6and 16 for low doping, whi
h 
orresponds to large �,
orrelates well with the studies within the generalizedDMFT [14℄. As shown in Fig. 2 in [14℄, the spe
-tral density intensity plots 
learly demonstrate the ar
267
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upation numbers Nk forÆ = 0:1 at T = 0:03t (a) and at T = 0:3t (b)
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formation on the FS for the large 
oupling 
onstant�sf = � = 2t and � = 10, while the FS determinedfrom (40) gives several solutions as in our Fig. 15 forUeff = 4 t in Se
. 3.5.3.4. Self-energy and kinksThe energy dependen
e of the real and imaginaryparts of the self-energy �(k; !) for Æ = 0:1; 0:3 at the�(0; 0), S(�=2; �=2), and M(�; �) points is shown inFig. 9. These plots demonstrate a strong dependen
eof the self-energy on the wave ve
tor and the hole 
on-
entrations. With doping, the 
oupling 
onstant sub-stantially de
reases, as 
an be seen by the de
rease inthe imaginary part and the slope of the real part at theFS 
rossing, whi
h determines the 
oupling 
onstant� = �(�Re ~�(k; !)=�!)!=0. As shown in Fig. 10, the
oupling 
onstant in the �(0; 0) ! M(�; �) dire
tionde
reases from � � 7:86 at Æ = 0:1 to � � 3:3 atÆ = 0:3. At large binding energies (greater than theboson energy responsible for the intera
tion), the self-energy e�e
ts vanish and the ele
tron dispersion shouldreturn to the bare value, giving a sharp bend, the so-
alled �kink� in the ele
tron dispersion. The amplitudeof the kink and the energy s
ale where it o

urs are re-lated to the strength of the ele
tron�boson intera
tionand the boson energy, respe
tively. In ARPES experi-ments, the kink is observed as a 
hange in the slope ofthe intensity plot for the spe
tral fun
tion A(k; !) ina parti
ular k-wave ve
tor dire
tion below the Fermilevel ! � 0 (for ele
trons). Two dire
tions are usu-ally studied: the nodal (� ! M) and the antinodal(X ! M) ones. Intensity plots for the spe
tral fun
-tion A(k; !) at Æ = 0:1 are shown in Fig. 11 in the nodaldire
tion (a) and the antinodal one (b). The same plotsat Æ = 0:3 are shown in Fig. 12 in the nodal dire
tion(a) and the X(�; 0) ! �(0; 0) dire
tion (b). A 
hangein dispersion is 
learly seen with in
reasing the bindingenergy below the FS shown by dotted line. In the un-derdoped 
ase, the kink is larger than in the overdopedone. A 
rude estimation of the strength of the kinkfrom the ratio of the dispersion slope VF 
lose to theFS (! = 0) to V 0F at a large binding energy (! � 0:2t),V 0F =VF = (1 + �), gives the values (1 + �) � 7:6; 3:5at Æ = 0:1 for the nodal and antinodal dire
tions, re-spe
tively. In the overdoped 
ase, the nodal value ismu
h smaller, while in the antinodal X(�; 0)! �(0; 0)dire
tion, it is still quite large: (1 + �) � 2:5. Theseestimations agree with the evaluation of the 
oupling
onstant � from the slope of the real part of the self-energy dis
ussed above.It is important to stress that in our theory, the268
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orresponding kinks are in-du
ed by the spin-�u
tuation spe
trum in the formof the 
ontinuum (26), whi
h at a low temperatureT � 0:03t� !s = 0:4t has a large intensity already atthe small energy ! � 0:03t and de
reases slowly up to a
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tion with the spin-resonan
e mode 
res � 40 meVobserved in the super
ondu
ting state. This results ina break of the ele
tron dispersion (�kink") at a 
ertainenergy ! � 
res+�0, where�0 is the super
ondu
tinggap (see, e.g., [3℄). In the normal state 
onsidered inour theory, the spin-resonan
e mode is inessential. Its
ontribution amounting to only few per
ent of the totalspin �u
tuation spe
trum in (27) should not 
hange ourresults, whi
h reveal a rather strong intera
tion with asmooth energy variation without any spe
i�
 kink en-ergy.3.5. Dispersion and FS at Ueff =� = 4tThe e�e
tive Coulomb energy Ueff = 8t in the Hub-bard model in (1) results in the large 
harge-transfergap� � 3 eV for t = 0:4 eV even in the overdoped 
ase,Fig. 2, while experiments point to a smaller value of theorder of 1.5�2 eV. In this se
tion, to 
orre
t this in
on-sisten
y, we present the results obtained for a smallervalue Ueff = � = 4t. We also take the hopping pa-rameter for the n.n.n. �2ax;�2ay sites into a

ountand �x the hopping parameter in the model disper-sion (2) as suggested for the e�e
tive Hubbard modelbased on the tight-binding �tting of the LDA 
al
ula-tions for La2CuO4 [30℄ as t0 = �0:13t and t00 = 0:16twith t � 0:7 eV.The main results for the dispersion and the spe
tralfun
tions do not 
hange mu
h in 
omparison with theprevious ones, as shown in Fig. 13. A larger hybridiza-tion between the subbands at small values of Ueff re-
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Fig. 13. Dispersion 
urves for � = 4t along the sym-metry dire
tions �(0; 0) ! M(�; �) ! X(�; 0) !! �(0; 0) at Æ = 0:05 (a) and Æ = 0:3 (b)sults in an in
rease in the dispersion and the intensityof the upper one-hole subband. This trend is also seenin the DOS in Fig. 14. At weak doping, the Mott gapbetween the subbands is observed despite the interme-diate Coulomb energy value Ueff = 4t, only a half ofthe bare bandwidth W � 8t. This 
an be explained bya redu
tion of the bandwidth 
aused by strong spin 
or-relations in the underdoped region up to ~W � 8jt0j, asdis
ussed in Se
. 2.2, below Eq. (15). In the overdoped
ase at Æ = 0:3, when the spin 
orrelations be
omeweak, the gap between the subbands vanishes.Noti
eable 
hanges are observed for the FS shownin Figs. 15 and 16. In the �rst plot, where the FS wasdetermined by Eq. (40), we see a large po
ket at thesmall doping Æ = 0:1, whi
h opens as the doping ortemperature in
reases. At the overdoping for Æ = 0:3,the FS transforms to the ele
tron-like one, as in the pre-vious 
al
ulations. This transformation is 
on�rmed by270



ÆÝÒÔ, òîì 131, âûï. 2, 2007 Ele
tron spe
trum in high-temperature : : :

−5 0 5 10 15Energy
n = 1.30

n = 1.10

n = 1.05

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0.4

DOS

Fig. 14. Doping dependen
e of the DOS for � = 4t

kx

0

3.0

2.5

2.0

1.5

1.0

0.5

ky

0.5 1.0 1.5 2.0 2.5 3.0Fig. 15. Doping dependen
e of the FS for Æ = 0:1(solid line at T = 0:03t and dotted line at T = 0:3t),Æ = 0:2 (dashed line), and Æ = 0:3 (dot-dashed line)for � = 4t


al
ulations of the ele
tron o

upation numbers shownin Fig. 17. We note that a pronoun
ed hole po
ket inthe new set of the model parameters is 
aused by thet00 
ontribution, whi
h results in a large dispersion inthe (�; 0) ! (0; �) dire
tion (/ t00(
os 2kx + 
os 2ky)),disregarded in the previous set of the parameters. Aremarkable feature of these results is that the part ofthe FS 
lose to the �(0; 0) point in the nodal dire
-tion in Fig. 15 does not shift mu
h with doping (ortemperature), being pinned to a large FS as observedin ARPES experiments (see, e.g., [29℄). In fa
t, onlythis part of the FS was dete
ted in the ARPES experi-ments, where the spe
tral fun
tion Ael(k; ! = 0) shownin Fig. 16 was measured.The self-energy e�e
ts and kinks are similar tothose for � = 8t and 
on�rm a strong in�uen
eof spin 
orrelations on the QP spe
tra renormaliza-tion. As shown in Fig. 18, the 
oupling 
onstant� = �(�Re ~�(k; !)=�!)!=0, being large at small dop-ing, distin
tly de
reases with overdoping at Æ = 0:3,whi
h is a

ompanied by suppression of the imaginarypart of the self-energy. In 
on
lusion, the alternativeset of parameters with a moderate e�e
tive Coulombenergy Ueff = 4t in Hubbard model (1) 
on�rms theimportant role played by AF 
orrelations in the ele
-troni
 stru
ture of the system with a large single-siteCoulomb intera
tion.4. CONCLUSIONWe have formulated the theory of ele
tron spe
train the strong-
orrelation limit for Hubbard model (1)in a paramagneti
 state. Using the Mori-type proje
-tion te
hnique for the thermodynami
 GFs in termsof the Hubbard operators, we 
onsistently took 
harge
arrier s
attering by dynami
al spin �u
tuations intoa

ount and derived the self-
onsistent system of equa-tions for GFs (23) and self-energy (22) evaluated in theNCA, whi
h negle
ts the vertex 
orre
tions. Althoughthe ele
tron 
oupling to spin �u
tuations is not weakin Hubbard model (1), being of the order of the hop-ping parameter, the vertex 
orre
tions should not bevery important in this 
ase due to kinemati
al restri
-tions imposed on the spin-�u
tuation s
attering. Aswas shown for the t�J model [32℄, the leading two-loop
rossing diagram identi
ally vanishes, while the nextthree-loop 
rossing diagram gives a small 
ontributionto the self-energy. In any 
ase, the NCA for the self-energy 
an be 
onsidered a starting approximation for amodel with strong 
oupling. As dis
ussed at the end ofSe
. 3.1, the self-
onsistent systems of equations for the271
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lassi
al limit in our approa
h and inthe two-parti
le self-
onsistent approa
h (TPSC) [27℄or in the model of short-range stati
 spin (
harge) �u
-tuations [15℄ are similar. Numeri
al results for thespe
tral density and the FS in the NCA approximationfor the self-energy are quite similar to those obtainedwithin the generalized DMFT [13, 15℄, where all di-agrams for the ele
tron s
attering by spin (or 
harge)�u
tuations in the stati
 approximation were taken intoa

ount. Our results also agree with 
al
ulations basedon the 
luster approximation [12℄ and the TPSC [27℄.In the present paper, we have not presented a fullyself-
onsistent theory for the single-ele
tron GF and thedynami
al spin and 
harge sus
eptibility. This requiresrather involved 
al
ulations of the 
olle
tive spin and
harge ex
itation spe
tra, whi
h are beyond the s
opeof the present paper. Instead, we used a model for thedynami
al spin sus
eptibility (26) that is usually em-ployed in phenomenologi
al approa
h. However, a vari-ation of the ele
tron (hole) intera
tion with spin �u
tu-ations in our theory is strongly restri
ted be
ause theintera
tion vertex is given by hopping parameters (2)in the Hubbard model, while the intensity of spin �u
-tuations at the AF wave-ve
tor Q (C(�) in the Table)determined by the AF 
orrelation length � is �xed bythe sum rule in (27). A variation of the 
ut-o� energy!s does not noti
eably a�e
t the numeri
al results, aswe have 
he
ked. The resulting 
oupling 
onstant �obtained in our 
al
ulations (see Se
. 3.4) seems to betoo large 
ompared with the ARPES results. This dis-
repan
y 
an be 
aused by disregarding the s
atteringon 
harge �u
tuations in the dynami
al sus
eptibilitymodel (25) and the ele
tron�phonon intera
tion, whi
hmay redu
e the 
ontribution from the ele
tron�spin in-tera
tion.
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on
lusion of the present study is that ade
isive role in renormalization of the ele
tron spe
-trum in a strongly 
orrelated system su
h as 
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e of the real and imaginary parts of the self-energy �(k; !) for � = 4t at the �(0; 0), S(�=2; �=2)and M(�; �) points at Æ = 0:1 (a) and Æ = 0:3 (b)super
ondu
tors is played by the ele
tron intera
tionwith spin �u
tuations, whi
h is in a

ord with otherstudies (see, e.g., [3, 12, 15℄). The numeri
al resultsfor the ele
tron dispersion in Se
. 3.2, for the FSand the o

upation numbers in Se
. 3.3, and for theself-energy in Se
. 3.4 unambiguously 
on�rm this
on
lusion. As the doping or temperature in
rease,spin 
orrelations are suppressed, whi
h results in tran-sition from a strong to a weak 
orrelation limit. Theseobservations were also 
on�rmed by a 
onsiderationof the model with intermediate Coulomb 
orrelationsin Se
. 3.5. A theory of super
ondu
ting transitionwithin the present theory will be 
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