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A microscopic theory for the electron spectrum of the CuOs plane within an effective p—-d Hubbard model is
proposed. The Dyson equation for the single-electron Green's function in terms of the Hubbard operators is
derived and solved self-consistently for the self-energy evaluated in the noncrossing approximation. Electron
scattering on spin fluctuations induced by the kinematic interaction is described by a dynamical spin suscepti-
bility with a continuous spectrum. The doping and temperature dependence of electron dispersions, spectral
functions, the Fermi surface, and the coupling constant )\ are studied in the hole-doped case. At low doping,
an arc-type Fermi surface and a pseudogap in the spectral function close to the Brillouin zone boundary are

observed.
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1. INTRODUCTION

Recent high-resolution angle-resolved photoemis-
sion spectroscopy (ARPES) studies revealed a compli-
cated character of the electronic structure and quasi-
particle (QP) spectra in copper oxide superconductors.
In particular, a pseudogap in the electron spectrum and
an arc-type Fermi surface (FS) at low hole concentra-
tions were revealed, a substantial wave-vector and en-
ergy dependent renormalization of the Fermi velocity
of QP (“kinks" in the dispersion) was observed (see,
e.g., [1-3] and the references therein). As was origi-
nally pointed out by Anderson [4], strong electron cor-
relations in cuprates play an essential role in explaining
their normal and superconducting properties.

A conventional approach to describing strong elec-
tron correlations is based on the Hubbard model [5].
The model has some advantages in comparison with
the t—J model, which can be derived from the Hub-
bard model in the limit of strong correlations. Namely,
the Hubbard model allows studying a moderate cor-
relation limit observed experimentally in cuprates and
more consistently accounts for the two-subband char-
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acter of the electron structure, in particular, a weight
transfer between subbands with doping.

Various methods were proposed to study the elec-
tron structure within the Hubbard model. But an un-
biased method based on numerical simulations for fi-
nite clusters (see, e.g., [6] for a review) does not al-
low studying subtle features of QP spectra due to poor
energy and wave-vector resolutions in small-size clus-
ters. In analytic calculations of spectra, mean-field-
type approximations are often used (see [7, 8] for a
review), which cannot reproduce the above-mentioned
effects caused by the self-energy contributions. In the
dynamical mean-field theory (DMFT) (see [9, 10] for
a review), the self-energy is treated in the single-site
approximation, which is also unable to describe wave-
vector-dependent phenomena. To overcome this flaw
of DMFT, various types of the dynamical cluster the-
ory were developed (see [11, 12] for a review). In these
methods, only a restricted wave-vector and energy res-
olutions can be achieved, depending on the size of the
clusters, while the physical interpretation of the ori-
gin of an anomalous electronic structure in numerical
methods is not straightforward.

To elucidate the pseudogap formation mechanism,
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the scattering of charge carriers by short-range (static)
antiferromagnetic (AF) spin fluctuations was consid-
ered in several analytic semi-phenomenological stud-
ies (see [2] for a review). More recently, with an ad-
ditional momentum-dependent component of the self-
energy originating from short-range AF (or charge) cor-
relations included into the DMFT scheme, the spin-
fluctuation scenario of the pseudogap formation [13]
and the arc-type FS [14] were supported (see [15] for a
review). At the same time, it is important to study the
effects of the charge carrier scattering by the dynamical
spin fluctuations, which are believed to be responsible
for the kink phenomenon [3]. This can be done by
considering the Dyson equation for the single-particle
Green’s function (GF) within the Hubbard model in
the limit of strong correlations. For instance, calcu-
lation of the electron spectrum within the first-order
perturbation theory for the self-energy has reproduced
the quantum Monte Carlo results quite accurately [16],
while application of the incremental cluster expansion
for the self-energy has enabled observing a kink struc-
ture in the QP spectrum [17].

The aim of the present paper is to develop a mi-
croscopic theory for the electron spectrum in strongly
correlated systems, such as cuprates, which consis-
tently takes the effects of electron scattering by dy-
namical spin fluctuations into account. For this, we
consider an effective Hubbard model reduced form the
p—d model for the CuOs plane in cuprates. Applying
the Mori-type projection technique for the thermody-
namic GF [18] in terms of the Hubbard operators, we
derive an exact Dyson equation, as was elaborated in
our previous publications [19-21]. The Dyson equa-
tion with the self-energy evaluated in the noncrossing
approximation (NCA) beyond the perturbation theory
approach is then solved self-consistently.

This allows us to calculate the dispersion and spec-
tral functions of single-particle excitations, the FS, and
the electron occupation numbers. In particular, we
study the hole-doped case at various hole concentra-
tions. At low doping, the FS reveals an arc-type shape
with a pseudogap in the (,0) region of the Brillouin
zone (BZ). A strong renormalization effects of the dis-
persion close to the Fermi energy (“kinks") are observed
due to electron scattering by dynamical AF spin fluc-
tuations induced by the kinematical interaction generic
for the Hubbard operators. Electron occupation num-
bers show only a small drop at the Fermi energy. For
high temperature or large hole concentrations, AF cor-
relations become weak and a crossover to a Fermi-
liquid-like behavior is observed.

In the next section, we briefly discuss the model

and the derivation of the Dyson equation, and the self-
energy calculation in the NCA. The results of numer-
ical solution of the self-consistent system of equations
for various hole concentrations and a discussion are pre-
sented in Sec. 3. Conclusions are given in Sec. 4.

2. GENERAL FORMULATION

2.1. Effective Hubbard model and Dyson
equation

Following the cell-cluster perturbation theory (see,
e.g., [19, 22, 23]) based on a consideration of the orig-
inal two-band p-d model for the CuO, layer [24], we
consider an effective two-dimensional Hubbard model
for holes with the Hamiltonian

H=c1) X774 » X2+ > {t] X7OX07+
i,0 i i#],0
+15XPOXT? 4 2017 (X7 X5 + He)}, (1)

where X" = |in)(im| are the Hubbard operators
(HOs) for the four states n,m = |0), |0),|2) = |1),
o==1/2=(1,]), 3 = —o. Here, &1 = ¢4 — u and
€2 = 21 + Ugpp, where p is the chemical potential.
The effective Coulomb energy in Hubbard model (1) is
the charge-transfer energy Uep = A = €, — €4. The
respective superscripts 2 and 1 refer to the two-hole
p—d singlet subband and the one-hole subband. Ac-
cording to the cell-cluster perturbation theory, we can
take similar values for the hopping parameters in (1):
t3? = tjj =t;7 = t;;. We determine the bare electron
dispersion defined by the hopping parameter ¢;; by the
conventional equation

t(k) = 4ty(k) + 4t'y' (k) + 4t"~" (k), (2)

where ¢, t', and " are the respective hopping pa-
rameters for the nearest-neighbor (n.n.) (ta,,=%ay),
next-nearest-neighbor (n.n.n.) +(a, + ay), and
+2a,, +2a, sites and (k) = (cosk, + cosky)/2,
v'(k) = cos kg cos ky, and v" (k) = (cos 2k, +cos 2ky) /2
(the lattice constants a, = a, are equal to unity). To
obtain a physically reasonable value for the charge-
transfer gap for the conventional value ¢ &~ 0.4 eV, we
take A = Uy = 8 ~ 3.2 eV. The bare bandwidth
is W = 8t ~ Uy, which shows that the effective
p—d Hubbard model (1) corresponds to the strong-
correlation limit. In what follows, the energy is
measured in units of ¢ with e4 = 0 in £;. The chemical
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potential u depends on the average hole occupation

number
n:1+5:< >

The HOs entering (1) obey the completeness relation
X004 x4 XM 4 X22 = 1, which rigorously preserves
the constraint of no double occupancy of any quantum
state |in) at each lattice site i. Due to the projected
character of the HOs, they have complicated commuta-
tion relations [Xfﬁ,X?(j] L= dij (557X{“5 + 55aXl7ﬁ),
which results in the so-called kinematical interaction.
The upper sign here refers to the Fermi-like HOs such
as X2 and the lower sign is for the Bose-like HOs, such
as the spin or number operators.

To discuss the electronic structure within the model
in (1), we introduce a thermodynamic matrix Green’s
function [18]

> X7 42X

o

(3)

Gijo(t —t') = (Xio (1) | X1, () =

= —if(t — ') ({Xio (t), X ], (t)}),

the

(4)

in terms of operators

N X092
Xz'a = XQE_

culate GF (4), we apply the Mori-type projection
technique by writing equations of motion for the
Heisenberg operators as

Hl =Y ¢ijoXio + 23,
j

two-component

and XJ = (X2 X79). To cal-

A~

Zio’ = [Xza (5)

where the irreducible Z—operator is determined by the
orthogonality condition

(2. X}, =
This defines the frequency matrix
dl A—1
Xja}>Q )
Xt %2 ) . The

weight factors Q- (X2 + X79) n/2 and
Q1 = (X2 + X77) = 1 — @, in a paramagnetic state
depend only on the hole occupation number (3). Fre-
quency matrix (7) determines the QP spectra within
the generalized mean-field approximation (MFA). The
corresponding zero-order GF in the MFA is given by

(ZE X1+ X1 2y =0 (6)

éij = ({[Xin, H), (7)

0
Q1

where Q = <{Xia7

GO(k,w) = (wi-o - é(k))_lQ, (8)
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where 7y is the unity matrix and we introduce the fre-
quency matrix (7) in the k-representation &(k). By dif-
ferentiating the many-particle GF ((Z"(t) | Xja(t’)))
with respect to the second time ¢ and applying the
same projection procedure as in (5), we derive the
Dyson equation as [19]

Golk,w)™t =Gok,w) ™! — %, (k,w). (9)
The self-energy matrix f],,(k., w) is here determined by
a proper part (which has no single zero-order GF) of

the many-particle GF as
— QA7 >> (prop) Q T

Equations (8)—(10) provide an exact representation for
GF (4). However, to calculate it, we have to use an
approximation for self-energy matrix (10), which de-
scribes the inelastic scattering of electrons on spin and
charge fluctuations.

It is important to point out that in the Hubbard
model in (1), the electron interaction with spin- or
charge fluctuations is induced by the kinematical inter-
action with the coupling constants equal to the original
hopping parameters, as has been already pointed out
by Hubbard [5]. For instance, the equation of motion
for the operator X?? is given by

A~

5 (k,w) (25 25 (10)

id X7?)dt = [X7? H] = (21 + A) X7 +
+ 3 (BT~ 200 B X)) -
l#i,0'
=YX (4 X0+ 2083 XP7), (11)
I#i
where Bw[i are Bose-like operators describing the

number (charge) and spin fluctuations:

B2, = (X2 4+ X7 V0510 + X7 0515 =
_ N z o
— < 2 +SZ>5U,U+SZ 50—’0—, (12)
N
Bw’o”_<7l+sf>5 0_5550’6-

Therefore, in contrast to spin-fermion models, where
the electron interaction with spin or charge fluctuations
is specified by fitting coupling constants [3], this inter-
action is fixed by the hopping parameters in Hubbard
model (1).

2.2. Mean-Field approximation

The single-particle excitations in the MFA are de-
fined by frequency matrix (7). Using equations of mo-
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tion like (11), we obtain the energy spectrum for holes
in two subbands as

6172(1() = %[UJQ(k) + Wl(k)] F %A(k)’
A(K) = {[wa(k) — wy (k)] 4 4W (k)2}1/2,

(13)

where the original excitation spectra in the Hubbard
subbands and the hybridization parameter are

wi (k) = dtayy(k) + 4t'B1v' (k) — p,
wa (k) = dtazy(k) +4t' 327 (k) + A — p,
W (k) = 4taray(k) + 4t'f127' (k),

~— ~—

(14)

where we omitted the ¢ contribution in (2) and intro-
duced the renormalization parameters

Cl CQ
= p I+ —— 3 = I+—=— 3
Q1(2) Q1(2) Qf(g)] ﬂl(z) Q1(2) Qf(g)]
a2 = /Q1Q2 [1 - %} ;
and c
_ B 2
B2 = V/Q1Q2 {1 —Q1Q2:| .

As in the Hubbard I approximation, we neglect the
number fluctuations (6 N;6Nj) ;) but take the contri-
butions from the spin correlation functions for the n.n.
and the n.n.n. sites into account:

C = <Sisiiaz/ay >7

The renormalization of QP spectra (13) and (14)
caused by strong spin correlations in the underdoped
region results in a suppression of the n.n.  hopping,
which changes the shape of the spectra and reduces the
bandwidth. For instance, if we consider the limit case
of the long-range AF Néel state with the n.n. correla-
tion function Cy ~ —1/4 at half-filling, Q1 = Q2 = 1/2,
we obtain a3y = 0. This results in the complete sup-
pression of the n.n. hopping and the transformation
of spectra (14) into the n.n.n. hopping x ¢'+'(k), as
was discussed in [19].

For the diagonal components of the zero-order GF
in (8), we have

C’2 = <Sisiﬂ:amﬂ:ay>~ (15)

Qi [1-bk)] | Qi bk
G101(22) (k,w) = w—e102) (k) o — 62(1)(1()-, (16)
where the parameter
_ Ez(k) — o.)g(k) _ 1 o.)g(k) — W1 (k)
W= Lio—am "2 a7

determines the contribution due to hybridization.
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2.3. Self-energy corrections

Dyson equation (9) for the GF can be conveniently
written as

-1

Golkow) = (wio— (k) - So(kw)) Q. (18)
where the self-energy is given by
Sok.w) = (257 | 2800 Q7 (1)

In self-energy matrix (19), to make the problem
tractable, we can neglect the off-diagonal components
ilg’g(k,w) in comparison with the hybridization pa-
rameters W (k) in (14). This enables us to write the
diagonal components of the full GF in (18) in the form
similar to (16):

Qi) [1 — b(k)]
W — 61(2) (k) - 211(22)(1(7&))
Qi(2) b(k)
W — 52(1)(1() - 222(11)(1{,(,0)

N

G11(22)(k7w) =

+

where the hybridization parameters b(k) are deter-
mined by the formula similar to (17), which gives an
accurate approximation for low doping at n ~ 1.

We now calculate self-energy (19) in the noncrossing
approximation (NCA) or the self-consistent Born ap-
proximation (SCBA) by neglecting vertex renormaliza-
tion. As follows from equation of motion (11), the Z&"
operators determined by (5) are essentially a product
of Fermi-like X;(¢) and Bose-like B;(t) operators. In
the SCBA, these excitations of different types in the
many-particle GF in (19) are assumed to propagate
independently of each other. Therefore, they can be
decoupled in the time-dependent correlation functions
for lattice sites (i # j, [ # m) as

(Bi(t)X; (1) Bi Xm) ~ (X;(£)Xpm)(Bi() Br).  (21)

Using the spectral representation for these correlation
functions, we obtain the following formula for the di-
agonal self-energy components 211(22) (k,w) = X(k,w)
(which are the same for two subbands):

+o0
1
Yk,w) = N Z /dz[x’(w,z|q,k —q) %
a — 00

1
X _;Im[Gl(q',Z) +G2(C[,Z)] (22)
The corresponding subband GFs are given by
1
w— 51(2)((1) - Z(q,w) .

G1(2)(q.,w) (23)
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The kernel of integral equation (22) has the form

1 e dQ
K(w,zlq,k —q) = |t(q)]? o / w_-—a”~

z Q
X <th ﬁ + cth ﬁ) Im Xsc(k - q, Q)v (24)

where the interaction is defined by the hopping param-
eter t(q) in (2). The spectral density of bosonic exci-
tations is determined by the dynamic susceptibility of
the Bose-like operators B;(t) in (21) — the spin and
number (charge) fluctuations:

Xse(d, w)

~ [ (SalS ot J(ONGIIN g, (25)

where we introduce the commutator GF for the spin
Sq and the number Ny = Ny — (Ng) operators.

We thus obtain a self-consistent system of equations
for GFs (23) and self-energy (22). A similar system of
equations was obtained within the composite-operator
method [16]. In Hubbard model (1), we have two con-
tributions to self-energy (22) determined by the two
Hubbard subbands, while in the ¢—J model studied by
us in [20], only one subband is considered. However,
depending on the position of the chemical potential, a
substantial contribution to the self-energy comes only
from the GF of the subband that is close to the Fermi
energy. The contribution from the GF of the other sub-
band, which is far from the Fermi energy, is suppressed
due to a large charge-transfer energy A in the denom-
inator of those GF. Neglecting the latter contribution,
we obtain a self-consistent system of equations for one
GF close to the Fermi energy and the corresponding
self-energy function similar to that in the ¢-J model
[20].

3. RESULTS AND DISCUSSION

3.1. Self-consistent system of equations

To solve the system of equations for self-
energy (22) and GFs (23), we must specify a
model for the spin-charge susceptibility (25). Be-

low, we take only the spin-fluctuation contribution
Xs(d,w) = —((Sy | S—¢))w into account, for which we
adopt a model suggested in numerical studies [25]:

Tm x5 (q,w +i0%) = x5(q) X, ()
_ Xo w_ 1
T1+e(1+q() 2T 1+ (wiws)?

(26)
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Static spin correlation functions (29), the coefficient
C'(¢) in (30), and the AF correlation length ¢ in (26)
at various hole concentrations n =1+ §

)
0.03 [ 0.05 | 0.10 | 0.15 | 0.20 | 0.30
Cy | —0.36]-0.26|-0.21]-0.18|—0.14 | —0.10
Cy | 027 | 0.16 | 0.11 | 0.09 | 0.06 | 0.04
C(€) ] 220 | 591 | 3.58 | 2.67 | 1.93 | 1.40
€ | 80 | 340 | 250 | 2.10 | 1.70 | 1.40

The g-dependence in ys(q) is determined by the AF
correlation length &, whose doping dependence is de-
fined below. The static susceptibility yo at the AF
wave vector Q = (m, ) is fixed by the normalization
condition

"

/ exp ( 7

2JT) -1

— 00

() % 3 vl (27

which gives the following value for this constant:

2 L1 1 o
=g, (s {N%:m} ™
In (27), we introduce
2 z Qz 3 00 22 3
(87) =3(57 57) = Z<(1_Xi -X77)) = Z(I_W)»

where § ~ (X??) at the hole doping and § ~ —(X)
at the electron doping.

Spin correlation functions (15) in single-particle ex-
citation spectra (13) in the MFA are defined by equa-
tions

Cy = %qucq%q% Cy = %zq:cq“r’(fﬂ- (29)

The static correlation function Cq can be calculated
from the same model (26) as

_ )

Ca=8eS-a) = an

(30)
where C(€) = xo (ws/2).

To specify the doping dependence of the AF corre-
lation length £(d) at low temperature, we fit the corre-
lation function Cy calculated from (29) to the numer-
ical results of an exact diagonalization for finite clus-
ters [26]. The values of the AF correlation length, the



N. M. Plakida, V. S. Oudovenko

MKITD, Tom 131, BRIm. 2, 2007

calculated values of Cy, and the correlation function
C(€) = (SqS—_q) at the AF wave vector q = Q = (m, 7)
are given in the Table.

To perform numerical calculations, we introduce the
imaginary frequency representation for GF (23):

1
G i) = - . (31
1(2)((:1, ) i, — 51(2)((:1) — E(q, an) ( )
where iw, = irT'(2n+ 1), n = 0,£1,£2,... For self-

energy (22), we obtain the representation

S(k, iwy) = —% S S (G (@ iwm)+Ga (@ itom)] X

x Ma,k — q | iwy, —iwy,) . (32)

The interaction function is given here by the equation

Ma.k —q|iw,) = —[t(@)* xs(k — q) Fs(iw,) (33)
with the spectral function
17 2ud 1
zxdz TWs
— th —. 34
7r/a/:2+ (wy/ws)? 1+ 22 2T (34)
0

We compare the self-consistent system of equations
for GF (31) and self-energy (32) with the results of
other theoretical approaches. In our theory based on
the HO technique, we start from the two-subband rep-
resentation for GF (4), which rigorously takes strong
electron correlations determined by the Coulomb en-
ergy Uess into account. This results in the Mott gap at
large Ues (see below) as in the DMFT. On the other
hand, the kinematical interaction, generic to HOs, in-
duces the electron scattering by spin (charge) dynami-
cal fluctuations (25), which are responsible for the pseu-
dogap formation as in the two-particle self-consistent
approach (TPSC) [12,27] or the model of short-range
static spin (charge) fluctuations (the ¥-model) [2].

To prove this, we consider the classical limit for
self-energy (32) by taking only the zero Matsubara fre-
quency iw, = 0 into account in the interaction (33),
which gives iwy, = iw, in (32). In the limit of a large
AF correlation length £ > 1, the static spin suscepti-
bility vs(q) in (26) shows a sharp peak close to the AF
wave-vector Q (m,7) and can be expanded in the
small wave vector p =q — Q:

A
~ K2+p2’

Xo
1 + 52 p2

Xs(a) ~ (35)

where we introduce x = ¢~! and take into account
that the constant in (28) is given by yo ~ A&? with
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A = (87 /ws)(S?)[In(1+47 £2)] ! for the square lattice.
In this limit, we obtain the equation for self-energy (32)

. T 1
Sk iwn) & gk = Q)P 5 )
P

x[G1(k—Q—p, iw,)+G2(k—Q—p,iw,)] (36)

with the effective interaction
l9(a)* = Alt(q)® Fs(0). (37)
Expanding the QP energy e;0(k—-—Q—-p) =

y(k — Q) =P Vy(2),k_q; We obtain the represen-
tation for the GFs in (36) as

Gi2)(k = Q — p,iwn) ~ {iwy — £12)(k — Q) +
+P Vi) k-q — Sk - Q,iwn)} L(38)

The system of equations for GFs (38) and self-
energy (36) is similar to the systems derived in the
TPSC approach [27] and the Xx-model [2], apart
from the interaction function and the two-subband
system of equations. In our approach, vertex (37)
is determined by the hopping parameter |t(k — Q)|?,
while in the TPSC and the Yyx-model, the coup-
ling constant is induced by the Coulomb scatter-
ing, e.g., > = U%((nsniy)/n?)(S?)/3 in [15]. How-
ever, the values of these vertices are close: the value
(V|t(k)|?)x ~ 2t averaged over the BZ is comparable to
the coupling constant g < 2¢ used in [13]. In the spin-
fermion model, the self-energy is also determined by
spin fluctuations (see, e.g., [3]) with the coupling con-
stant fitted from ARPES experiments g ~ 0.7 eV~ 2t of
the same order. As in the TPSC theory, in the limit as
£ — oo, the AF gap Ayp(k) « |t(k — Q)|* emerges in
the QP spectra in the subband located at the Fermi en-
ergy. This result readily follows from the self-consistent
equations for GFs (31) with self-energy (36), where
in the right-hand side, the GF in (38) is taken at
p = 0. Thus, the pseudogap formation is mediated
in our approach by the AF short-range order similar to
the TPSC theory and the model of short-range static
spin fluctuations in the generalized DMFT [15].

In what follows, we consider the results of self-
consistent calculations of GFs (31) and self-energy (32)
in the hole-doped case for various hole concentrations
0 =n—1>0. In Secs. 3.2-3.4, the calculations are
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performed at the temperature T = 0.03¢t ~ 140 K and
= 03t for A = 8¢, ¢t ~ 04 eV, and t' = —0.3¢.
Several results are reported for A = 4¢, ¢ = —0.13¢,

and #"" = 0.16¢ in Sec. 3.5. For the spin-fluctuation en-
ergy in (26), we take ws = 0.4¢t. The AF correlation
length £(0) and the static correlation functions Cy and
C5 in (15) are defined in the Table.
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3.2. Dispersion and spectral functions

In ARPES measurements and QMC sim-
ulations, the spectrum of single-electron exci-
tations is determined by the spectral function

Aeny(k,w) = Agpy(k,—w). The spectral function for
holes can be written as

1
A(h) (k,w) = . Im((axy \GLU>>w+io+ =

= [Q1 + P(k)]A1 (k,w) + [@2 — P(K)]Ax(k,w),  (39)

where we define the hole annihilation ayx, and creation
afm operators in terms of the Hubbard operators as
e = X7 +20X7% and af . = X704+ 20X?7, and use
all the four components of the matrix GF Gaﬁ(k.,w)
in (18) with the diagonal components given by (20).
In (39), we also introduce the one-band spectral func-
tions determined by GFs (23):

A1(2) (k-, w)

1
——Im G1(2)(Q-,W)~

m
The hybridization effects are taken into account by the
parameter

W (k)

2/ @1Q2

The dispersion curves given by maxima of spec-
tral functions (39) were calculated for the hole doping
0 = 0.05—0.3. At the low hole doping § = 0.05, 0.1, the
dispersion reveal a rather flat hole-doped band at the
Fermi energy (w = 0), as shown in the upper panel in
Fig. 1. The corresponding spectral function (the bot-
tom panel) demonstrates weak QP peaks at the Fermi
energy. With doping, the dispersion and the inten-
sity of the QP peaks at the Fermi energy substantially
increase, as demonstrated in Fig. 2, although a flat
band in the X (7,0) — I'(0,0) direction is still observed
in agreement with ARPES measurements in the over-
doped Lay 7gSrg.220CuOy4 [28]. To study the influence of
AF spin correlations on the spectra, we calculate the
spectral functions at the high temperature 7' = 0.3t for
0 = 0.1 by neglecting spin correlation functions (15)
in single-particle excitation spectra (13) in the MFA
and taking the small AF correlation length & = 1.0 in
the spin susceptibility (26). Figure 3 shows a strong
increase in the dispersion and the intensity of the QP
peaks at the Fermi energy as in the overdoped region,
0 = 0.3, which proves a strong influence of the AF
spin correlations on the spectra. A crude estimation
of the Fermi velocity from the dispersion curve in the
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Fig.1.

tions (

tions I'(0,0) — M(m,7) — X(m,0) — I['(0,0) for
0 =0.05

Dispersion curves (a) and spectral func-
b) in units of ¢t along the symmetry direc-
(

I'(0,0) — M (m, 7) direction in Fig. 2 for the overdoped
case gives the value Vi ~ 7.5tA ~ 3 (eV-A) for the
hopping parameter ¢ = 0.4 eV, which can be compared
with the experimental results Vi &~ 2.2 (éV-A) for over-
doped Laj 75810.20Cu0y [28] and Vi ~ 3.9 (eV-A) for
overdoped Bi-2212 [29]. With doping, the electron den-
sity of states (DOS) shows a weight transfer from the
upper one-hole subband to the lower two-hole singlet
subband, as shown in Fig. 4. But even in the overdoped
case, a noticeable part of the DOS retains in the upper
one-hole subband.

It is interesting to compare our results with those
obtained in the generalized DMFT [13], which should
be close to each other as discussed at the end of Sec. 3.1.
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Fig.2. The same as in Fig. 1 for the hole concentration
6=20.3

In fact, the spectral function shown in Fig. 8 in [13] for
t' = —0.4 demonstrates a similar flat QP bands in the
I'(0,0) — X (m,0) and I'(0,0) — M (7, m) directions, as
in our Fig. 1 and Fig. 2, a strong intensity transfer from
the lower electronic Hubbard band (LHB) to the upper
Hubbard band (UHB) at the M (7, n) point of the BZ
and a splitting of the LHB close to the X (7, 0) point.
An analogous temperature and doping (£) behavior of
the spectral functions and the pseudogap revealed in
both theories supports the spin-fluctuation scenario of
the pseudogap formation. A similar behavior was also
observed in the cluster perturbation theory [12] (see
Fig. 2a in [31]).
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Fig.3. Thesame asin Fig. 1 but for the hole concentra-
tion § = 0.1 and at the high temperature T' = 0.3¢

3.3. Fermi surface and occupation numbers

The Fermi surface for the two-hole subband was de-
termined by the conventional equation
ea(kr) + Re Z(kp,w = 0) =0, (40)
as shown in Fig. 5, and was then compared with
those obtained from maxima of the spectral function
Ag(k,w = 0) on the (ky,ky,)-plane for 6 = 0.1, 0.2
shown in Fig. 6. The FS changes from a hole arc-type
at § = 0.1 to an electron-like one at 6 = 0.3. Experi-
mentally, an electron-like F'S was observed in the over-
doped Laj 75Srg.22Cu0y4 [28]. The doping-dependent
FS transformation can also be observed by studying
the electron occupation numbers. The electron occu-
pation numbers in the (k)-space for one spin direction
equal to N (0,k) = 1— N (0, k), where the hole oc-
cupation numbers N (0, k) = N (k) in accordance
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0.3 n=13 ] with (3), are determined only by diagonal GFs (20).
0.2k ] From the last equation and (23), we obtain
M7 1 Ny (k) = [Q1 + (n = 1)b(K)] N (k) +

. . . s + = (n = 1)b(k)] No(k),
B R 02 = (n = 1009 Natk)
nersy 1 dw
Ni)(k) = - / mlm G (kw) = (41)

Fig.4. Doping dependence of the electron density of _
states

The electron occupation numbers in a quarter of the
ky . BZ (0 < ky,k, < 7) are shown in Fig. 7 for § = 0.1 at
3.0}F ' the low temperature 7' = 0.03¢ and at the high temper-
ature T' = 0.3t. With doping, the shape of Ny changes,
revealing a transition of the hole-like F'S to the electron-
like one in the overdoped case 6 = 0.3 as plotted in
Fig. 8.

In the underdoped case at 6 = 0.1, the decrease in
the occupation numbers at the Fermi level crossing is
- rather small, AN(.;) ~ 0.15, but for the high tempera-
. \ el . ture T' = 0.3t or in the overdoped case at § = 0.3, when
1.0k AN N 4 the AF spin correlations are suppressed, the occupation
"\\ N number decrease is much larger: AN, ~ 0.45 and

N N o 0.55, respectively. Therefore, the arc formation and a
05y N N | small change of the electron occupation numbers at the
N N FS crossing at low doping further prove a large contri-
bution of the spin correlations to the renormalization

.kz of QP spectra.
The obtained result concerning the “destruction” of
Fig.5. Doping dependence of the FS for § = 0.1 (solid the FS caused by the arc formation shown in Figs. 6
line at T = 0.03t and dotted line at T = 0.3t), § = 0.2 and 16 for low doping, which corresponds to large &,

(dashed line), and & = 0.3 (dot-dashed line) correlates well with the studies within the generalized

DMFT [14]. As shown in Fig. 2 in [14], the spec-
tral density intensity plots clearly demonstrate the arc

25¢
N

1.5F
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formation on the FS for the large coupling constant
Asf = A = 2t and £ = 10, while the FS determined
from (40) gives several solutions as in our Fig. 15 for
Uep =4t in Sec. 3.5.

3.4. Self-energy and kinks

The energy dependence of the real and imaginary
parts of the self-energy Y(k,w) for § = 0.1, 0.3 at the
I'(0,0), S(w/2,7/2), and M(w,n) points is shown in
Fig. 9. These plots demonstrate a strong dependence
of the self-energy on the wave vector and the hole con-
centrations. With doping, the coupling constant sub-
stantially decreases, as can be seen by the decrease in
the imaginary part and the slope of the real part at the
FS crossing, which determines the coupling constant
A= —(ORe ¥(k,w)/0w)y—o. As shown in Fig. 10, the
coupling constant in the T'(0,0) — M(m,x) direction
decreases from A =~ 7.86 at § = 0.1 to A ~ 3.3 at
0 = 0.3. At large binding energies (greater than the
boson energy responsible for the interaction), the self-
energy effects vanish and the electron dispersion should
return to the bare value, giving a sharp bend, the so-
called “kink” in the electron dispersion. The amplitude
of the kink and the energy scale where it occurs are re-
lated to the strength of the electron—boson interaction
and the boson energy, respectively. In ARPES experi-
ments, the kink is observed as a change in the slope of
the intensity plot for the spectral function A(k,w) in
a particular k-wave vector direction below the Fermi
level w < 0 (for electrons). Two directions are usu-
ally studied: the nodal (I' — M) and the antinodal
(X — M) ones. Intensity plots for the spectral func-
tion A(k,w) at § = 0.1 are shown in Fig. 11 in the nodal
direction (a) and the antinodal one (b). The same plots
at 0 = 0.3 are shown in Fig. 12 in the nodal direction
(a) and the X (m,0) — T'(0,0) direction (b). A change
in dispersion is clearly seen with increasing the binding
energy below the FS shown by dotted line. In the un-
derdoped case, the kink is larger than in the overdoped
one. A crude estimation of the strength of the kink
from the ratio of the dispersion slope Vg close to the
FS (w = 0) to V at a large binding energy (w ~ 0.2t),
V2 /Ve = (1 + \), gives the values (1 4+ \) =~ 7.6, 3.5
at § = 0.1 for the nodal and antinodal directions, re-
spectively. In the overdoped case, the nodal value is
much smaller, while in the antinodal X (7,0) — '(0,0)
direction, it is still quite large: (1 + \) ~ 2.5. These
estimations agree with the evaluation of the coupling
constant A from the slope of the real part of the self-
energy discussed above.

It is important to stress that in our theory, the
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Fig.10. ReX(k,w) in the T'(0,0) — M (m, ) direction

at the FS Fig.11. Dispersion curves along the symmetry direc-

tions M(w,7) — I'(0,0) (a) and M (7, 7) — X(m,0)
(b) in units of ¢ for § = 0.1, T = 0.03t. Fermi level

. . . crossing is shown by the vertical dotted line
self-energy effects and the corresponding kinks are in-

duced by the spin-fluctuation spectrum in the form
of the continuum (26), which at a low temperature
T ~ 0.03t < wg = 0.4¢ has a large intensity already at high energy w ~ t. In the spin-fermion model, the kink
the small energy w ~ 0.03t and decreases slowly up to a phenomenon is usually explained by the electron inter-
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Fig.12, The same as in Fig. 11 but for § = 0.3 along
the symmetry directions M (w,7) — I'(0,0)(a) and
X(m,0) = T(0,0) (b)

action with the spin-resonance mode Qe ~ 40 meV
observed in the superconducting state. This results in
a break of the electron dispersion (“kink") at a certain
energy w ~ Q.5+ Ag, where Ag is the superconducting
gap (see, e.g., [3]). In the normal state considered in
our theory, the spin-resonance mode is inessential. Its
contribution amounting to only few percent of the total
spin fluctuation spectrum in (27) should not change our
results, which reveal a rather strong interaction with a
smooth energy variation without any specific kink en-

ergy.

3.5. Dispersion and FS at Uy = A = 4t

The effective Coulomb energy Ugsy = 8t in the Hub-
bard model in (1) results in the large charge-transfer
gap A ~ 3 eV for t = 0.4 eV even in the overdoped case,
Fig. 2, while experiments point to a smaller value of the
order of 1.5-2 eV. In this section, to correct this incon-
sistency, we present the results obtained for a smaller
value Ugr = A = 4t. We also take the hopping pa-
rameter for the n.n.n. +2a,,+2a, sites into account
and fix the hopping parameter in the model disper-
sion (2) as suggested for the effective Hubbard model
based on the tight-binding fitting of the LDA calcula-
tions for La;CuOy [30] as ' = —0.13¢ and ¢ = 0.16¢
with ¢t ~ 0.7 eV.

The main results for the dispersion and the spectral
functions do not change much in comparison with the
previous ones, as shown in Fig. 13. A larger hybridiza-
tion between the subbands at small values of Ugss re-
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Fig.13. Dispersion curves for A = 4t along the sym-
metry directions I'(0,0) — M(w,7) — X (7, 0) —
—T(0,0) at 6 = 0.05 (a) and § = 0.3 (b)

sults in an increase in the dispersion and the intensity
of the upper one-hole subband. This trend is also seen
in the DOS in Fig. 14. At weak doping, the Mott gap
between the subbands is observed despite the interme-
diate Coulomb energy value Uy = 4t, only a half of
the bare bandwidth W a 8t. This can be explained by
a reduction of the bandwidth caused by strong spin cor-
relations in the underdoped region up to W ~ 8|t'|, as
discussed in Sec. 2.2, below Eq. (15). In the overdoped
case at 6 = 0.3, when the spin correlations become
weak, the gap between the subbands vanishes.
Noticeable changes are observed for the FS shown
in Figs. 15 and 16. In the first plot, where the FS was
determined by Eq. (40), we see a large pocket at the
small doping 4 = 0.1, which opens as the doping or
temperature increases. At the overdoping for § = 0.3,
the FS transforms to the electron-like one, as in the pre-
vious calculations. This transformation is confirmed by
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calculations of the electron occupation numbers shown
in Fig. 17. We note that a pronounced hole pocket in
the new set of the model parameters is caused by the
t" contribution, which results in a large dispersion in
the (7,0) — (0,7) direction (o t"(cos 2k, + cos2ky)),
disregarded in the previous set of the parameters. A
remarkable feature of these results is that the part of
the FS close to the I'(0,0) point in the nodal direc-
tion in Fig. 15 does not shift much with doping (or
temperature), being pinned to a large FS as observed
in ARPES experiments (see, e.g., [29]). In fact, only
this part of the FS was detected in the ARPES experi-
ments, where the spectral function A (k,w = 0) shown
in Fig. 16 was measured.

The self-energy effects and kinks are similar to
those for A = 8t and confirm a strong influence
of spin correlations on the QP spectra renormaliza-
tion. As shown in Fig. 18, the coupling constant
A = —(ORe X (k,w)/dw),—0, being large at small dop-
ing, distinctly decreases with overdoping at § = 0.3,
which is accompanied by suppression of the imaginary
part of the self-energy. In conclusion, the alternative
set of parameters with a moderate effective Coulomb
energy Ugs = 4t in Hubbard model (1) confirms the
important role played by AF correlations in the elec-
tronic structure of the system with a large single-site
Coulomb interaction.

4. CONCLUSION

We have formulated the theory of electron spectra
in the strong-correlation limit for Hubbard model (1)
in a paramagnetic state. Using the Mori-type projec-
tion technique for the thermodynamic GFs in terms
of the Hubbard operators, we consistently took charge
carrier scattering by dynamical spin fluctuations into
account and derived the self-consistent system of equa-
tions for GFs (23) and self-energy (22) evaluated in the
NCA, which neglects the vertex corrections. Although
the electron coupling to spin fluctuations is not weak
in Hubbard model (1), being of the order of the hop-
ping parameter, the vertex corrections should not be
very important in this case due to kinematical restric-
tions imposed on the spin-fluctuation scattering. As
was shown for the ¢—J model [32], the leading two-loop
crossing diagram identically vanishes, while the next
three-loop crossing diagram gives a small contribution
to the self-energy. In any case, the NCA for the self-
energy can be considered a starting approximation for a
model with strong coupling. As discussed at the end of
Sec. 3.1, the self-consistent systems of equations for the
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Fig.16. A(k,w = 0) on the FS at 6 = 0.05 (a) and § = 0.1 (b) at T'= 0.03¢ for A = 4t

self-energy in the classical limit in our approach and in
the two-particle self-consistent approach (TPSC) [27]
or in the model of short-range static spin (charge) fluc-
tuations [15] are similar. Numerical results for the
spectral density and the FS in the NCA approximation
for the self-energy are quite similar to those obtained
within the generalized DMFT [13, 15|, where all di-
agrams for the electron scattering by spin (or charge)
fluctuations in the static approximation were taken into
account. Our results also agree with calculations based
on the cluster approximation [12] and the TPSC [27].

In the present paper, we have not presented a fully
self-consistent theory for the single-electron GF and the
dynamical spin and charge susceptibility. This requires
rather involved calculations of the collective spin and
charge excitation spectra, which are beyond the scope
of the present paper. Instead, we used a model for the
dynamical spin susceptibility (26) that is usually em-
ployed in phenomenological approach. However, a vari-
ation of the electron (hole) interaction with spin fluctu-
ations in our theory is strongly restricted because the
interaction vertex is given by hopping parameters (2)
in the Hubbard model, while the intensity of spin fluc-
tuations at the AF wave-vector Q (C'(¢) in the Table)
determined by the AF correlation length £ is fixed by
the sum rule in (27). A variation of the cut-off energy
ws does not noticeably affect the numerical results, as
we have checked. The resulting coupling constant A
obtained in our calculations (see Sec. 3.4) seems to be
too large compared with the ARPES results. This dis-
crepancy can be caused by disregarding the scattering
on charge fluctuations in the dynamical susceptibility
model (25) and the electron—phonon interaction, which
may reduce the contribution from the electron—spin in-
teraction.

«'{;' A 'A’f

iy

Fig.17. The electronic occupation numbers Ny at
T = 0.03t for 6 = 0.05 (a) and at § = 0.3 (b) for
A =4t

The main conclusion of the present study is that a
decisive role in renormalization of the electron spec-
trum in a strongly correlated system such as cuprate
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Fig.18. Energy dependence of the real and imaginary parts of the self-energy X(k,w) for A = 4¢ at the I'(0,0), S(7/2,7/2)
and M(m, ) points at 6 = 0.1 (a) and § = 0.3 (b)

superconductors is played by the electron interaction
with spin fluctuations, which is in accord with other
studies (see, e.g., [3, 12, 15]). The numerical results
for the electron dispersion in Sec. 3.2, for the FS
and the occupation numbers in Sec. 3.3, and for the
self-energy in Sec. 3.4 unambiguously confirm this
conclusion. As the doping or temperature increase,
spin correlations are suppressed, which results in tran-
sition from a strong to a weak correlation limit. These
observations were also confirmed by a consideration
of the model with intermediate Coulomb correlations
in Sec. 3.5. A theory of superconducting transition
within the present theory will be considered elsewhere.

One of the authors (N. P.) is grateful to
Prof. P. Fulde for the hospitality extended to him
during his stay at MPIPKS, Dresden, where a major
part of the present work was done.

REFERENCES

1. A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod.
Phys. 75, 473 (2003).

6 ZKOT®, Beim. 2

10.

11.

273

M. V. Sadovskii, Usp. Phys. Nauk 171, 539 (2001)
[Physics-Uspekhi 44, 515 (2001)].

M. Eschrig, Advances in Physics 55, 47 (2006).

. P. W. Anderson, Science 235, 1196 (1987); P. W. An-

derson, The Theory of Superconductivity in the High-T,
Cuprates, Princeton Univ. Press, Princeton (1997).

. J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963); A 284,

401 (1964).

. N. Bulut, Adv. Phys. 51, 1587 (2002).

G. Ovchinnikov and V. V. Valkov, Hubbard Operators
in the Theory of Strongly Correlated Electrons, Impe-
rial College Press, London (2004).

F. Mancini and A. Avella, Adv. Phys. 53, 537 (2004).

A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg,
Rev. Mod. Phys. 68, 13 (1996).

G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko,
O. Parcollet, and C. A. Marianetti, Rev. Mod. Phys.
78, 865 (2006).

Th. Maier, M. Jarrel, Th. Pruschke, and M. H. Hettler,
Rev. Mod. Phys. 77, 1027 (2005).



N. M. Plakida, V. S. Oudovenko

MKITD, Tom 131, BRIm. 2, 2007

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

A.-M. S. Tremblay, B. Kyung, and D. Sénéchal, Fizika
Nizkikh Temperatur (J. Low Temp. Phys.) 32, 561
(2006).

M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii,
Th. Pruschke, and V. I. Anisimov, Phys. Rev. B 72,
155105 (2005).

E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii,
Pis'ma v Zh. Exp. Teor. Fiz. 82, 217 (2005) [JETP
Letters 82, 198 (2005)].

E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii,
Fizika Nizkikh Temperatur (J. Low Temp. Phys.) 32,
528 (2006).

S. Krivenko, A. Avella, F. Mancini, and N. Plakida,
Physica B 359-361, 666 (2005).

Y. Kakehashi and P. Fulde, Phys. Rev. B 70, 195102
(2004); J. Phys. Soc. Jpn. 74, 2397 (2005).

D. N. Zubarev, Usp. Fiz. Nauk, 71, 71 (1960) [Sov.
Phys. Uspekhi 3, 320 (1960)].

N. M. Plakida, R. Hayn, and J.-L. Richard, Phys. Rev.
B 51, 16599 (1995).

N. M. Plakida and V. S. Oudovenko, Phys. Rev. B 59,
11949 (1999).

N. M. Plakida, L. Anton, S. Adam, and Gh. Adam,
Zh. Exp. Theor. Fyz. 124, 367 (2003) [JETP 97, 331
(2003)].

L. F. Feiner, J. H. Jefferson, and R. Raimondi, Phys.
Rev. B 53, 8751 (1996).

274

23

24.

25.

26.

27.

28.

29.

30.

31.

. V. Yu. Yushankhai, V. S. Oudovenko, and R. Hayn,
Phys. Rev. B 55, 15562 (1997).

V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987);
C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Sol.
St. Comm. 62, 681 (1987).

J. Jakli¢ and P. Prelovéek, Phys. Rev. Lett. 74, 3411
(1995); 75, 1340 (1995).

J. Bonca, P. Prelovéek, and I. Sega, Europhys. Lett.
10, 87 (1989).

Y. Vilk and A.-M. Tremblay, J. Phys. Chem. Solids
(UK) 56, 1769 (1995).

T. Yoshida, X. J. Zhou, M. Nakamura et al., Phys.
Rev. B 63, 220501 (2001).

A. A. Kordyuk, S. V. Borisenko, A. Koitzsch, J. Fink,
M. Knupfer, and H. Berger, Phys. Rev. B 71, 214513
(2005).

M. M. Korshunov, V. A. Gavrichkov, S. G. Ovchin-
nikov, I. A. Nekrasov, Z. V. Pchelkina, and V. I. Anisi-
mov, Phys. Rev. B 72, 165104 (2005).

D. Sénéchal and A.-M. S. Tremblay, Phys. Rev. Lett.
92, 126401 (2004).

. Z. Liu and E. Manousakis, Phys. Rev. B 45, 2425
(1992).



