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ISING MODELS ON THE 2� 2�1 LATTICESM. A. Yurishhev *Institute of Problems of Chemial Physis, Russian Aademy of Sienes142432, Chernogolovka, Mosow Region, RussiaReeived 19 Otober 2006Exat analyti solutions are presented for two 2�2�1 Ising étagères. The �rst model has a simple ubi lattiewith fully anisotropi interations. The seond model onsists of two di�erent types of linear hains and inludesnonrossing diagonal bonds on the side faes of the 2� 2�1 parallelepiped. In both ases, the solutions areexpressed through square radials and obtained by using the obvious symmetry of the Hamiltonians, Z2 �C2v ,and the hidden algebrai �� symmetry of the transfer matrix seular equations. The solution found for theseond model is used to analyze the behavior of spei� heat in a frustrated many-hain system.PACS: 05.50.+q, 75.10.Hk, 75.40.Cx1. INTRODUCTIONModels of interating Ising hains play an impor-tant role in many �elds of physis (see, e. g., [1�5℄).Allowing an aurate mathematial desription, they,on the one hand, �nd numerous appliations in theinterpretation of various olletive phenomena in one-dimensional and pseudo-one-dimensional systems. Onthe other hand, the oupled Ising hains appearing aslusters allow greatly improving the preision of al-ulated harateristis of two- and three-dimensionalmaterials in the framework of general approahes suhas the mean-�eld theory or the renormalization-groupmethod. Moreover, the exat solutions quite often serveas heuristi examples, and are also the good tests fordebugging of ompliated omputer ode.The problem of the Ising model on a 2 � 2 � 1lattie with a simple ubi ell and under the ondi-tion of equality of the interations in both transversediretions was atually solved in the famous paper ofOnsager [6℄. This paper is dediated to the two-dimen-sional Ising model, and as an intermediate result, theexpression for the largest eigenvalue �max (and onse-quently for the free energy) of the transfer matrix ofthe model on a n�1 ylinder was obtained:*E-mail: yur�itp.a.ru

�max = [2 sh(2K1)℄n=2 �� exp�12(1 + 3 + : : :+ 2n�1)� ; (1)where k (k = 1; 3; : : : ; 2n � 1) are the positive solu-tions of the equationh(k) = th(2K1) h(2K2)�� os��kn � sh(2K2)sh(2K1) : (2)Here, K1 = 12�J1; K2 = 12�J2; � = 1kBT :With the number of hains n equal to 4, formulas (1)and (2) lead to the solution of the above 2�2�1 Isingsystem.In this paper, simple analyti solutions are obtainedfor two other 2� 2�1 Ising latties. One lattie hasthe ell in the form of a retangular parallelepiped inwhih the interations are di�erent along all three spa-tial diretions. The ells of the seond lattie are paral-lelepipeds with a rhombi base. Although the intera-tions in the base plane are equal, unrossing diagonalouplings on the outside may be available and, more-over, the intrahain interations in the given modelmust be equal only for hains situated in the 2�2�1system opposite eah other. For both models, the lat-tie symmetry C2v together with the symmetry un-der the spin inversion Z2 permit reduing the origi-nal transfer matries to a blok-diagonal form with the511



M. A. Yurishhev ÆÝÒÔ, òîì 131, âûï. 3, 2007maximal size of subbloks 5 � 5. As the subsequentanalysis shows, the seular equations of subbloks arevirtually reiproal, whih allows reduing the solutionof these equations to a hain of algebrai equations ofat most seond degree.From the free energy of the seond model in whihthe next-nearest-neighbor interations are present, theexpression for the spei� heat is obtained and the pe-uliarities of its temperature behavior near the stru-ture instability point are examined.2. THE EIGENVALUES OF TRANSFERMATRICESWe onsider the Ising models with the HamiltoniansH1 = �12 ��Xi [Jx(�1;i�4;i+�2;i�3;i)+Jy(�1;i�2;i+�3;i�4;i)++ Jz(�1;i�1;i+1 + �2;i�2;i+1 ++ �3;i�3;i+1 + �4;i�4;i+1)℄ (3)andH2 = �12Xi [JA(s1;is1;i+1 + s3;is3;i+1) ++ JB(s2;is2;i+1 + s4;is4;i+1) ++ JAB(s1;i + s3;i)(s2;i + s4;i) ++ J 0AB(s2;i + s4;i)(s1;i+1 + s3;i+1)℄: (4)The topologies of the ouplings represented by theseHamiltonians are illustrated in Figs. 1 and 2. The spinvariables �l;i and sl;i are loated at the lattie sites andtake the values �1. Both latties have the symmetryplanes �v and �0v . In the model given by Eq. (3), these
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Fig. 1. Fully anisotropi simple ubi 2� 2�1 Isinglattie given by Eq. (3) and its pro�le. To not overloadthe �gure, the vertial symmetry planes �v and �v areshown only on the ross setion of the lattie

σ′

v σv

JAB

JA
J ′

AB

JB

Fig. 2. Lattie 2 � 2 � 1 with a rhombi ross se-tion and diagonal interations (the model given byEq. (4))planes pass through the middle of the opposite faes ofan in�nitely long 2�2�1 parallelepiped having a ret-angular ross setion. In the model given by Eq. (4),the symmetry planes pass through the opposite edges ofa 2�2�1 parallelepiped, whose ross setion is now arhombus. We note that with Jz = J1 and Jx = Jy = J2or with JA = JB = J1, JAB = J2 and J 0AB = 0 (or,vise versa, with JAB = 0 and J 0AB = J2), we obtain a2 � 2 �1 model desribed by Onsager's formulas (1)and (2), in whih we should of ourse put n = 4.The prinipal task in alulating the statistial me-hanial harateristis of models (3) and (4) is to solvethe eigenvalue problem for the transfer matriesV1 andV2 with the elementsh�1; �2; �3; �4jV1j�01; �02; �03; �04i == exp�12Kx(�1�4 + �2�3 + �01�04 + �02�03) ++ 12Ky(�1�2 + �3�4 + �01�02 + �03�04) ++Kz(�1�01 + �2�02 + �3�03 + �4�04)� (5)andhs1; s2; s3; s4jV2js01; s02; s03; s04i == exp�KA(s1s01 + s3s03) +KB(s2s02 + s4s04) ++12KAB [(s1+s3)(s2+s4)+(s01+s03)(s02+s04)℄++K 0AB(s2 + s4)(s01 + s03)� : (6)Here, Kx = 12�Jx; Ky = 12�Jy; Kz = 12�Jz ;KA = 12�JA; KB = 12�JB ;512



ÆÝÒÔ, òîì 131, âûï. 3, 2007 Ising models on the 2� 2�1 lattiesKAB = 12�JAB ; K 0AB = 12�J 0AB :We notie that the matrix V1 is symmetri and V2 is,generally speaking, not.To solve the eigenvalue problem of transfer matri-es (5) and (6), we use the invariane property of theappropriate Hamiltonians with respet to the transfor-mations of the group Z2 � C2v where, as has alreadybeen mentioned, Z2 = fE;Rgis the group of global re�etions in the spin spae (E isthe identity transformation and R is the spin inversionoperation) and C2v = fE;C2; �v ; �0vgis the point group generated by symmetry elements �vand �0v (C2 = �v�0v is a seond-order symmetry axis).2.1. Group-theoretial analysisWe onstrut representations of a group Z2 �C2vin the transfer-matrix spaes. For the �rst model, weset Rj�1; �2; �3; �4i = j � �1;��2;��3;��4i; (7)�v j�1; �2; �3; �4i = j�2; �1; �4; �3i; (8)and �0v j�1; �2; �3; �4i = j�4; �3; �2; �1i: (9)The remaining elements of the group are the orre-sponding ombinations of R, �v , and �0v and their a-tion on the vetor j�1; �2; �3; �4i is easily found by us-ing relation (7)�(9). Multiplying these equalities byonjugated vetors from the left and taking the or-thonormality onditionh�1; �2; �3; �4j�01; �02; �03; �04i == Æ�1�01Æ�2�02Æ�3�03Æ�4�04 (10)into aount, where Æ��0 is the Kroneker delta, we analulate the matrix elements of the original represen-tation �1 of the group Z2 � C2v for the �rst model.It is not di�ult to verify that all matries obtainedommute with V1.For the seond model, the inversion transformationin (7) preserves the analogous form and the re�etions�v and �0v now at on a vetor as�v js1; s2; s3; s4i = js1; s4; s3; s2i (11)

and �0v js1; s2; s3; s4i = js3; s2; s1; s4i: (12)Again multiplying the equations of type (11) and (12)by onjugated vetors, we �nd a matrix set giving therepresentation �2 of the group for the seond model.These matries ommute with V2.In the subsequent analysis, we �rst �nd the har-aters � of the representations �1 and �2. For �1, weobtain�1(E) = h�1; �2; �3; �4jEj�1; �2; �3; �4i == h�1; �2; �3; �4j�1; �2; �3; �4i == Æ�1�1Æ�2�2Æ�3�3Æ�4�4 = 24; (13)�1(�v) = h�1; �2; �3; �4j�v j�1; �2; �3; �4i == Æ�1�2Æ�2�1Æ�3�4Æ�4�3 = 22; (14)and similarly for other group elements. By analogy,we an also alulate the haraters for the repre-sentation �2. The haraters found, together withthe known haraters of the irreduible representations(IRs) �(1); : : : ;�(8) of Z2 � C2v, are olleted in theTable. Now, using the formula (see, e.g., [7℄)a(�) = 1gXG �(G)�(�)�(G) (15)(where g is the order of a group, �(G) is the hara-ter of an element G in the onsidered representation,�(�)(G) is the harater of the same element in the �thIR, and a(�) is the multipliity with whih the �th IRenters the original representation) we �nd�1 = 5�(1) + 2(�(2) + �(3) + �(4) ++ �(5)) + �(6) + �(7) + �(8) (16)and�2 = 5�(1) + 4�(2) ++ 2(�(3) + �(5)) + �(6) + �(7) + �(8): (17)This implies that by transitions using similar transfor-mations to the new basis in whih the representations�1 and �2 of the Abelian group Z2 �C2v are fully re-duible, the matries V1 and V2 take a blok-diagonalform, where the �rst matrix V1 has one subblok ofsize 5� 5, four 2 � 2 subbloks, and three 1� 1 �sub-bloks�, and the seond matrix V2 onsists of one 5�5subblok, one 4� 4 subblok, two 2� 2 subbloks, andagain three ready-made eigenvalues.9 ÆÝÒÔ, âûï. 3 513



M. A. Yurishhev ÆÝÒÔ, òîì 131, âûï. 3, 2007Charater table of the group Z2 �C2vZ2 �C2v E C2 �v �0v R RC2 R�v R�0v�(1) 1 1 1 1 1 1 1 1�(2) 1 1 1 1 �1 �1 �1 �1�(3) 1 �1 �1 1 �1 1 1 �1�(4) 1 1 �1 �1 �1 �1 1 1�(5) 1 �1 1 �1 �1 1 �1 1�(6) 1 �1 �1 1 1 �1 �1 1�(7) 1 1 �1 �1 1 1 �1 �1�(8) 1 �1 1 �1 1 �1 1 �1�1 16 4 4 4 0 4 4 4�2 16 4 8 8 0 4 0 02.2. Basis vetors of irreduible representationsThe next step is the quasi-diagonalization of trans-fer matries in pratie. For this, we �rst onstrut thebasis vetors of IRs. In our ase, this is easily done byating with the projetion operatorP (�) =XG �(�)�(G)G (18)(a normalizing oe�ient is omitted) on the vetors ofthe original basis. Lete1 = j1; 1; 1; 1i; e2 = j1; 1; 1;�1i; : : :: : : ; e16 = j � 1;�1;�1;�1i (19)be a basis in whih the matrix V1 is de�ned aordingto Eq. (5). Applying operator (18) to vetors (19) su-essively and taking equalities (7)�(9) and the hara-ter Table into aount, we obtain sets of basis vetors,whih should be normalized. In partiular, we have forthe basis vetors of the idential IR (1)1 = e1 + e16p2 ; (1)2 = e2 + e3 + e5 + e8 + e9 + e12 + e14 + e152p2 ; (1)3 = e4 + e13p2 ;  (1)4 = e6 + e11p2 ; (1)5 = e7 + e10p2 : (20)
For the next IR �(2), we obtain (2)1 = e1 � e16p2 ; (2)2 = e2+e3+e5+e9�e8�e12�e14�e152p2 : (21)

In an analogous way, we �nd basis vetors for all otherIRs in the original representation.Knowing the basis funtions, we diretly alulatethe matrix elements of subbloks using Eq. (5):�V(�)1 �ij =  (�)+i V1 (�)j ; (22)and similarly for the seond model.2.3. Using the �� symmetryNow the task is to solve the seular equations of sub-bloks. Calulating the determinant of the �rst equa-tion det(V(1)1 � �) = 0; (23)we obtain that it has the struture�5 � a1�4 + a2�3 � �a2�2 + �3a1�� �5 = 0; (24)wherea1 = 2[1 + 4 h(2Kx) h(2Ky)℄ h(4Kz) + 6; (25)a2 = 32 h(2Kx) h(2Ky)[h(4Kz) h2(2Kz)�1℄++ 8[1 + h(4Kx) + h(4Ky)℄ sh2(4Kz); (26)and � = 4 sh2(2Kz): (27)Aording to Ref. [8℄, an algebrai equation like (24)is reiproal. One root of Eq. (24) oinides obviously514



ÆÝÒÔ, òîì 131, âûï. 3, 2007 Ising models on the 2� 2�1 lattieswith �. After its extration, we obtain a quarti equa-tion that is again reiproal:�4 � (a1 � �)�3 + [a2 � �(a1 � �)℄�2 �� �2(a1 � �)�+ �4 = 0: (28)By the substitution r = �+ �2� ; (29)Eq. (28) is redued to the quadri resolventr2 � (a1 � �)r + a2 � �(a1 + �) = 0: (30)First solving Eq. (30) and then quadri Eqs. (29) foreah ri, we �nd the eigenvalues of the subblok V(1)1 .The solution of seular equations of seond-order sub-bloks auses no di�ulties. As a result, we an obtainthe omplete set of eigenvalues of the transfer matrixV1. We note that all eigenvalues of V1 satisfy the ��symmetry [9℄: the eigenvalues �i an be divided intopairs suh that �1�2 = �3�4 = : : : (31)It is the �� symmetry that redues the Galois groupand leads to the reiproal property for the seularequations of the transfer matrix and its subbloks.The largest eigenvalue of the transfer matrix alwayslies in the subblok of the idential IR (this follows fromthe Perron theorem [10℄) and is in our ase given by�1 = 12r1 +�14r21 � �2�1=2 (32)withr1 = 12(a1 � �) + �14(a1 + �)2 + �2 � a2�1=2 : (33)We now return to the seond model. The seularequation of the subblok orresponding to the identialIR is also reiproal:�5 � b1�4 + b2�3 � b2�2 + 3b1�� 5 = 0; (34)whereb1 = 12 h(2KA) h(2KB) + 2 exp[2(KA +KB)℄�� h[4(KAB +K 0AB)℄ ++ 2 exp[�2(KA +KB)℄ h[4(KAB �K 0AB)℄; (35)

b2 = 24 h(2KA) h(2KB)fexp[2(KA +KB)℄�� h[4(KAB +K 0AB)℄ ++ exp[�2(KA +KB)℄ h[4(KAB �K 0AB)℄g �� 4 [2 + exp(4KA) + exp(4KB)℄�� h[4(KAB +K 0AB)℄�� 4 [2 + exp(�4KA) + exp(�4KB)℄�� h[4(KAB �K 0AB)℄ ++ 8 h[4(KA +KB)℄ + 4[h(4KA) + h(4KB)℄ ++ 8 sh2[2(KA �KB)℄�� 16[h(4KAB) + h(4K 0AB)℄; (36)and  = 4 sh(2KA) sh(2KB): (37)This permits us to �nd the largest eigenvalue of thetransfer matrix V2, whih is most important in appli-ations, � = 12h1 +�14h21 � 2�1=2 ; (38)whereh1 = 12(b1 � ) + �14(b1 + )2 + 2 � b2�1=2 : (39)The seular equation of the 4�4 subblok is also reip-roal. Therefore, it an be solved by square radials.As a result, we also determine all eigenvalues of thetransfer matrix V2. They again have the �� symmetryproperty.To onlude this setion, we note the following. Itis not possible to generalize Hamiltonians (3) and (4)and at the same time preserve the above redution ofthe original problem: the attempts to inlude the ad-ditional single (external �eld), pair or multipartile in-terations in the Hamiltonians immutablely lead to thedestrution of the obvious or hidden symmetries.3. SPECIFIC HEAT OF THE FRUSTRATEDCHAIN SYSTEMIsing magnets with triangle latties are an exampleof frustrated systems [11℄. We illustrate the peuliari-ties of the spei� heat behavior in suh systems usingthe solution obtained for model (4).515 9*
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Fig. 3. Spei� heat behavior in the frustrated sys-tems: 1 � JA = JB = JAB = J 0AB = �1;2 � JA = �1, JB = �0:8, JAB = �0:9, J 0AB = �1;3 � JA = �1, JB = �0:85, JAB = �0:99,J 0AB = �0:95; 4 � JA = �1, JB = �1, JAB = �0:9,J 0AB = �0:8The free energy per site of an in�nitely long hainis given by f(T ) = �14kBT ln �; (40)where � is the largest eigenvalue of the transfer matrixV2. Taking the standard relations between the thermo-dynamial quantities into aount, we then have from(40) the spei� heat = kB�24� "�2���2 � 1� ������2# : (41)Substituting the expression for � found in the previoussetion and performing the neessary di�erentiations,we arrive at an analyti formula for the spei� heat ofour system. From this formula, it follows that at hightemperatures, the spei� heat behaves as(T )kB � J2A + J2B + 2(J2AB + J 02AB)8(kBT )2 ; T !1: (42)In the other limit, as T ! 0, the spei� heat, a ontin-ued funtion of temperature, tends to zero and  = 0at T = 0. This agrees with the Nernst theorem [12℄. Inan intermediate region (0 < T < 1), the spei� heatbeing a positive funtion, has one or more maxima inaordane with the Rolle theorem.

We have investigated the spei� heat behavior as afuntion of temperature numerially using the analytiformula. For kBT=jJAj in the region [0, 1℄, we alu-lated the spei� heat for a frustrated system withJA = JB = JAB = J 0AB < 0and for systems in whih these negative exhange inte-grals are weakly disturbed (almost frustrated systems).The results are shown in Fig. 3.The spei� heat in the frustrated hain (urve 1 inFig. 3) has one maximum. However, by any amountof disturbane of the absolute equality between the an-tiferromagneti exhange onstants, the seond peakarises on the spei� heat urve in the low-temperatureregion (urves 2�4 ). The additional peak is very sensi-tive even to the smallest distortions of the equilateraltriangle struture and hene the low-temperature max-imum an serve as their indiator.4. CONCLUSIONSIn this paper, we have obtained two di�erent solu-tions of Ising model on the 2 � 2 � 1 latties usingthe same obvious invariane, Z2�C2v, and the hidden�� symmetry. But in one ase, the symmetry planes�v and �0v of the group C2v pass through the oppo-site faes of a 2 � 2 �1 parallelepiped, and in otherase, those symmetry planes pass through the oppositelinear hains of a 2� 2�1 system.Both solutions found are unique in that they an-not be generalized with preservation of the ombinedsymmetry, Z2 �C2v and ��.We hope the presented solutions will be useful instatistial mehanis and in the theory of many-hainmagneti (and other) materials.I thank L. A. Zhukova for her help in the work andalso the Russian Foundation for Basi Researh (grant� 07-02-00444). REFERENCES1. K. I. Kugel' and D. I. Khomskii, Uspekhi Fiz. Nauk136, 621 (1982).2. J. O. Indekeu, M. P. Nightingale, and W. V. Wang,Phys. Rev. B 34, 330 (1986).3. T. Yokota, Phys. Rev. B 39, 12312 (1989).516
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