КРИСТАЛЛИЧЕСКОЕ ПОЛЕ И НАМАГНИЧЕННОСТЬ СКОШЕННОГО АНТИФЕРРОМАГНЕТИКА СоСО₃

В. Ф. Мещеряков*

Московский государственный институт радиотехники, электроники и автоматики (технический университет) 119454, Москва, Россия

> Институт кристаллографии Российской академии наук 119333, Москва, Россия

> > Поступила в редакцию 7 августа 2006 г.

В приближении молекулярного поля Вейса с учетом микроскопического состояния иона Co^{2+} вычислена намагниченность скошенного антиферромагнетика $CoCO_3$ ($T_N = 18.1$ K) во всем интервале температур и магнитных полей. В качестве параметров использовались значения T_N , магнитной восприимчивости в базисной плоскости и величина ферромагнитного момента. Показано, что анизотропия g-фактора и обменного взаимодействия при низких температурах, T < 30 K, включающих температуру магнитного упорядочивания, хорошо описываются в рамках приближения Абрагама – Прайса. При высоких температурах g-фактор увеличивается, становится изотропным и не может быть описан в рамках приближения Абрагама – Прайса. Обсуждаются причина изменения g-фактора и величина ферромагнитного момента.

PACS: 75.50.Ee, 75.30.Cr, 75.30.Et, 75.10.Dg

1. ВВЕДЕНИЕ

Карбонаты переходных металлов МеСО₃ (Me = Mn, Co, Ni), обладающие ромбоэдрической структурой кальцита, являются легкоплоскостными антиферромагнетиками со слабым ферромагнитным моментом, возникающим благодаря скашиванию магнитных моментов подрешеток. Их скошенное состояние связано с неэквивалентностью кристаллографических положений магнитных ионов разных подрешеток. Дзялошинский [1], исходя из свойств симметрии, дал феноменологическое описание этого явления и показал, что спонтанный момент обусловлен присутствием антисимметричного члена в разложении термодинамического потенциала по намагниченности подрешеток. Существование слабого ферромагнетизма в антиферромагнетиках на основе микроскопического подхода впервые было обосновано в работе Мориа [2]. На примере магнитного иона, у которого основным уровнем является орбитальный синглет, он показал, что ферромагнитный момент определяется отклонением д-фактора от чисто спинового значения

из-за примеси к основному состоянию орбитального момента возбужденных состояний и имеет порядок $\Delta g/g$ от величины обмена. Эта оценка была получена при условии, когда спин-орбитальное взаимодействие мало по сравнению с расщеплением орбитальных уровней кристаллическим полем, что соответствует термину «слабый ферромагнетизм».

Намагниченность и нижневолновая ветвь спектра антиферромагнитного резонанса (AΦMP) изучались в работах [3, 4] для MnCO₃, [5–9] для CoCO₃ и [10–12] для NiCO₃. Их описание проводилось на основе феноменологических теорий, позволяющих в рамках единого подхода описывать результаты измерений намагниченности и магнитного резонанса. В случае MnCO₃ магнитный момент иона Mn²⁺ определяется его спином (L = 0, S = 5/2) и результаты статических и резонансных измерений хорошо согласуются между собой. Однако в случае CoCO₃ и NiCO₃ результаты измерений оставили нерешенными вопросы, связанные с величиной *g*-фактора и ферромагнитного момента.

Во-первых, величина ферромагнитных моментов $CoCO_3$ и $NiCO_3$ не соответствует выводам, которые можно было бы сделать на основании ра-

^{*}E-mail: vmesh@yandex.ru

боты Мориа. Орбитальный момент у иона Ni²⁺ (L = 3, S = 1) из-за расщепления уровней кристаллическим полем в основном состоянии оказывается замороженным. Это подтверждается тем, что в NiCO₃ в парамагнитной области вплоть до температуры $T \approx 40$ К наблюдается линия поглощения с g-фактором g = 2 [12]. Несмотря на то что орбитальный вклад в магнитный момент иона Со²⁺ оказывается того же порядка, что и спиновый [13], однако в NiCO₃ ферромагнитный момент существенно больше, чем в CoCO₃. Во-вторых, для CoCO₃ и NiCO₃ наблюдается также большое различие в величинах ферромагнитного момента, полученных из резонансных и статических измерений. В-третьих, наблюдается существенная разница в значениях *g*-фактора, полученных при высоких температурах из измерений намагниченности и при низких температурах из резонансных измерений. Парамагнитная восприимчивость СоСО₃ в области температур 80-300 К описывается законом Кюри-Вейса с изотропным значением g-фактора $g_{\perp} \approx g_{\parallel} = 6.5$ [5]. С другой стороны, измерения спектров электронного парамагнитного резонанса (ЭПР) на ионах Co²⁺ в магниторазбавленных кристаллах показывают, что g-фактор является сильно анизотропным, а его значения $g_{\perp} = 4.82$, $g_{\parallel} \approx 3.41$ для CaCO₃ [14] и $g_{\perp} = 4.95, g_{\parallel} \approx 3.05$ для CdCO₃ [15]. Вычисленные из данных АФМР на основе феноменологического подхода значения g-фактора в базисной плоскости $g_{\perp} = 4.0$ [7] и $g_{\perp} = 3.3$ [8] сильно различаются. Поскольку из-за малого времени спин-решеточной релаксации невозможно наблюдать линию ЭПР на ионе Co²⁺ при высоких температурах, представляло интерес определить величину g-фактора, вычислив ее с помощью данных измерений намагниченности ниже точки Нееля $(T_N = 18.1 \text{ K}).$

Указанные противоречия связаны с микроскопическим состоянием магнитных ионов. Приближение Абрагама-Прайса [16] позволяет вычислять на основе данных ЭПР не только волновые функции и уровни энергий иона Co²⁺, но, как показано в книге Абрагама и Блини [17], также анизотропию обменного взаимодействия в предположении, что для свободного иона в переменных истинного спина S = 3/2обменное взаимодействие является изотропным. В отношении антисимметричного обмена ими было высказано предположение, что поскольку во многих случаях орбитальный момент далеко не подавлен, антисимметричный обмен, выраженный через эффективные спины, может стать столь же важным, что и изотропный обмен, и даже превышать его. В работе [13] на основе этого приближения были вычислены волновые функции магнитных ионов Co^{2+} , Fe^{2+} и спектр обменно-связанных пар в решетке CaCO_3 . Было показано, что в отсутствие магнитного поля антисимметричный обмен, в отличие от обычного обмена, не влияет на положение уровней обменно-связанной пары, а влияет только на зависимость этих уровней от магнитного поля, когда оно лежит в базисной плоскости кристалла.

Для ответа на указанные выше вопросы, а также проверки справедливости подходов, используемых для описания антисимметричного обмена и анизотропии обменного взаимодействия, представляло интерес провести вычисления намагниченности CoCO₃ во всей области температур и магнитных полей и сравнить их с экспериментальными данными. Вычисления намагниченности проводились в приближении молекулярного поля Вейса [18], а микроскопического состояния иона Co²⁺ — в приближении Абрагама – Прайса [16]. В работах [19, 20] приведены основные результаты этих вычислений, а здесь излагаются их полное описание и анализ полученных ранее результатов.

2. КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И УРОВНИ ЭНЕРГИИ ИОНА Со²⁺

Кристаллическая структура карбонатов изоморфна структуре кальцита и описывается пространственной группой D^6_{3d} [21]. Магнитные подрешетки образованы магнитными моментами

Рис. 1. Кристаллографическая ячейка кальцита

Рис.2. а) Ближайшее кислородное окружение магнитных атомов, занимающих неэквивалентные положения внутри элементарной ячейки; б) взаимная ориентация оснований призм, образованных атомами кислорода

атомов, занимающими в элементарной ячейке два неэквивалентных положения А и В, лежащих на пространственной диагонали ромбоэдра (ось C_3) (рис. 1а, 2а). Атомы кислорода входят в состав комплексов CO_3^{2-} (рис. 16). Локальное окружение магнитных атомов образуют 6 атомов кислорода, находящихся в углах шестигранной призмы. Верхнее и нижнее основания этой призмы представляют собой повернутые на 60° друг относительно друга равносторонние треугольники. Неэквивалентность положений магнитных ионов состоит в том, что эти призмы, оси которых совпадают с осью C₃ кристалла, повернуты на некоторый угол друг относительно друга. Взаимная ориентация ближайших оснований призм, соответствующих положениям А и *B*, определяется углом φ , показанным на рис. 2*б*, а их крайних оснований — углом $\beta = 60^{\circ} - \varphi$. Величины этих углов зависят от отношения c = b/a, где *b* — длина углерод-кислородной связи в комплексе CO_3^{2-} (2*a* — расстояние между атомами углерода) и определяется выражением

$$\operatorname{tg}\frac{\beta}{2} = \frac{c\sqrt{3}}{4-3c} \,. \tag{1}$$

Значения углов φ и β для карбонатов Ca, Cd, Mn, Co и Ni приведены в табл. 1, где величины a, b, cвзяты из структурных данных [22].

При вычислениях намагниченности микроскопические характеристики иона Co²⁺ определялись так же, как и в работе [13]. Основное состояние это-

Таблица 1. Длины связей С-С (2*a*) и С-О (*b*) и параметры c = b/a, φ , β карбонатов

Вещество	$2a, \mathrm{\AA}$	$b, \mathrm{\AA}$	с	φ	β
$CaCO_3$	4.99	1.282	0.5138	20.2°	39.8°
$CdCO_3$	4.923	1.2903	0.5242	19.0°	41.0°
${\rm MnCO_3}$	4.773	1.2863	0.5375	17.4°	42.6°
CoCO ₃	4.700	1.3001	0.5532	15.4°	44.6°
NiCO ₃	4.600	1.2873	0.5185	14.6°	45.4°

го иона ${}^{4}F$ принадлежит конфигурации $3d^{7}$ и имеет семикратное орбитальное вырождение. Кубическая компонента кристаллического поля расщепляет терм ${}^{4}F$ на орбитальный синглет и два нижележащих орбитальных триплета. Волновые функции нижнего триплета можно рассматривать как собственные функции фиктивного оператора углового момента $\alpha \hat{l}'$ с квантовым числом l' = 1. Тригональная компонента кристаллического поля величины Δ и спин-орбитальное взаимодействие расщепляют орбитальные (l' = 1) и спиновые (S = 3/2) уровни на зеемановские дублеты, которым приписывают эффективный спин S' = 1/2. Полученные при этом волновые функции дублетов иона Co²⁺ могут быть представлены как линейная комбинация функций вида $|l'_z, S_z\rangle$. Положение уровней и соответствующие им волновые функции вычислялись в приближении Абрагама и Прайса [16] с помощью гамильтониана

$$\hat{W} = \Delta \left(1 - \hat{l}'_{z}^{2} \right) - \alpha \lambda \hat{l}'_{z} \hat{S}_{z} - \alpha' \lambda \left(\hat{l}'_{x} \hat{S}_{x} + \hat{l}'_{y} \hat{S}_{y} \right) - \beta \left(\alpha' \hat{l}'_{x} + 2\hat{S}_{x} \right) H_{x} - \beta \left(\alpha' \hat{l}'_{y} + 2\hat{S}_{y} \right) H_{y} - \beta \left(\alpha \hat{l}'_{z} + 2\hat{S}_{z} \right) H_{z}, \quad (2)$$

свободного иона Co^{2+} где для константа спин-орбитальной связи $\lambda = -180$ см⁻¹, $\alpha =$ = α' = 3/2, β — магнетон Бора, H_x , H_y компоненты магнитного поля в базисной плоскости, H_z — параллельно оси C_3 . Первый член в формуле (2) описывает расщепление уровней тригональной компонентой кристаллического поля величиной Δ , второй и третий — спин-орбитальное взаимодействие, а остальные — зеемановскую энергию. Отсутствие равенства коэффициентов α и α' описывает анизотропию спин-орбитального взаимодействия, обусловленную примесью возбужденных состояний иона Со²⁺.

На основании данных по ЭПР [15] в рабо-

те [13] показано, что в решетке CdCO₃ $\alpha = 1.86$, $p = (\alpha/\alpha')^2 = 1.4$ и вблизи основного состояния находятся два дублета, расстояние между которыми составляет 287 см⁻¹. Волновая функция основного состояния имеет вид

$$|\pm\rangle = a|\mp 1, \pm 3/2\rangle + b|0, \pm 1/2\rangle + c|\pm 1, \mp 1/2\rangle, \quad (3)$$

а следующего возбужденного состояния —

$$|\pm\rangle = d|0, \pm 3/2\rangle + e|\pm 1, \pm 1/2\rangle.$$
 (4)

Величины обменных взаимодействий в плоскости (J_{xy}) и вдоль оси C_3 (J_z) выражаются через величину изотропного обмена J для основного уровня как

$$J_{xy} = 2\left(\sqrt{3}\,ac + b^2\right)^2 J, \quad J_z = (3a^2 + b^2 - c^2)^2 J,$$
(5)

а для возбужденного —

$$J_{xy} = 0, \quad J_z = (3d^2 + e^2)^2 J.$$
 (6)

При вычислениях значение *g*-фактора определялось по расщеплению зеемановских уровней магнитным полем.

3. НАМАГНИЧЕННОСТЬ ПОДРЕШЕТОК В ПРИБЛИЖЕНИИ МОЛЕКУЛЯРНОГО ПОЛЯ ВЕЙСА

Намагниченность магнитных подрешеток определяется совокупностью системы уровней E_n вблизи основного состояния. В магнитном поле энергия расщепления дублетов составляет $2\varepsilon_n$, а их энергия на *n*-м уровне может быть представлена в виде $E_n \pm \varepsilon_n$. Проекции намагниченности подрешеток $M_{x,y,z}^{A,B}$ определяются суммой статистически средних намагниченностей отдельных ионов $\langle \langle \mu_{x,y,z}^{A,B} \rangle \rangle$:

$$M^{A,B} = \frac{N}{2} \langle \langle \mu^{A,B} \rangle \rangle = \frac{N}{2} \sum_{n} \langle \mu_{n}^{A,B} \rangle \times \\ \times \left(\exp\left(-\frac{E_{n} + \varepsilon_{n}^{A,B}}{kT}\right) - \exp\left(-\frac{E_{n} - \varepsilon_{n}^{A,B}}{kT}\right) \right) \times \\ \times \left\{ \sum_{n} \left(\exp\left(-\frac{E_{n} + \varepsilon_{n}^{A,B}}{kT}\right) + \right. \\ \left. + \left. \exp\left(-\frac{E_{n} - \varepsilon_{n}^{A,B}}{kT}\right) \right) \right\}^{-1}, \quad (7)$$

где N — число атомов, k — постоянная Больцмана, $\langle \mu_n^{A,B} \rangle$ — квантовомеханическое среднее магнитного

момента, соответствующее *n*-му уровню. Для упрощения записи здесь опущены индексы проекций координат (x, y, z).

Выразим $\langle \mu_n^{A,B} \rangle$ через его энергию $\varepsilon_n^{A,B}$ в магнитном поле **H**. Выбирая ось квантования вдоль оси z и представляя собственную функцию в виде

$$\psi = C_p |+\rangle + C_m |-\rangle,$$

а
$$\hat{\mu}_{x,y} = g_{\perp} \beta \hat{S}_{x,y}, \, \hat{\mu}_z = g_{\parallel} \beta \hat{S}_z, \,$$
имеем

$$\langle \hat{\mu}_x \rangle = \frac{g_\perp \beta}{2} (C_m^* C_p + C_p^* C_m),$$

$$\langle \hat{\mu}_y \rangle = i \frac{g_\perp \beta}{2} (C_m^* C_p - C_p^* C_m),$$

$$\langle \hat{\mu}_z \rangle = \frac{g_\parallel \beta}{2} (C_p^2 - C_m^2).$$

(8)

Собственные значения и собственные функции гамильтониана

$$\hat{H} = -g_{\perp}\beta \left(H_x \hat{S}_x + H_y \hat{S}_y\right) - g_{\parallel}\beta H_z \hat{S}_z \qquad (9)$$

определяются выражениями

$$\varepsilon_{1,2} = \pm \frac{1}{2} \sqrt{g_{\parallel}^2 \beta^2 H_z^2 + g_{\perp}^2 \beta^2 (H_x^2 + H_y^2)}, \qquad (10)$$

$$C_p = \sqrt{\frac{\varepsilon - \rho_z}{2\varepsilon}} e^{-i\alpha/2},$$

$$C_m = -\sqrt{\frac{\varepsilon + \rho_z}{2\varepsilon}} e^{i\alpha/2},$$
(11)

где $\rho_z = g_{\parallel} \beta H_z/2$, а $\alpha = \operatorname{arctg}(H_y/H_x)$. С учетом (11) выражения (8) принимают вид

$$\langle \mu_{x,y} \rangle_{1,2} = -\frac{g_{\perp}^2 \beta^2}{4} \frac{H_{x,y}}{\varepsilon_{1,2}},$$

$$\langle \mu_z \rangle_{1,2} = -\frac{g_{\parallel}^2 \beta^2}{4} \frac{H_z}{\varepsilon_{1,2}}.$$
 (12)

В нашем случае магнитное поле в формулах (10) и (12) необходимо заменить эффективными полями, действующими на ионы, находящиеся в подрешетках *A* и *B*. Для нахождения этих полей, как и в работе [13], будем исходить из предположения, что в отсутствие кристаллического поля обменное взаимодействие является изотропным:

$$\hat{H}_{ex} = -\sum_{i < k} J_{ik} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_k, \qquad (13)$$

где \mathbf{S}_i , \mathbf{S}_k — истинные спины свободных ионов (S = 3/2). Ограничиваясь только взаимодействиями ближайших соседей внутри подрешеток J и с соседней подрешеткой J^{AB} , имеем

$$\hat{H}_{ex} = -\frac{N}{2} \left(zJ \left(\hat{\mathbf{S}}_1^A \cdot \hat{\mathbf{S}}_2^A + \hat{\mathbf{S}}_1^B \cdot \hat{\mathbf{S}}_2^B \right) + z_{AB} J^{AB} \hat{\mathbf{S}}^A \cdot \hat{\mathbf{S}}^B \right), \quad (14)$$

где в нашем случае число ближайших соседей другой подрешетки z_{AB} равно числу ближайших соседей внутри самой подрешетки, $z_{AA} = z_{BB} = z = z_{AB} = 6$. В переменных эффективного спина гамильтониан (13) для каждого из дублетов принимает вид [13]

$$\begin{split} \hat{H}_{ex}^{n} &= -\frac{NzJ_{xy}}{2} \left(\hat{S}_{1x}^{A} \hat{S}_{2x}^{A} + \hat{S}_{1y}^{A} \hat{S}_{2y}^{A} + \right. \\ &+ \hat{S}_{1x}^{B} \hat{S}_{2x}^{B} + \hat{S}_{1y}^{B} \hat{S}_{2y}^{B} \right) - \\ &- \frac{NzJ_{z}}{2} \left(\hat{S}_{1z}^{A} \hat{S}_{2z}^{A} + \hat{S}_{1z}^{B} \hat{S}_{2z}^{B} \right) - \\ &- \frac{Nz_{AB} J_{xy}^{AB} \cos \varphi}{2} \left(\hat{S}_{x}^{A} \hat{S}_{x}^{B} + \hat{S}_{y}^{A} \hat{S}_{y}^{B} \right) - \\ &- \frac{Nz_{AB} J_{xy}^{AB} \cos \varphi}{2} \left(\hat{S}_{x}^{A} \hat{S}_{x}^{B} - \frac{Nz_{AB} J_{xy}^{AB} \sin \varphi}{2} \left(\hat{S}_{x}^{A} \hat{S}_{y}^{B} - \hat{S}_{y}^{A} \hat{S}_{x}^{B} \right), \end{split}$$
(15)

где для пар, занимающих неэквивалентные положения, появляется дополнительный член, описывающий антисимметричное взаимодействие, J_{xy}, J_{xy}^{AB} — обменные интегралы в базисной плоскости, J_z , J_z^{AB} — обменные интегралы вдоль оси C_3 . В дальнейшем угол φ , описывающий неэквивалентность кристаллического окружения магнитных ионов, будем рассматривать как параметр. Здесь и ниже опущены штрих в обозначения эффективного спина и индекс «n» в обозначении обменного интеграла.

Следуя теории эффективного поля [18], заменим в выражении (15) каждый из сомножителей его статистически средним для *n*-го уровня $\langle \langle \mathbf{S}^{A,B} \rangle \rangle^n$. В результате получим

$$\begin{split} \hat{H}_{ex}^{n} &= \frac{NzJ_{xy}}{2} \left(\hat{S}_{1x}^{A} \langle \langle S_{2x}^{A} \rangle \rangle^{n} + \hat{S}_{1y}^{A} \langle \langle S_{2y}^{A} \rangle \rangle^{n} + \\ &+ \hat{S}_{1x}^{B} \langle \langle S_{2x}^{B} \rangle \rangle^{n} + \hat{S}_{1y}^{B} \langle \langle S_{2y}^{B} \rangle \rangle^{n} \right) + \\ &+ \frac{NzJ_{z}}{2} \left(\hat{S}_{1z}^{A} \langle \langle S_{2z}^{A} \rangle \rangle^{n} + \hat{S}_{1z}^{B} \langle \langle S_{2z}^{B} \rangle \rangle^{n} \right) + \\ &+ \frac{Nz_{AB}J_{xy}^{AB} \cos \varphi}{4} \left(\hat{S}_{x}^{A} \langle \langle S_{x}^{B} \rangle \rangle^{n} + \hat{S}_{x}^{B} \langle \langle S_{x}^{A} \rangle \rangle^{n} + \\ &+ \hat{S}_{y}^{A} \langle \langle S_{y}^{B} \rangle \rangle^{n} + \hat{S}_{y}^{B} \langle \langle S_{y}^{A} \rangle \rangle^{n} \right) + \\ &+ \frac{Nz_{AB}J_{z}^{AB}}{4} \left(\hat{S}_{z}^{A} \langle \langle S_{z}^{B} \rangle \rangle^{n} + \hat{S}_{z}^{B} \langle \langle S_{z}^{A} \rangle \rangle^{n} \right) + \\ &+ \frac{Nz_{AB}J_{xy}^{AB} \sin \varphi}{4} \left(\hat{S}_{x}^{A} \langle \langle S_{y}^{B} \rangle \rangle^{n} - \hat{S}_{y}^{A} \langle \langle S_{x}^{B} \rangle \rangle^{n} + \\ &+ \hat{S}_{y}^{B} \langle \langle S_{x}^{A} \rangle \rangle^{n} - \hat{S}_{x}^{B} \langle \langle S_{y}^{A} \rangle \rangle^{n} \right). \end{split}$$
(16)

В теории эффективного поля принято полагать, что магнитный момент атома определяется только средним значением спина основного состояния $\langle \langle \mathbf{S}^{A,B} \rangle \rangle$, хотя он определяется суммарным вкладом в намагниченность от всех уровней. В нашем случае это также можно сделать, поскольку эффективное поле, создаваемое намагниченностью атома при высоких температурах $T > T_N$, по сравнению с внешним магнитным полем мало, а при низких температурах, где вклад в эффективное поле становится существенным, заселенным оказывается только в этом выражении можно положить $\langle \langle \mathbf{S}^{A,B} \rangle \rangle^n = \langle \langle \mathbf{S}^{A,B} \rangle \rangle$. Подставляя в формулу (16) намагниченность подрешеток

$$\mathbf{M}^{A,B} = (N/2) \langle \langle \boldsymbol{\mu}^{A,B} \rangle \rangle,$$

где

$$\langle \langle \mu_{x,y}^{A,B} \rangle \rangle = g_{\perp} \beta \langle \langle S_{x,y}^{A,B} \rangle \rangle, \quad \langle \langle \mu_{z}^{A,B} \rangle \rangle = g_{\parallel} \beta \langle \langle S_{z}^{A,B} \rangle \rangle$$

— магнитные моменты ионов подрешеток A и B, приводим выражение (16) к виду

$$\begin{aligned} \hat{H}_{ex}^{n} &= \frac{N}{2} \times \\ \times \left[-g_{\perp} \beta \hat{S}_{x}^{A} \left(\lambda_{\perp} M_{x}^{A} + \lambda_{\perp}^{AB} \cos \varphi M_{x}^{B} + \lambda_{\perp}^{AB} \sin \varphi M_{y}^{B} \right) - \\ -g_{\perp} \beta \hat{S}_{y}^{A} \left(\lambda_{\perp} M_{y}^{A} + \lambda_{\perp}^{AB} \cos \varphi M_{y}^{B} - \lambda_{\perp}^{AB} \sin \varphi M_{x}^{B} \right) - \\ -g_{\parallel} \beta \hat{S}_{z}^{A} \left(\lambda_{\parallel} M_{z}^{A} + \lambda_{\parallel}^{AB} M_{z}^{B} \right) - \\ -g_{\perp} \beta \hat{S}_{y}^{B} \left(\lambda_{\perp} M_{x}^{B} + \lambda_{\perp}^{AB} \cos \varphi M_{x}^{A} - \lambda_{\perp}^{AB} \sin \varphi M_{y}^{A} \right) - \\ -g_{\perp} \beta \hat{S}_{y}^{B} \left(\lambda_{\perp} M_{y}^{B} + \lambda_{\perp}^{AB} \cos \varphi M_{y}^{A} + \lambda_{\perp}^{AB} \sin \varphi M_{x}^{A} \right) - \\ -g_{\parallel} \beta \hat{S}_{z}^{B} \left(\lambda_{\parallel} M_{z}^{B} + \lambda_{\parallel}^{AB} \cos \varphi M_{y}^{A} + \lambda_{\perp}^{AB} \sin \varphi M_{x}^{A} \right) - \\ \end{array}$$

где коэффициенты молекулярного поля Вейса определяются выражениями

$$\lambda_{\perp} = \frac{2zJ_{xy}}{Ng_{\perp}^{2}\beta^{2}}, \quad \lambda_{\parallel} = \frac{2zJ_{z}}{Ng_{\parallel}^{2}\beta^{2}},$$

$$\lambda_{\perp}^{AB} = \frac{z_{AB}J_{xy}^{AB}}{Ng_{\perp}^{2}\beta^{2}}, \quad \lambda_{\parallel}^{AB} = \frac{z_{AB}J_{z}^{AB}}{Ng_{\parallel}^{2}\beta^{2}}.$$
(18)

С учетом внешнего магнитного поля **H** $(H_x, H_z \neq 0, H_y = 0)$ эффективное поле, действующее на магнитный ион в подрешетке A, принимает вид

$$H_x^A = \lambda_{\perp} M_x^A + \lambda_{\perp}^{AB} \cos \varphi M_x^B + \lambda_{\perp}^{AB} \sin \varphi M_y^B + H_x,$$

$$H_y^A = \lambda_{\perp} M_y^A + \lambda_{\perp}^{AB} \cos \varphi M_y^B - \lambda_{\perp}^{AB} \sin \varphi M_x^B,$$

$$H_z^A = \lambda_{\parallel} M_z^A + \lambda_{\parallel}^{AB} M_z^B + H_z,$$
(19)

$$H_x^B = \lambda_{\perp} M_x^B + \lambda_{\perp}^{AB} \cos \varphi M_x^A - - \lambda_{\perp}^{AB} \sin \varphi M_y^A + H_x,$$

$$H_y^B = \lambda_{\perp} M_y^B + \lambda_{\perp}^{AB} \cos \varphi M_y^A + \lambda_{\perp}^{AB} \sin \varphi M_x^A,$$

$$H_z^B = \lambda_{\parallel} M_z^B + \lambda_{\parallel}^{AB} M_z^A + H_z.$$
(19)

Рассмотрим вначале случай, когда вклад в намагниченность ионов от возбужденных состояний отсутствует. Заменяя в формулах (9) и (12) $H_{x,y,z}$ на эффективные поля $H^A_{x,y,z}$, $H^B_{x,y,z}$, действующие на ионы, находящиеся соответственно в магнитных подрешетках A и B, без учета возбужденных состояний (n = 0), из равенства (7) получим систему из шести нелинейных уравнений относительно намагниченностей подрешеток:

$$M_{x,y,z}^{A,B} = \frac{N}{2} \langle \langle \mu_{x,y,z}^{A,B} \rangle \rangle = -\frac{Ng_{x,y,z}^2 \beta^2 H_{x,y,z}^{A,B}}{8} \times \left\{ \frac{1}{\varepsilon_1^{A,B}} \exp\left(-\frac{\varepsilon_1^{A,B}}{kT}\right) + \frac{1}{\varepsilon_2^{A,B}} \exp\left(-\frac{\varepsilon_2^{A,B}}{kT}\right) \right\} \times \left\{ \exp\left(-\frac{\varepsilon_1^{A,B}}{kT}\right) + \exp\left(-\frac{\varepsilon_2^{A,B}}{kT}\right) \right\}^{-1}.$$
 (20)

Здесь для сокращения записи введены обозначения $g_x \equiv g_y \equiv g_{\perp}, g_z \equiv g_{\parallel}$. Ниже будут рассмотрены два случая: а) магнитное поле направлено в базисной плоскости $H_x \neq 0, H_y = H_z = 0$; б) магнитное поле направлено вдоль оси $C_3, H_z \neq 0, H_x = H_y = 0$. Решения шести нелинейных уравнений (20) искались для случая, соответствующего наблюдаемым соотношениям намагниченностей подрешеток:

$$\begin{split} M_x^A &= M_x^B, \quad M_y^A &= -M_y^B, \\ M_z^A &= M_z^B &= 0 \quad \text{при} \quad \mathbf{H} \perp C_3 \\ M_x^A &= M_x^B, \quad M_y^A &= -M_y^B, \\ M_z^A &= M_z^B \quad \text{при} \quad \mathbf{H} \perp C_3. \end{split}$$

4. МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ В ПРЕДЕЛЕ ВЫСОКИХ ТЕМПЕРАТУР

В предельном случае высоких температур, когда $\varepsilon_{1,2}^{A,B}/kT \ll 1$, для составляющих намагниченности подрешеток в базисной плоскости из (20) с учетом (19) и (19') имеем

$$2TM_x^A = C_{\perp} \left(\lambda_{\perp} M_x^A + \lambda_{\perp}^{AB} \cos \varphi M_x^B + \lambda_{\perp}^{AB} \sin \varphi M_y^B + H_x\right),$$

$$2TM_y^A = C_{\perp} \left(\lambda_{\perp} M_y^A - \lambda_{\perp}^{AB} \sin \varphi M_x^B + \lambda_{\perp}^{AB} \cos \varphi M_y^B\right),$$

$$2TM_x^B = C_{\perp} \left(\lambda_{\perp}^{AB} \cos \varphi M_x^A - \lambda_{\perp}^{AB} \sin \varphi M_y^A + \lambda_{\perp} M_x^B + H_x\right),$$

$$2TM_y^B = C_{\perp} \left(\lambda_{\perp}^{AB} \sin \varphi M_x^A + \lambda_{\perp}^{AB} \cos \varphi M_y^A + \lambda_{\perp} M_y^B\right).$$

(21)

Аналогичным образом для составляющих намагниченности подрешеток вдоль оси C_3

$$2TM_{z}^{A} = C_{\parallel} \left(\lambda_{\parallel} M_{z}^{A} + \lambda_{\parallel}^{AB} M_{z}^{B} + H_{z} \right),$$

$$2TM_{z}^{B} = 2TC_{\parallel} \left(\lambda_{\parallel} M_{z}^{B} + \lambda_{\parallel}^{AB} M_{z}^{A} + H_{z} \right),$$

$$(21')$$

где были введены обозначения $C_{\perp} = Ng_{\perp}^2\beta^2/4k,$ $C_{\parallel} = Ng_{\parallel}^2\beta^2/4k.$

Из уравнений (21) и (21') с точностью до членов, линейных по параметрам $2z J_{xy}/8kT$, $2z J_{xy}^{AB}/8kT \ll 1$, можно получить значения намагниченности подрешеток, для которых имеют место соотношения

$$M_x^A = M_x^B,$$

$$M_y^A = -M_y^B = \frac{Ng_\perp^2 \beta^2 z_{AB} J_{AB} \sin \varphi}{64k^2 T^2} H_x, \qquad (22)$$

$$M_z^A = M_z^B.$$

Как следует из полученных формул в парамагнитной области, при намагничивании образца в плоскости взаимодействие Дзялошинского приводит к тому, что компоненты намагниченности, перпендикулярные магнитному полю, отличны от нуля. Намагниченность образца $M_{x,z} = 2M_{x,z}^A$ описывается выражениями

$$M_x = \frac{C_\perp}{T - \theta_\perp} H_x, \quad M_y = 0, \quad M_z = \frac{C_\parallel}{T - \theta_\parallel} H_z, \quad (23)$$

где

$$\theta_{\perp} = \frac{2zJ_{xy} + z_{AB}J_{xy}^{AB}\cos\varphi}{8k},$$

$$\theta_{\parallel} = \frac{2zJ_z + z_{AB}J_z^{AB}}{8k}.$$
(24)

Вблизи температуры Нееля T_N , в отсутствие магнитного поля, когда намагниченность очень мала, система однородных уравнений (21) позволяет найти температуру магнитного упорядочивания. Приравнивая ее детерминант нулю и полагая $M_x^A = M_x^B, \; M_y^A = -M_y^B, \;$ находим два типа решений:

$$T_{N} = \frac{C_{\perp}}{2} (\lambda_{\perp} - \lambda_{\perp}^{AB}) = \frac{2z J_{xy} - z_{AB} J_{xy}^{AB}}{8k},$$

$$\frac{M_{x}}{M_{y}} = \operatorname{tg} \frac{\varphi}{2} \quad \text{для} \quad J_{xy}^{AB} < 0 \quad \text{м} \qquad (25)$$

$$|J_{xy}^{AB}| > 2J_{xy},$$

$$T_N = \frac{C_{\perp}}{2} (\lambda_{\perp} + \lambda_{\perp}^{AB}) = \frac{2z J_{xy} + z_{AB} J_{xy}^{AB}}{8k},$$

$$\frac{M_x}{M_y} = -\operatorname{ctg} \frac{\varphi}{2} \quad \text{для} \quad J_{xy}^{AB} > 0 \quad \text{м} \qquad (25')$$

$$|J_{xy}^{AB}| > 2J_{xy}.$$

Из полученных решений нашему случаю соответствует решение (25). Следует отметить, что температура магнитного упорядочивания отличается от константы Кюри-Вейса θ_{\perp} .

5. ФЕРРОМАГНИТНЫЙ МОМЕНТ И МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ В ПРЕДЕЛЕ НИЗКИХ ТЕМПЕРАТУР

В случае низких температур, когда $\varepsilon_{1,2}^{A,B}/kT\gg 1,$ система из шести уравнений (20) принимает вид

$$\begin{split} M^{A,B}_{x,y,z} &= \\ &= \frac{Ng^2_{x,y,z}\beta H^{A,B}_{x,y,z}}{4\sqrt{g^2_x(H^{A,B}_x)^2 + g^2_y(H^{A,B}_y)^2 + g^2_z(H^{A,B}_z)^2}}. \end{split} \tag{26}$$

В отсутствие внешнего магнитного поля система уравнений (26) имеет два вида решений: $M_{x,y}^{A,B} \neq 0$, $M_z^{A,B} = 0$ и $M_{x,y}^{A,B} = 0$, $M_z^{A,B} \neq 0$. Первый вид решений при низких температурах реализуется в легкоплоскостных антиферромагнетиках CoCO₃, MnCO₃ и NiCO₃. Для этого случая в магнитном поле $H_x \neq 0$, $H_y = H_z = 0$ имеем $H_x^A = H_x^B$, $H_y^A = -H_y^B$, $H_z^A = H_z^B$ и система уравнений (26) превращается в систему из трех уравнений. Возводя в квадрат правые и левые части этих уравнений и складывая их можно получить

$$(M_x^{A,B})^2 + (M_y^{A,B})^2 + (M_z^{A,B})^2 = \left(\frac{N\beta}{4}\right)^2 \times \times \frac{g_{\perp}^4 (H_x^{A,B})^2 + g_{\perp}^4 (H_y^{A,B})^2 + g_{\parallel}^4 (H_z^{A,B})^2}{g_{\perp}^2 (H_x^{A,B})^2 + g_{\perp}^2 (H_y^{A,B})^2 + g_{\parallel}^2 (H_z^{A,B})^2}.$$
 (27)

В случае изотропного *g*-фактора это уравнение превращается в классическое уравнение для суммы квадратов проекций намагниченности.

5.1. Уравнения для намагниченности в базисной плоскости

Рассмотрим случай упорядочивания в базисной плоскости, когда $M_{x,y}^{A,B} \neq 0, M_z^{A,B} = 0$ и, следовательно, $H_z^A = H_z^B \equiv 0$. Тогда уравнения (26) приобретают вид

$$M_x^{A,B}\sqrt{(H_x^{A,B})^2 + (H_y^{A,B})^2} = M_S H_x^{A,B},$$

$$M_y^{A,B}\sqrt{(H_x^{A,B})^2 + (H_y^{A,B})^2} = M_S H_y^{A,B}.$$
(28)

Здесь величина $M_S = Ng_{\perp}\beta/4$ описывает максимальную намагниченность подрешеток. Систему уравнений (28) можно переписать в виде

$$(M_x^{A,B})^2 + (M_y^{A,B})^2 = M_S^2, H_y^{A,B} M_x^{A,B} = H_x^{A,B} M_y^{A,B}.$$
 (29)

Первое из уравнений (29) используется при феноменологическом рассмотрении магнитных свойств. Подставляя значения эффективных полей (19), (19'), из второй пары уравнений (29) можно найти соотношение для определения намагниченности подрешеток в базисной плоскости:

$$\lambda_{\perp}^{AB} \left(M_S^2 - 2 \left(M_x^A \right)^2 \right) \sin \varphi =$$

= $\pm \sqrt{M_S^2 - (M_S^A)^2} \left(2M_x^A \lambda_{\perp}^{AB} \cos \varphi + H_x \right).$ (30)

5.2. Спонтанный момент

Уравнение (30) сразу позволяет найти выражение для остаточного момента подрешетки в нулевом магнитном поле. Подстановка этих решений в уравнения (28) показывает, что им удовлетворяют следующие пары решений:

$$M_{0x}^{A} = M_{S} \sin \frac{\varphi}{2}, \quad M_{0y}^{A} = M_{S} \cos \frac{\varphi}{2}, \qquad (31)$$

$$M_{0x}^{A} = M_{S} \cos \frac{\varphi}{2}, \quad M_{0y}^{A} = -M_{0} \sin \frac{\varphi}{2}.$$
 (31')

Ниже будет рассмотрен случай, соответствующий решению (31), поскольку, как следует из формулы (25), это решение реализуется в CoCO₃.

5.3. Зависимость намагниченности от магнитного поля вдоль главных направлений

Поведение намагниченности в магнитном поле можно получить, воспользовавшись выражением (30). В линейном приближении по магнитному полю намагниченность описывается выражениями

$$M_x = M_{0x} + \chi_\perp H_x, \tag{32}$$

где ферромагнитный момент

$$M_{0x} = \frac{Ng_{\perp}\beta}{2}\sin\frac{\varphi}{2},\tag{33}$$

а магнитная восприимчивость

$$\chi_{\perp} = -\frac{Ng_{\perp}^2\beta^2}{z_{AB}J_{xy}^{AB}}\cos^2\frac{\varphi}{2}.$$
(34)

Величина ферромагнитного момента не зависит от обмена, а зависит только от взаимной ориентации локального окружения магнитных ионов, а магнитная восприимчивость в базисной плоскости определяется только величиной обмена между подрешетками.

Для нахождения выражения, описывающего магнитную восприимчивость при T = 0 в направлении оси C_3 ($H_x = H_y = 0, H_z \neq 0$), воспользуемся уравнениями (26). Как и прежде, будем полагать $M_x^A = M_x^B, M_y^A = -M_y^B, M_z^A = M_z^B$. Тогда система уравнений (26) превращается в систему из трех уравнений, которые можно преобразовать к виду

$$(M_y^2 - M_x^2)\sin\varphi = 2M_x M_y \cos\varphi,$$

$$\left((\lambda_\perp + \lambda_\perp^{AB} \cos\varphi) \left(\frac{g_\perp}{g_\parallel}\right)^2 - \lambda_\parallel - \lambda_\parallel^{AB} \right) \times \\ \times M_x^A M_z^A - \\ - \lambda_\perp^{AB} \left(\frac{g_\perp}{g_\parallel}\right)^2 M_y^A M_z^A \sin\varphi = M_x^A H_z,$$

$$\left((\lambda_\perp - \lambda_\perp^{AB} \cos\varphi) \left(\frac{g_\perp}{g_\parallel}\right)^2 - \lambda_\parallel - \lambda_\parallel^{AB} \right) \times \\ \times M_y^A M_z^A - \\ - \lambda_\perp^{AB} \left(\frac{g_\perp}{g_\parallel}\right)^2 M_x^A M_z^A \sin\varphi = M_y^A H_z.$$
(35)

Из первого уравнения (35) находим, что намагниченности M_x^A и M_y^A пропорциональны друг другу и описываются соотношениями (31). Исключая эти компоненты из остальных уравнений (35), для суммарной намагниченности образца $M_z = 2M_z^A$ получаем

$$M_z = \chi_{\parallel} H_z, \tag{36}$$

где продольная магнитная восприимчивость

$$\chi_{\parallel} = -\frac{2Ng_{\parallel}^2\beta^2}{z_{AB}(J_{xy}^{AB} + J_z^{AB}) + 2z(J_z - J_{xy})}.$$
 (37)

6. ВЫСОКОТЕМПЕРАТУРНАЯ МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ С УЧЕТОМ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ

Найдем выражения для намагниченности при высоких температурах с учетом вышележащих уровней. Используя условие $\varepsilon_{1n,2n}/kT \ll 1$ из (7) для проекций намагниченности, получим

$$M^{A,B} = -\frac{N\beta^2}{8kT} \sum_{n=0}^{k} g_n^2 H_n^{A,B} \exp\left(-\frac{\Delta_n}{kT}\right) \times \left\{\sum_{n=0}^{k} \exp\left(-\frac{\Delta_n}{kT}\right)\right\}^{-1}, \quad (38)$$

где у намагниченности, g-фактора и эффективного поля опущены индексы проекций координат, а Δ_n расстояние от основного (n = 0) до возбужденных (n = 1, 2, 3, ...) уровней и соответственно $\Delta_0 = 0$. Подставляя в эту формулу выражения для эффективных полей (19) и (19'), зависимость намагниченности от магнитного поля в парамагнитной области можно представить в виде

$$M_x = \frac{N\beta^2}{4k(T-\theta_{\perp}^*)} \frac{G_{\perp}}{\Sigma}, \quad M_z = \frac{N\beta^2}{4k(T-\theta_{\parallel}^*)} \frac{G_{\parallel}}{\Sigma}, \quad (39)$$

где

$$\Sigma = \sum_{n=0}^{k} \exp\left(-\frac{\Delta_{n}}{kT}\right),$$

$$G_{\perp,\parallel} = \sum_{n=0}^{k} (g_{\perp,\parallel}^{2})_{n} \exp\left(-\frac{\Delta_{n}}{kT}\right),$$

$$\theta_{\perp}^{*} = \frac{1}{8k\Sigma} \left(2zJ_{xy}^{eff} + z_{AB}J_{xy}^{AB,eff}\cos\varphi\right),$$

$$\theta_{\parallel}^{*} = \frac{1}{8k\Sigma} \left(2zJ_{z}^{eff} + z_{AB}J_{z}^{AB,eff}\right),$$

$$J_{xy,z}^{eff} = \sum_{n=0}^{k} (J_{xy,z})\exp\left(-\frac{\Delta_{n}}{kT}\right),$$

$$J_{xy}^{AB,eff} = \sum_{n=0}^{k} (J_{xy,z}^{AB})\exp\left(-\frac{\Delta_{n}}{kT}\right).$$
(40)

7. ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ И СРАВНЕНИЕ ИХ С ЭКСПЕРИМЕНТАЛЬНЫМИ ДАННЫМИ ПО НАМАГНИЧЕННОСТИ СоСО₃

Пользуясь полученными выражениями, справедливыми в предельных случаях высоких и низких

Рис. 3. Зависимости M(H), полученные в последовательности сверху вниз, при T = 4.2, 12.9, 15.5, 18.1, 19.2 К для $H \perp C_3$ и T = 4.2 К для $H \parallel C_3$, \circ — данные из работы [5], \bullet — результаты численных расчетов для $\varphi = 12.5^\circ$, прямые линии построены по формулам (34) и (37)

температур, можно достаточно просто подобрать параметры для сравнения результатов вычислений с экспериментальными данными по намагниченности СоСО₃, полученными в работах [5, 23]. Эти параметры были использованы при проведении численных расчетов, которые проводились для произвольных температур и магнитных полей. При этом предполагалось, что $|J_{xy}^{AB}| \gg |J_{xy}| \approx 0$. Обоснованием этого может служить то, что при увеличении расстояния rмежду ионами обменное взаимодействие резко убывает (для CoCO₃ $r_{AA} = r_{BB} = 4.97$ Å, $r_{AB} = 3.85$ Å). Например, как показано в работе [24], где с помощью ЭПР и двойного электронно-ядерного резонанса изучался спектр обменно-связанных пар Cr^{2+} в Al_2O_3 , для первой пары соседей J = 300 см⁻¹, а для второй пары $J = 83 \text{ см}^{-1}$.

7.1. Зависимость намагниченности от магнитного поля при низких температурах

В предельном случае низких температур, используя полученные в работе [5] экспериментальные значения $T_N = 18.1 \text{ K}, \chi_{\perp} = 5.3 \cdot 10^{-2} \text{ Гс} \cdot \text{см}^3 \cdot \Im^{-1}/\text{моль}, M_{0x} = 1360 \text{ Гс} \cdot \text{см}^3/\text{моль}, из (25), (33), (34) имеем <math>J_{xy}^{AB} = -16.6 \text{ см}^{-1}, g_{\perp} = 4.55.$ Для того чтобы получить экспериментальное значение $\chi_{\parallel} = 3.5 \cdot 10^{-2} \text{ Гс} \cdot \text{см}^3 \cdot \Im^{-1}/\text{моль},$ необходимо подобрать параметры кристаллического поля Δ , p, и α в гамильтониане (2). Из них один параметр является произвольным, а остальные два должны

соответствовать экспериментальным значениям J_{xy}^{AB} и g_{\perp} . Для нескольких значений параметра p = 0.6, 1.0, 1.4, 2.0, соответствующих разумному отклонению от величин, полученных из измерений

отклонению от величин, полученных из измерений ЭПР, в табл. 2 приведены рассчитанные с помощью гамильтониана (2) параметры, которые были необходимы при вычислении намагниченности. Полученные при низких температурах зависимости для разных значений параметра p практически не различаются. Приводимые ниже результаты вычислений для низких температур были получены для $\varphi = 12.5^{\circ}$ и p = 1.

На рис. 3 большими кружками показаны экспериментальные зависимости намагниченности от магнитного поля: внизу для $H \parallel C_3$ и T = 4.2 K, а остальные — для $H \perp C_3$
иT = 4.2 -- 19.2 К. Когда магнитное поле лежало в базисной плоскости, величина ферромагнитного момента определялась по пересечению аппроксимированной в большие магнитные поля линейной зависимости M(H) с осью ординат. Отклонение кривых намагничивания в малых магнитных полях от линейной зависимости связано с наличием в образце доменной структуры [25]. Вычисленные зависимости $M_x(H)$ и $M_z(H)$ для различных температур показаны точками. На том же рисунке сплошные линии для T = 4.2 К построены по формулам (32)-(34) и (36), (37). Как видно, наблюдается удовлетворительное согласие экспериментальных и вычисленных зависимостей. При тех же значениях параметров также наблюдается неплохое согласие для кривой намагничивания, полученной в работе [23] в сильных магнитных полях при $H \perp C_3$ и T = 1.9 К. Результаты сравнения показаны на рис. 4, где кружки соответствуют экспериментальным значениям, а сплошная кривая — теоретическим. Следует отметить, что величины *g*-факторов, полученных в измерениях ЭПР при T = 4.2 К в работах [14, 15], соответствуют значениям, приведенным в табл. 2.

7.2. Ферромагнитный момент и скошенное состояние

Как следует из формул (25) и (31), вблизи температуры Нееля и в пределе низких температур угол скоса магнитных подрешеток в магнитоупорядоченной области определяется параметром φ и не зависит от температуры и обмена. Уменьшение ферромагнитного момента с повышением температуры связано с уменьшением абсолютной величины магнитного момента подрешеток. На рис. 5 вычисленная сплошная кривая хорошо описывает темпера

Таблица 2. Параметры кристаллического поля α , Δ , положения основного E_g и возбужденного E_{ex} уровней, значения g-фактора g_{\parallel} , обменных интегралов J^{AB} , J_z^{AB} и коэффициентов a, b, c волновой функции основного состояния, а также d, e — ближайшего возбужденного состояния — для различных p, соответствующих экспериментальным значениям $g_{\perp} = 4.55$ и $J_{xy}^{AB} = -16.6$ см⁻¹

p	0.6	1.0	1.4	2
α	1	1.2	1.39	1.6
Δ	0	-230	-367	-530
E_g , cm ⁻¹	-540	-634	-716	-816
a	-0.65	-0.59	-0.56	-0.53
b	0.61	0.69	0.74	0.78
c	-0.44	-0.40	-0.37	-0.33
g_\perp	4.55	4.55	4.55	4.55
g_{\parallel}	3.31	3.21	3.19	3.07
J^{AB}, cm^{-1}	-5.35	-5.12	-5.04	-4.87
J_{xy}^{AB} , cm ⁻¹	-16.6	-16.6	-16.6	-16.6
J_z^{AB} , cm ⁻¹	-11.2	-9.89	-9.29	-8.27
E_{ex}, cm^{-1}	-244	-375	-478	-612
d	-0.76	-0.87	-0.91	-0.95
е	0.64	0.48	0.39	0.31
g_\perp	0	0	0	0
g_{\parallel}	3.47	4.52	4.95	5.29
J^{AB}, cm^{-1}	-5.35	-5.12	-5.04	-4.87
J_{xy}^{AB} , cm ⁻¹	0	0	0	0
$\overline{J_z^{AB}/J^{AB}}$	4.79	6.52	7.24	7.86
$E_{ex} - E_g, \mathrm{cm}^{-1}$	296	259	236	204

турную зависимость ферромагнитного момента. В парамагнитной области взаимодействие Дзялошинского проявляется в том, что в направлении, перпендикулярном магнитному полю, появляются противоположно направленные намагниченности у атомов, занимающих неэквивалентные положения, а их величина описывается выражением (22). Этот результат находится в согласии с обнаруженным ранее фактом так называемого наведенного антифер-

Рис.4. Кружками показана зависимость M(H), полученная в работе [23] для $H\perp C_3$, сплошная кривая — результат численных расчетов для $\varphi=12.5^\circ$

Рис. 5. Вычисленная (сплошная линия) и наблюдаемая (кружки) температурные зависимости ферромагнитного момента CoCO3

ромагнетизма [5,26], полученного на основе феноменологического рассмотрения вблизи температуры магнитного перехода.

Параметр $\varphi = 12.5^{\circ}$ не намного отличается от действительного значения $\varphi = 15.4^{\circ}$ (см. табл. 1). Поскольку угол скоса в выражении (33) не зависит от орбитальной составляющей магнитного момента иона и не согласуется с теорией Мориа, это совпадение является случайным. Однако в согласии с теорией Мориа находятся результаты работы [13], где было показано, что антисимметричный обмен влияет на положение уровней обменно-связанных пар только при наличии орбитального вклада в случае, когда магнитное поле лежит в базисной плоскости. Поэтому для устранения этого противоречия, по-видимому, необходимо применять метод Огучи [27], в котором в выражении для намагниченности (7) используются магнитные моменты и уровни энергии обменно-связанных пар, а не одиночных ионов. В этом случае уровни энергии зависят от орбитального вклада и угла разориентации ближайшего окружения магнитного иона. Действительно, при выполнении условия $(J_{xy} - J_z) \ll J_z$, $J_{xy} \ll g_{\perp}\beta H_x/2$ можно показать, что обусловленное антисимметричным взаимодействием изменение положения уровней обменно-связанных пар

$$\Delta E = \frac{J_z (J_{xy} - J_z)}{8g_\perp \beta H_z} (4 - \cos \varphi - 3\cos^2 \varphi).$$
(41)

Как следует из этого выражения, разница энергий зависит не только от взаимной ориентации ближайшего окружения магнитных атомов, но и от анизотропии обменного взаимодействия, которая, в свою очередь, определяется орбитальным вкладом.

Следует отметить, что в литературе для характеристики скошенного состояния широко используется понятие поля Дзялошинского, определяемое как $H_D = M_{0x}/\chi_{\perp}$. Из формул (33) и (34) его значение

$$H_D = \frac{z_{AB} J_{xy}^{AB}}{2g_\perp \beta} \frac{\sin(\varphi/2)}{\cos^2(\varphi/2)} \tag{42}$$

и поэтому по его величине нельзя судить о величине скоса магнитных моментов подрешеток. Отсюда легко можно понять, почему в NiCO₃ эта величина намного больше, чем в CoCO₃, поскольку $H_D(\text{NiCO}_3)/H_D(\text{CoCO}_3) \approx 25 \cdot 5/18 \cdot 2 \approx 4.$

7.3. Магнитная восприимчивость

Температурные зависимости магнитных восприимчивостей χ_{\perp} и χ_{\parallel} в области низких температур показаны на рис. 6. Вычисления проводились при той же величине магнитного поля H = 13000 Э, которое использовалось в эксперименте. Показанные кружками экспериментальные значения неплохо согласуются с вычисленными (сплошные кривые) вплоть до температуры 30 К, включая область магнитного упорядочивания. Однако при более высоких температурах наблюдается расхождение, увеличивающееся с ростом температуры. Это хорошо видно из показанных на рис. 7 зависимостей $\chi_{\perp}^{-1}(T)$ и $\chi_{\parallel}^{-1}(T)$, которые были вычислены с использованием формул (39), (40) при значениях параметра p = 0.6 (сплошная кривая) и p = 2.0 (штриховая кривая). Кривые

Рис. 6. Зависимости $\chi(T)$: вверху для $H \perp C_3$, внизу для $H \parallel C_3$, \circ — данные из работы [5], сплошные линии — результаты численного расчета

Рис. 7. Зависимости $\chi_{\perp}^{-1}(T)$ для $H \perp C_3$ и $\chi_{\parallel}^{-1}(T)$ для $H \parallel C_3$. Линии построены по формулам (39), (40) с учетом первого возбужденного состояния для p = 0.6 (сплошные линии), p = 2.0 (штриховые линии) и $\varphi = 12.5^{\circ}$, • — данные из работы [5]

для $H \perp C_3$ при высоких температурах загибаются вверх, что соответствует возбуждению близлежащего уровня с $g_{\perp} = 0$, а для $H \parallel C_3$ загибается вниз, поскольку у возбужденного уровня g_{\parallel} больше, чем у основного (см. табл. 2). Отклонение этих кривых от прямой пропорциональной зависимости связано с наличием возбужденного уровня, наименьшее расстояние до которого соответствует p = 2.0.

Поскольку при низких температурах теоретические зависимости неплохо описывают экспериментальные кривые, а значения g-фактора соответствуют данным ЭПР, полученным на магниторазбавленных образцах, наблюдаемое при высоких тем-

Рис. 8. Зависимости $g_{\perp}(g_{\parallel})$ для p=1.4 и $\Delta=-600~{\rm cm}^{-1}$ для разных значений α

пературах расхождение представляется достаточно неожиданным. Одной из причин могло быть наличие в образцах примеси Mn^{2+} или Fe^{2+} в количестве нескольких процентов. В работе [28] примеси Fe^{2+} в количестве 0.05 ат. % меняли в $MnCO_3$ легкоплоскостное упорядочивание на одноосное, а в работе [29] примеси Fe^{2+} и Mn^{2+} в количестве 0.1–1 ат. % в $CoCO_3$ существенно влияли на спектр AФMP. Результаты повторных измерений с контролируемым содержанием примеси [19] практически совпадают с данными, полученными в работе [5], что говорит о малой вероятности этого предположения.

Одной из причин могло быть то, что модель молекулярного поля для низких температур является плохим приближением. Поэтому были проведены дополнительные исследования с тем, чтобы выяснить, при каких условиях g-фактор может принимать значения $g_{\perp} \approx g_{\parallel} = 6.5$. На рис. 8 показано, как меняется анизотропия д-фактора при разумных изменениях параметра р для параметра кристаллического поля $\Delta = -600$ см⁻¹, полученного в работе [13]. Видно, что для $g_{\perp} = 6.5$ максимально возможное значение $g_{\parallel} < 3.5$ и, следовательно, при высоких температурах наблюдаемые значения д-фактора не могут быть описаны в рамках приближения Абрагама-Прайса. Предположение об изотропности *g*-фактора при высоких температурах находится в противоречии с результатами низкотемпературных измерений. При их использовании невозможно добиться совпадения всех показанных на рис. 3-6 рассчитанных зависимостей с экспериментальными даже при произвольном выборе величин обменного взаимодействия.

Рис.9. Зависимости изотропного g-фактора для $\Delta = p = 0 \text{ от параметра } \alpha$

Отсутствие анизотропии д-фактора при высоких температурах может оказаться решающим фактом для выяснения причины наблюдаемого несоответствия рассчитанных зависимостей с экспериментальными. В приближении Абрагама-Прайса отсутствие анизотропии соответствует условиям $\Delta = 0$, $\alpha = \alpha'$ в гамильтониане (2). Вычисленная при этом с использованием гамильтониана (2) зависимость *g*-фактора от эффективного орбитального момента α показана на рис. 9. Экспериментальное значение g = 6.5 получается при $\alpha = 4.7$, что почти в три раза превышает значение $\alpha = 1.5$ для свободного иона Co²⁺. В теории кристаллического поля предполагается, что электрическое поле, создаваемое лигандами, в качестве которых служат анионы кислорода, является постоянным и не зависит от температуры. На самом деле анионы кислорода, образующие жесткий комплекс CO_3^{2-} , участвуют в локальных, низкоактивационных колебаниях, соответствующих вращению этого комплекса как целого. Энергия этих колебаний в $CaCO_3$ составляет около 100 см⁻¹ [30]. При достаточно большой амплитуде этих колебаний создаваемая этим окружением анизотропия становится пренебрежимо малой. Влияние кристаллической решетки может проявляться также в том, что по мере повышения температуры происходят аномально сильные изменения кристаллической структуры и при этом возможна перестройка локального окружения иона Co²⁺. Локальные искажения, как показано в работе [31], также могут значительно менять величину g-фактора иона Co^{2+} .

Таким образом, результаты проведенных вычислений, данные по ЭПР в магниторазбавленных кристаллах и дополнительные измерения магнитной восприимчивости с контролируемым количеством примеси позволяют утверждать, что при низких температурах g-фактор является сильно анизотропным, а при высоких температурах величина g-фактора сильно меняется и его анизотропия становится пренебрежимо малой. Хотя в данном веществе никаких структурных переходов не наблюдается, тем не менее, причиной этого может служить поведение кристаллического окружения при повышении температуры, связанное с возбуждением локальных колебаний решетки, энергия активации которых составляет около 100 см⁻¹ [30].

8. ВЫВОДЫ

Таким образом, полученные результаты показывают, что в приближении молекулярного поля Вейса при использовании волновых функций основного состояния иона Co²⁺

1) при низких температурах, $T \leq 30$ К, включающих температуру магнитного упорядочивания, и произвольных магнитных полях экспериментальные результаты хорошо описываются с помощью параметров, вычисленных только по значениям T_N , χ_{\perp} и M_{0x} ;

2) вычисленные из измерений намагниченности при низких температурах значения *g*-фактора находятся в согласии с результатами измерений ЭПР на ионах Co^{2+} в диамагнитных решетках $CaCO_3$ и $CdCO_3$;

 при высоких температурах g-фактор становится изотропным и не может быть описан в рамках использованных приближений;

4) при низких температурах, включая температуру магнитного упорядочивания, анизотропия намагниченности CoCO₃ хорошо описывается моделью, в которой ее величина определяется анизотропией *g*-фактора и обменного взаимодействия, которые задаются кристаллическим полем и волновыми функциями основного состояния магнитного иона в предположении, что в отсутствие кристаллического поля обменное взаимодействие является изотропным;

5) показано, что угол скоса магнитных подрешеток не может быть описан в приближении эффективного поля при учете состояний одиночных ионов, и поэтому при вычислении намагниченности следует использовать спектр обменно-связанных пар. В заключение выражаю благодарность А. А. Бушу за оказанную помощь в описании кристаллографических структур.

ЛИТЕРАТУРА

- 1. И. Е. Дзялошинский, ЖЭТФ 32, 1547 (1957).
- 2. T. Morija, Phys. Rev. 120, 91 (1960).
- **3**. А. С. Боровик-Романов, ЖЭТФ **36**, 766 (1959).
- А. С. Боровик-Романов, Н. М. Крейнес, Л. А. Прозорова, ЖЭТФ 45, 64 (1963).
- А. С. Боровик-Романов, В. И. Ожогин, ЖЭТФ 39, 27 (1960).
- **6**. А. Н. Бажан, ЖЭТФ **67**, 1520 (1974).
- 7. Е. Г. Рудашевский, ЖЭТФ 46, 134 (1964).
- Г. Д. Богомолов, Ю. Ф. Игонин, Л. А. Прозорова, Ф. С. Русин, ЖЭТФ 54, 1069 (1968).
- В. В. Еременко, А. И. Масленников, В. М. Науменко, ЖЭТФ 77, 2005 (1979).
- 10. Н. М. Крейнес, Т. А. Шальникова, ЖЭТФ 58, 522 (1970).
- **11**. А. Н. Бажан, ЖЭТФ **66**, 1086 (1974).
- **12**. Л. А. Прозорова, ЖЭТФ **57**, 1967 (1969).
- **13**. В. Ф. Мещеряков, ЖЭТФ **125**, 160 (2004).
- 14. А. А. Антипин, В. М. Винокуров, М. М. Зарипов, ФТТ 6, 2178 (1964).
- А. С. Боровик-Романов, Н. Ю. Икорникова, В. Φ. Мещеряков, Е. Г. Рудашевский, Кристаллография 12, 488 (1967).
- 16. A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. A 206, 173 (1951).
- 17. А. Абрагам, Б. Блини, Электронный парамагнитный резонанс переходных ионов, т. 1, Мир, Москва (1972), с. 522.
- 18. Дж. Смарт, Эффективное поле в теории магнетизма, Мир, Москва (1973).
- **19**. В. Ф. Мещеряков, Письма в ЖЭТФ **82**, 803 (2005).
- 20. V. F. Meshcheryakov, J. Mag. Mag. Mat. 300, 395 (2006).
- 21. C. Kikuchi and L. M. Matarrese, J. Chem. Phys. 33, 601 (1960).

- 22. R. W. G. Wyckoff, *Crystal Structures*, New York, London, Sydney (1964).
- 23. В. И. Ожогин, ЖЭТФ 45, 1687 (1963).
- 24. M. J. Berggren and G. F. Imbusch, Phys. Rev. 188, 187 (1969).
- **25**. Н. Ф. Харченко, В. В. Еременко, О. П. Тутакина, ЖЭТФ **64**, 1326 (1973).
- **26**. А. С. Боровик-Романов, В. Г. Жотиков, Н. М. Крейнес, А. А. Панков, ЖЭТФ **70**, 1924 (1976).

- 27. T. Oguchi, Progr. Theor. Phys. (Kyoto) 13, 148 (1955).
- 28. I. Maartense, Phys. Rev. B 6, 4324 (1972).
- **29**. Б. С. Думеш, В. М. Егоров, В. Ф. Мещеряков, ЖЭТФ **61**, 320 (1971).
- S. Bhagavantam and T. Venkatarayudu, Proc. Indian Acad. Sci. A 9, 224 (1939).
- Zheng Wen-Chen, Wu Shao-Yi, Dong Hui Ning, and Tang Sheng, J. Magn. Magn. Mat. 268, 264 (2004).