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Using the semiclassical Green's function in the Coulomb field, we analyze the probabilities of single and multiple

et

e~ pair production at a fixed impact parameter b between colliding ultrarelativistic heavy nuclei. We perform

calculations in the Born approximation with respect to the parameter Zpa and exactly in Z4a, where Z4
and Zp are the charge numbers of the corresponding nuclei. We also obtain the approximate formulas for the

probabilities valid for Zsa, Zpa < 1.
PACS: 12.20.Ds, 95.30.Cq

1. INTRODUCTION

The cross section of the ete™ pair production in
ultrarelativistic heavy-ion collisions is very large, and
this process can be a serious background for many ex-
periments. Besides, it is also important in the problem
of beam lifetime and luminosity of hadron colliders.
This means that various corrections to the Born cross
section for one-pair production, as well as the cross sec-
tion for n-pair production (n > 1), are very important.
Recently, the process was discussed in numerous pa-
pers, see reviews [1-3], but some important aspects of
the problem are not yet entirely understood, and we
elucidate them in the present paper.

For our purpose, it is convenient to consider a col-
lision of nuclei A and B with the corresponding charge
numbers Z4 and Zp in the rest frame of nucleus A.
Nucleus B is assumed to move in the positive direction
of the z axis having the Lorentz factor 7. For v > 1,
it is possible to treat the nuclei as sources of the exter-
nal field and calculate the probability P, (b) of n-pair
production in the collision of two nuclei at a fixed im-
pact parameter b. The corresponding cross section o,
is obtained by integrating over the impact parameter,

op = /d2an(b). (1)
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The average number of the produced pairs at a given b
is given by
W (b) (2)

The function W (b) defines the number-weighted cross
section

or = /d%W(b) = non. (3)
n=1
A closed expression for o1 was obtained in Refs. [4-6],
although the correct meaning of this expression was
recognized later in Ref. [7].
The cross section o7 can be represented as

(4)

where o7 is the Born cross section, i.e., the cross
section calculated in the lowest-order perturba-
tion theory with respect to the parameters Z4 pa
(0% o« (Zpa)*(Zaa)?, a = € is the fine-structure
constant, e is the electron charge, h = ¢ = 1), 0¥ is the
Coulomb correction with respect to one of the nuclei
(containing the terms proportional to (Zga)?(Z4a)*"
or (Zpa)*(Zaa)?, n > 2), and 0% is the Coulomb
correction with respect to both nuclei (containing the
terms proportional to (Zga)"(Zaa)! with n,l > 2).
The cross section % coincides with the Born cross
section of one-pair production, which was calculated

many years ago in Refs. [8, 9].

or :a%+ag+0go7

0
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The expression for W(b) derived in Refs. [4-6] re-
quires regularization. The correct regularization was
made in Refs. [10, 11], where the expressions for o$%
and 0$¢ were obtained in the leading logarithmic ap-

proximation:

of = _;_i % L?[f(Zpa) + f(Zaa)],
oS0 = S_i % L f(Zga)f(Zaa), (5)

¢ =(Zaa)*(Zpa)®, () =T"(2)/T(z),

L=y, f(z)=Re(l+iZsa)+C],

where m is the electron mass and C' = 0.577... is
the Euler constant. The expression for ¢ coincides
with that obtained in Ref. [12] by means of the
Weizsédcker — Williams approximation. The accuracy of
expression (4) with 0% and ¢$¢ given in (5) and ¢% in
Refs. [8, 9] is determined by the relative order of the
omitted terms ~ (Z4 pa)?/L?. This accuracy is better
than 0.4 % for the RHIC and LHC colliders. In recent
papers [13, 14], the Coulomb corrections were calcu-
lated numerically for a few values of v. We emphasize
that the accuracy of the results in Refs. [13, 14] is the
same as in (5). The uncertainty is related to the contri-
bution of the region where the energies of the electron
and the positron are of the order of the electron mass
in the rest frame of one of the nuclei.

It was claimed in Refs. [15-18] that the factorization
of the multiple pair production probability is valid with
a good accuracy, resulting in the Poisson distribution
for multiplicities:

w(b)

n!

Pa(b) exp(=W(b)). (6)

The factor exp(—W) is nothing but the vacuum-to-
vacuum transition probability

oo

Po=1-) P,
n=1

Strictly speaking, the factorization does not take place
due to interference between the diagrams correspond-
ing to the permutation of the electron (or positron)
lines (see, e.g., [7]). Nevertheless, one can show that
this interference makes the contribution that contains
at least one power of L less than that of the amplitude
squared. Therefore, in the leading logarithmic approx-
imation, one can use expression (6). Thus, to obtain
P,, it suffices to know the function W (b).

In Refs. [19-23], the function Wy (b) (the Born ap-
proximation for W (b)) was calculated numerically for
mb < 1 and a few particular values of 7. The correct
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dependence of Wy () on b at mb > 1 was obtained an-
alytically in Ref. [24] by two different methods. Both
methods give the result

28 ¢

Wo(b) = 972 (mb)?

[2Iny = 31In (mb)] In (mb) (7)

in the region 1 < mb < ,/y and

28 ¢
" 972 (mb)?

gl

Wo (D) =

2
(1n ) (8)
in the region /7 < mb < 7. We note that the func-
tion Wy(b) given by Egs. (7) and (8) is continuous at
mb = /¥ together with its first derivative. Certainly,
the integration of Wy (b) over b, b = |b|, gives the lead-
ing term (o< L3) in 0%. In the recent paper [23], an
ansatz for Wy (b) was suggested that has a quite differ-
ent dependence of W (b) on vy and b for 1 < mb < /7.
In the present paper, we confirm the result (7) once
more and unambiguously disprove the ansatz suggested
in Ref. [23].

The one-pair production cross section o; can be rep-
resented as

01 =0T + Ounit = /de(b) -

- / bW () (1 - exp(—W(B). (9)

Therefore, the difference between o1 and o7 is due to
the unitarity correction o,,;;. The leading contribution
to the term o¢ comes from b > 1/m. It was shown in
Ref. [24] that the leading contribution to the second
term, oyni, as well as the leading contribution to the
cross sections for the n-pair production (n > 2), comes
from b ~ 1/m. As shown in Ref. [24], in this region,
the function W (b) has the form

W (b) = CLF(mb), (10)

where the function F(mb) depends on the parameters
Zpa and Z4a and is independent of . We represent
Fl(x) as

F(x) = Folx) + Falzx) + Fp(x) + Fap(z), (11)

where Fo(x) is independent of Z4 and Zp (the
Born term), F4(x) contains terms o< (Z4a)">%(Zga)®
(Coulomb corrections with respect to nucleus A),
Fp(x) contains terms o< (Z4a)?(Zga)™>? (Coulomb
corrections with respect to nucleus B), and Fap(x)
contains terms oc (Z4a)">%(Zpa)>? (Coulomb cor-
rections with respect to both nuclei).

In the present paper, we calculate the function F(z)
for Zpa < 1, Zya < 1, and 2 < 1. In this limit, we
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can neglect the terms Fp(z) and Fap(z) in Eq. (11).
Although Zga < 1, we cannot expand the exponential
n (6) if (L ~ 1. Our method is based on the use of the
semiclassical Green’s function of the Dirac equation in
the Coulomb field.

2. GENERAL DISCUSSION

In the leading order in Zpa, the matrix element M
of the eTe™ pair production has the form

M= —e/dt drexp[—i(ep +g4)t] X
x T, (r)Alt,v)T_,, (r), (12)

where A*(t,r) is the four-vector potential of the mov-
ing nucleus B, ¥, and ¥_,, are the positive- and
negative-energy solutions of the Dirac equation in the
Coulomb field of nucleus A and p_ = (¢,,p) and
p+ = (g4,9q) are the four-momenta of the electron and
positron, respectively.

We then use the Fourier transform A% of the vector
potential A*(t,r),

47T6ZB %
k2 + (k0/v5)
b)27s (vk°

Al =—
x exp(—ik, - —yBk*) u*,  (13)

where u# = (+,0,0,7v4) is the four-velocity of nucleus
B and b is the impact parameter. Taking the integrals
over t, k%, and k*, we obtain
47TZBa dkl exp(—ikl ,8)
VB (2r)? kK3 + (E/B)?

/dr exp [zkl p+ %} U, (r)a¥_,, (r), (14)

M=-—

where
E=¢c,+e, r=(p, 2).

In calculating the probabilities integrated over the
angles of the final particles, it is convenient to use the
Green’s functions of the Dirac equation in an external
field. Using the relations (see, e.g., [25])

Z/dﬂq Uy, (r2)U_y (ry) =

0G (ra,11| —&¢),

q&q
S [ a0, ()T, (r) =

(27)2

=1
pbep

e (1'1 ) T2 ‘Ep) )

where 0G (r,r'|e) is the discontinuity of the Green’s
function on the cut and the summation is performed
over spin states, we obtain the total probability

dpdq <2Z304>2
M 2
(,Zi:‘ e 1B
d&?qd&?pdku_dku_
. / (2m)* -
exp [i(ki —koy) -
I+ BHATIG, + B [ e

X exp [Zku “p2—iki - p1+ ZE(Zz - 21)} X

W(b) =

X Sp [t 0G(ra, 11| — £4)U0G(r1,12 [€,)] . (16)

Using gauge invariance and the condition v > 1, it is
possible to make the replacement

2
Sp [ 0G (r2, 11| — £0)A6G(r1, 15 |£)] = % x

X Sp ]%QL 5G(r2,r1| — Eq) Ifcu(SG(rhrg |Ep) (17)

in Eq. (16).

In the leading logarithmic approximation, the lead-
ing contribution to the probability W (b) comes from
the region e+ > m, where the semiclassical approxi-
mation is applicable. Besides, it is convenient to per-
form the calculations in terms of the Green’s function
D(r,r'|e) of the squared Dirac equation [25, 26]. Us-
ing the transformations similar to those in Ref. [26], we
obtain

W (b) :4(ZBa)2/d6qd5"dk“fku x
B (271')
/dl‘ldrg X

% exp [Z(kll — kgl
[k%l + (E/v8)?] [kgL + E/’YB
X exp {Zku p2 —iki - p1 + ZE( 9 — 21)} X

x Sp { [[_Qiku_ Vi + ];'2]:32J_] D(ry,1rq| — 5q)} X

X [[—Qiku Vi — kiki 1] D(ry, 1 |Ep)] } , (18)

where
ki =(E. k1, ,E), ko= (E ko ,E).

In the semiclassical approximation, the function D is
given by [25]
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ik exp(ikr
D(ra,ryle) = L

871'21“17‘2
£21 /4 iZaa)
x/dqexp im(q-l_ ) 1“1f2 X
2riry q?
1 . f 19
<1+ 2 a@n)| . 09)
2 2 ¢ 0
K= g7 —m=, A:_7 o =77,
K
f:[rlxr2]><r R

r2

where q is a two-dimensional vector in the plane per-
pendicular to r. The explicit form (19) of the semiclas-
sical Green’s function is very convenient for analytical
investigation of high-energy processes in the Coulomb
field.

3. ANALYTIC RESULTS

For mb < 1, the leading contribution to the inte-
grals in Eq. (18) is given by the region of small an-
gles between the vectors r; and —r, and the z axis.
Using these conditions and the semiclassical Green’s
function (19), we obtain the following representation
for

F(mb)

(details of the calculation are presented in the Ap-
pendix):
F(mb) = ———— /daz/d2Q X
ZAa

5 l1—< Ik

<4\/ﬁ<x— 8. Q(Kgf)

= Fo(mb) + Fa(mb)

d’B
62

IR+ zQ|
R -zQ|

Q* = Q*+5%, R=Vzip+mb,

where K, (z) is a modified Bessel function of the third
kind. The form (20) is suitable for investigation of the

=1-z,
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asymptotic behavior of F(mb). For numerical evalua-
tion, it is convenient to pass from the integration over
the angle ¢ of the vector Q to the integration over the
parameter v using the identities

/dgb 1 1+acoso w B
27 1—bcoso cose =
cos2¢p
1 .
B vshmy . dv (U)_WX
T S wii e \G
( 1 14+ V1 — 82 )
n—Y-—°
2
s
X 14+ V1 —s? '
(=)
\ 2 1+ 1—82 )
t=1—-v, s=av—-00. (21)
Making the substitution
_u
Cu+&a’
where
. ‘ R? + 7202
i=1—-u, ="
’ R2 4+ 22Q?’

and taking the symmetry of the integrand under the
substitution u — u, * — & into account, we obtain

1

sh (mZaa) d2ﬂ
F(mb) = 1 Zia /dx/d@@/
0
1/2
x/d—%cos (ZAalng) <1nM X
/ ui i g
. 2
« (=227 | YD )| 4
27\ 32
+ [K'O(Q) I&O(Q)} -|-4acxhlggz)ﬂ +
i 3R 2 ; 2
o 2(5—}3) ! (s-l- 52—t2> -
N2 .
_ <R§$> QAC%(Q) I(l(Q)‘| _
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= _ B8R t RQz
—4\xx (2—1x) 7 L+m+ . ]x

2/ A - - A
. QkégQ)_lsl(Qgsl(Q) > o)
Q=@ +8, g=max(R*,Q*%),

t =2QR (zu—7za), s= R*+Q> (x2u+:f2ﬂ) .

3

We consider the asymptotic form of Eq. (20). For
mb > 1, there are two regions of integration over (8
giving the leading logarithmic contribution to F(mb):

1< Va8 +mbl < mb and 1< 3 < mb.

These regions give equal contributions, and the final
result is

56

Fmb) = 972 (mb)?

In (mb). (23)
Thus, the leading logarithmic contribution is given by
the Born term Fo(mb). This asymptotic expression

agrees with Eq. (7) under the condition
In(mb) < L.

The leading contribution to F4(mb) comes from the
region

WVazf + mb| ~ 1
and has the form
Fatnh) = s f(Zae), (20
A= Ty ()2 AN
where the function f(z) is defined in Eq. (5). Again,

this asymptotic expression is valid under the condition
In(mb) < L. For the Coulomb corrections to W (b)
with respect to nucleus A, W4 (b), similarly to the
derivation of Eq. (7) based on the equivalent photon
approximation (see Ref. [24]), it is possible to obtain
the expression valid in the wider region In(mb) < L
(but still 1 € mb < 7). We have

2 ¢
 9n2 (mb)?

v

Wa(b) = f(Zsa)In —

— (25)
Equation (24) evidently agrees with Eq. (25).

We consider the asymptotic regime of small impact
parameters. For mb <« 1, the leading logarithmic con-
tribution comes from the region mb € f ~ @ < 1.
Taking the integrals over this region, we obtain
1

In —
nmb

8

" 3n2(Za0)?

x Re [Y(1+iZsa) + C = (Zaa)® +
+iZaa(1 4+ (Zaa)?)Y' (1 + iZAa)] .

F(mb) X

(26)
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This asymptotic expression is obtained for a zero nu-
clear radius R,,. To obtain W (b) for extended nuclei, it
is sufficient, within the logarithmic accuracy, to make
the substitution

In (mb) = In (mb+ mRy,)

in (26). For b > R,, the finite-nuclear-size correction
to W (b) is negligible.

4. NUMERICAL RESULTS

Using Eq. (18), we tabulated the function F(mb)
for a few values of Z4. The corresponding results are
presented in the left plot in Fig. 1 and in the Table.
We recall that these results are obtained in the Born
approximation with respect to nucleus B. For most ex-
periments, Z4 = Zp, and it is necessary to know the
function F(mb) beyond the Born approximation with
respect to nucleus B. If we assume that the term Fap
in Eq. (11) is numerically small, then we can approx-
imate the function F as Fy + 2F 4 in this case. This
function is shown in the right plot in Fig. 1. It is seen
that the Coulomb corrections in the region mb < 1
are very important for the experimentally interesting
case Z4 = Zp 79. The assumption of smallness
of the contribution F4p is supported by the compar-
ison of our results for W (b) with those obtained in
Refs. [27, 14] for Z4 = Zp = 79 and v = 2 - 10*
(VC.m. = 100)‘

As we have already pointed out, Eq. (10) has a loga-
rithmic accuracy, which can be sufficient for very large
~. To go beyond the logarithmic accuracy, we represent
W (b) in the form

W (b) = C[L — G(mb)] F(mb), (27)

where G(mb) is some function of mb and, generally
speaking, of the parameters Zja and Zpa. The
asymptotic form of G(mb) for 1 < mb < /7 is known,
see Eqs. (7) and (25). However, the calculation of the
function G(mb) at mb < 11is a rather complicated prob-
lem. Instead, we use the results of numerical calcula-
tions performed for a few values of y in Refs. [19, 27] in
the Born approximation. We have found that the form

G(mb) = %ln(mb +1)+1.9 (28)
provides good agreement of Eq. (27) with the numerical
results in Refs. [19, 28, 27] in a wide region of mb, see
Fig. 2. The form (28) of G(mb) is obtained by fitting
the Born results and is therefore independent of Z4 p.
It provides the correct asymptotic expression for Wy ()

3
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0.01 0.1 1 10 100

Fig.1. The function F(z) in Eq. (22) for Za = 92 (dash-dotted line), 79 (dotted line), 47 (dashed line), and the Born
approximation (solid line). a — Born approximation in Zpa, Eq. (22). b — Results obtained from Egs. (11) and (22) for
Zp = Za with the term Fap(x) omitted

0 1 1
10 100 1000 b.fm

Fig.2. The one-pair production probability P;(b) corre-

sponding to the function W (b) in Eq. (27), v = 2-10,

and Z4 = Zp = 79. 1 — the function F is taken

in the Born approximation, F = Fo; 2 — Coulomb

corrections are taken into account, F = Fo + 2Fa.

Dots show the corresponding results of numerical cal-
culations in Ref. [27]

Eq. (7). Tt turns out that formula (27) with G(mb) in
Eq. (28) also has a high accuracy for Zaa, Zpa <1
in the region mb < 1, where the Coulomb corrections

are large. We have checked this fact by comparing our
results with those in Ref. [27] obtained numerically for
Za=Zp =19, see Fig. 2. We note that the tabulation
of W (b) and Py (b) performed in Refs. [13, 14, 19,27, 28]
for a few values of v required the evaluation of a nine-
fold integral and was therefore very laborious. The
calculation of F in Eq. (22) is essentially simpler. Be-
sides, because this function is independent of 7, one
can easily obtain predictions for W(b) at any v > 1
using Eqs. (27) and (28).

5. CONCLUSION

In the present paper, we have found a simple repre-
sentation for the function W (b) for mb <1, Zpa < 1,
and arbitrary Z a in the leading logarithmic approx-
imation. Using the results of numerical calculation of
W (b) performed for a few values of v and Z4 g, we
have obtained the approximate formula for W (b) valid
in a wide region of parameters:

mb< .\, Zaa<l, Zpa<l y>1

We estimate the accuracy of this formula to be a few
percent. The results obtained clearly demonstrate the
dependence of W (b), as well as of P,(b), on the rela-
tivistic factor v and the parameters Z4 ga.

This work was supported in part by the RFBR
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The function F(x) in Eq. (22) calculated in the Born approximation (Zaa — 0) and exactly in the parameter Zaa for

Au, Pb, and U
x Born | Au Pb U x Born Au Pb U
0.0100 | 3.420 | 2.760 | 2.71 2.560 1.26 | 0.391 0.347 0.343 0.332
0.0126 | 3.260 | 2.650 | 2.59 2.450 1.58 | 0.304 0.273 0.27 0.262
0.0158 | 3.110 | 2.520 | 2.47 2.340 2.00 | 0.231 0.209 0.207 0.202
0.0200 | 2.960 | 2.400 | 2.35 2.220 2.51 | 0.171 0.156 0.155 0.152
0.0251 | 2.800 | 2.280 | 2.24 2.110 3.16 | 0.124 0.114 0.114 0.111
0.0316 | 2.650 | 2.160 | 2.12 2.000 398 | 8.78.1072 | 820-1072 | 8.15-102 | 8.01-1072
0.0398 | 2.500 | 2.040 | 2.0 1.890 5.01 | 6.14-1072 | 5.78 102 | 5.75-1072 | 5.66 - 102
0.0501 | 2.340 | 1.920 | 1.88 1.780 6.31 | 425-1072 | 4.02-1072 | 4.00-1072 | 3.95-1072
0.0631 | 2.190 | 1.800 | 1.76 1.670 794 291-1072 | 2.77-1072 | 2.76- 1072 | 2.73- 1072
0.0794 | 2.040 | 1.680 | 1.64 1.560 10.00 | 1.99-1072 | 1.90-1072 | 1.89-1072 | 1.87-1072
0.1000 | 1.880 | 1.550 | 1.52 1.450 12.60 | 1.35-1072 | 1.29-1072 | 1.29-1072 | 1.28-1072
0.1260 | 1.730 | 1.430 | 1.41 1.340 15.80 | 9.07-107% | 8.75-1072 | 8.72-1072 | 8.64-107°
0.1580 | 1.580 | 1.310 | 1.29 1.230 20.00 | 6.09-1073 | 5.89-10~2 | 5.87-107% | 5.83- 1073
0.2000 | 1.430 | 1.190 | 1.17 1.120 25.10 | 4.07-1073 | 3.95-107% | 3.94.107% | 3.91-1073
0.2510 | 1.280 | 1.070 | 1.06 1.010 31.60 | 2.71-1073 | 2.64-1073 | 2.63-1073 | 2.61-1073
0.3160 | 1.140 | 0.961 | 0.941 | 0.898 39.80 | 1.80-1073 | 1.75-1073 | 1.75-1073 | 1.74-1073
0.3980 | 0.993 | 0.842 | 0.829 | 0.793 50.10 | 1.19-1073 | 1.16 1072 | 1.16-107% | 1.15- 1073
0.5010 | 0.856 | 0.731 | 0.72 0.690 63.10 | 7.90-10~* | 7.71-10=* | 7.69-10~* | 7.65-10~*
0.6310 | 0.725 | 0.625 | 0.616 | 0.591 79.40 | 5.21-107* | 5.09-10"* | 5.08-10"* | 5.05- 104
0.7940 | 0.603 | 0.524 | 0.517 | 0.498 || 100.00 | 3.43-107* | 3.35-10"* | 3.34-107* | 3.33-107¢
1.0000 | 0.491 | 0.431 | 0.426 | 0.411
(Gr.ant Ne05-02-16079) and by the grant for young sci- AW (b) = (Zpa)? In / dlfu dk_A
entists of SB RAS (R. N. L.). (27)° k2, k3,
x/dazmdﬁ@ deq<q+Q|>2iZAax
T T2 q- Q|

APPENDIX

Calculation of the integrals

In this Appendix, we present some details of the
derivation of Eq. (20) from Eq. (18). The leading con-
tribution to the integrals comes from the region of small
angles between the vectors ry and —rs and the z axis.
Using this fact, we take the integrals over the angles
of r; and rs, make the substitution 71 2 = Ery 2, and
change the variables as ¢, = Ez, ¢, = Ex = E(1 — x).
Taking the integral over E in the logarithmic approxi-
mation with v > 1 and mb < 1, we obtain

478

X exp {—%mQ(rl +r9) — i A B—

i(’l‘l + ’I“Q)Q21| %

1 .
— §$$(T1k%l + ’I“Qkél) +

2’1“1’1“2
(2 - (Fiker Q@K Q)
T2 1
9,9 4k Q) (kay - Q)
—dxzk] k3| — i -
2 2 2
— (ki1 -koy) m (T17+7“2) +T1k1L+
2rTr 1T 2ry
raky,
. (A1
+ 27"1 ’ ( )

A=k —ky, B=q/2+(@—2)Q/2—b.



MITP, Tom 131, BeIm. 3, 2007

eTe™ pair production in ultrarelativistic heavy-ion ...

The integration over the two-dimensional vectors ki |
and ko can be easily performed. The result is given

by

(Zpa)? / dry dry
dW () = ————1n dr — —
(b) ' ™7 o
. . 2
x/deqexp [—imz(r1+r2)+w} X
2 2111y

la+QN\* /[, B-Q 1
(azar)  (Pe-o%F o]~
X (25152 — 51 — 52) — 45152 +

4,3'Q2 B 2 + 2
(54 ) m-l-m (7‘2162 7“2)

< (€= 1) (6 1>>, (A4.2)

&':exp{ i’ }

2xTr;

+

Taking the integrals over r; » and passing from the vari-

able q to

we obtain Eq. (20).

[SJ e}

REFERENCES
1. C. Bertulani and G. Baur, Phys. Rep. 163, 299 (1988).

2. G. Baur, K. Hencken, D. Trautmann, S. Sadovsky, and
Yu. Kharlov, Phys. Rep. 364, 359 (2002).

3. C. A. Bertulani, S. R. Klein, and J. Nystrand, Annu.
Rev. Nucl. Part. Sci. 55, 271 (2005).

4. B. Segev and J. C. Wells, Phys. Rev. A 57, 1849 (1998);
E-print archives, physics/9805013.

5. A. J. Baltz and L. McLerran, Phys. Rev. C 58, 1679
(1998).

6. U. Eichmann, J. Reinhardt, S. Schramm, and W. Grei-
ner, Phys. Rev. A 59, 1223 (1999).

7. A. J. Baltz, F. Gelis, L. McLerran, and A. Peshier,
Nucl. Phys. A 695, 395 (2001).

8. L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjet. 6,
244 (1934).

479

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

G. Racah, Nuovo Cim. 14, 93 (1937).

R. N. Lee and A. I. Milstein, Phys. Rev. A 61, 032103
(2000).

R. N. Lee and A. I. Milstein, Phys. Rev. A 64, 032106
(2001).

D. Yu. Ivanov, A. Schiller, and V. G. Serbo, Phys. Lett.
B 454, 155 (1999).

A. J. Baltz, Phys. Rev. C 71, 024901 (2005), Erratum-
ibid. C 71, 039901 (2005).

A. J. Baltz, E-print archives, nucl-th/0608006.
G. Baur, Phys. Rev. D 41, 3535 (1990).

M. J. Rhoades-Brown and J. Weneser, Phys. Rev.
A 44, 330 (1991).

C. Best, W. Greiner, and G. Soff, Phys. Rev. A 46,
261 (1992).

K. Hencken, D. Trautmann, and G. Baur. Phys. Rev.
A 51,998 (1995).

K. Hencken, D. Trautmann, and G. Baur. Phys. Rev.
A 51, 1874 (1995).

M. C. Giiglii, J. C. Wells, A. S. Umar, M. R. Strayer,
and D. J. Ernst, Phys. Rev. A 51, 1836 (1995).

M. C. Giiclii, Nucl. Phys. A 668, 149 (2000).

K. Hencken, G. Baur, and D. Trautmann, Phys. Rev.
C 69, 054902 (2004).

M. C. Giigli, G. Kovankaya, and M. Yilmaz, Phys.
Rev. A 72, 022724 (2005).

R. N. Lee, A. I. Milstein, and V. G. Serbo, Phys. Rev.
A 65, 022102 (2002).

R. N. Lee, A. I. Milstein, and V. M. Strakhovenko,
Phys. Rev. A 69, 022708 (2004).

R. N. Lee, A. I. Milstein, V. M. Strakhovenko, and
O. Ya. Schwartz, Zh. Eksp. Teor. Fiz. 127, 5 (2005).

K. Hencken, D. Trautmann, and G. Baur, Phys. Rev.
C 59, 841 (1999).

A. Alscher, K. Hencken, D. Trautmann, and G. Baur,
Phys. Rev. A 55, 396 (1997).



