ГИСТЕРЕЗИС МАГНИТОСОПРОТИВЛЕНИЯ ГРАНУЛЯРНЫХ ВТСП КАК ПРОЯВЛЕНИЕ МАГНИТНОГО ПОТОКА, ЗАХВАЧЕННОГО СВЕРХПРОВОДЯЩИМИ ГРАНУЛАМИ, НА ПРИМЕРЕ КОМПОЗИТОВ ҮВСО + СuO

Д. А. Балаев^{*}, Д. М. Гохфельд, А. А. Дубровский, С. И. Попков, К. А. Шайхутдинов, М. И. Петров

Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

Поступила в редакцию 7 февраля 2007 г.

Для исследования гистерезисного поведения магнитосопротивления гранулярных ВТСП и его взаимосвязи с магнитным гистерезисом проведены измерения магнитосопротивления R(H) и критического тока $I_c(H)$ композитов из ВТСП $Y_{3/4}Lu_{1/4}Ba_2Cu_3O_7$ и CuO. В таких композитах реализуется сеть джозефсоновских переходов, причем несверхпроводящий ингредиент выступает в качестве барьеров между ВТСП-гранулами. Гистерезисные зависимости магнитосопротивления R(H) исследованы в широком диапазоне плотности транспортного тока j и проанализированы в рамках двухуровневой модели гранулярного сверхпроводника, в которой диссипация происходит в джозефсоновской среде, а магнитный поток может закрепляться как в гранулах, так и в джозефсоновской среде. Экспериментально продемонстрирована взаимосвязь между гистерезисом критического тока $I_c(H)$ и эволюцией гистерезисной зависимости магнитосопротивления R(H) при варьировании транспортного тока. Исследовано влияние магнитной предыстории на гистерезисное поведение R(H) и появление участка с отрицательным магнитосопротивлением. Впервые показано, что зависимости R(H) характеризуются не зависящим от транспортного тока параметром — шириной петли гистерезиса R(H).

PACS: 74.81.Fa, 74.50.+r

1. ВВЕДЕНИЕ

Несмотря на то, что основные особенности гальваномагнитных явлений в гранулярных высокотемпературных сверхпроводниках (ВТСП) были обнаружены в первые годы после их открытия [1–17], интерес к таким исследованиям не ослабевает, о чем свидетельствуют работы, появившиеся в недавнее время, см. [18–32]. Это вызвано тем, что не выявлены или не до конца поняты физические механизмы, приводящие к таким известным экспериментальным фактам, как полевой гистерезис критического тока $I_c(H)$ [3,5,19,22] и магнитосопротивления R(H) [2–4,8,10,13–15,18,20–22,25], а также наличие экстремумов на зависимостях $I_c(H)$ и R(H) при уменьшении внешнего поля [3, 5, 22] и ненулевое остаточное электросопротивление [3, 10–13, 15, 18, 22, 25].

В гранулярных ВТСП границы между сверхпроводящими кристаллитами являются разветвленной сетью слабых связей джозефсоновского типа. При протекании транспортного тока через такую сеть резистивное состояние в первую очередь определяется именно межгранульными границами. Сеть джозефсоновских контактов может быть описана как джозефсоновская среда, которая ведет себя как сверхпроводник второго рода [33]. Магнитный поток может существовать и пиннинговаться в обеих подсистемах: как в гранулах, так и в межкристаллитных границах [15, 16, 18, 22, 33, 34].

Вид гистерезисных зависимостей магнитосопротивления R(H) гранулярных ВТСП достаточно разнообразен [2–4, 10, 13, 18, 20–22, 25]. Как правило, за-

^{*}E-mail: smp@iph.krasn.ru

висимости R(H) измеряются в условиях, когда плотность транспортного тока j меньше критической, $j < j_c$. К настоящему времени не было получено информации о том, при каких условиях на ветви обратного хода зависимости R(H) наблюдается участок с нулевым сопротивлением, либо появляется минимум и возникает остаточное электросопротивление, и каким параметром можно охарактеризовать гистерезис R(H). Не ясно, вызван ли гистерезис R(H)пиннингом вихрей Абрикосова внутри сверхпроводящих гранул или же пиннингом вихрей в джозефсоновской среде [15, 18, 22, 29].

Для получения надежной экспериментальной информации по гистерезису магнитосопротивления необходимо использовать большой диапазон плотностей транспортного тока, как ниже критического значения, так и выше (в отсутствие внешнего поля). Это достаточно сложно реализовать экспериментально в поликристаллических ВТСП из-за больших значений измерительного тока, даже при температуре жидкого азота. Поэтому целесообразно исследовать гранулярные ВТСП, в которых джозефсоновские связи заведомо ослаблены, а свойства сверхпроводящих гранул остаются такими же, как и в поликристаллах ВТСП. Такими объектами являются композиты на основе ВТСП [35–40].

В данной работе исследованы гистерезисные зависимости магнитосопротивления и критического тока композитов из Y_{3/4}Lu_{1/4}Ba₂Cu₃O₇¹⁾ и CuO. Добавление CuO в количестве 30 и 15 об.% приводит к уменьшению плотности критического тока *j*_c (4.2 K) композита до 0.5–20 A/см². Это позволяет провести измерения магнитосопротивления при температуре $4.2~\mathrm{K}$ как для случая $j~\ll~j_c$ (композит с 15 об.% CuO), так и в случае $j \sim j_c$ и $j > j_c$ (композит с 30 об.% CuO), используя не слишком большие измерительные токи, что позволяет избежать разогрева образцов. Ранее из анализа вольт-амперных характеристик (ВАХ) и температурных зависимостей электросопротивления было показано, что композиты $Y_{3/4}Lu_{1/4}Ba_2Cu_3O_7 + CuO$ представляют собой сеть джозефсоновских переходов, в которой несверхпроводящий компонент выполняет роль джозефсоновских барьеров между ВТСП-кристаллитами [30, 37, 38]. Поэтому композиты можно рассматривать как «модельный» гранулярный ВТСП с «сильными» сверхпроводящими гранулами («берегами»)

и протяженными межкристаллитными границами (слабыми связями) [37,38].

Цель данной работы — исследовать взаимосвязь между гистерезисными зависимостями критического тока, магнитосопротивления и намагниченности указанных гранулярных ВТСП-композитов и выявить универсальный параметр, характеризующий гистерезис магнитосопротивления при различных плотностях транспортного тока.

2. ЭКСПЕРИМЕНТ

2.1. Приготовление и состав композитных образцов

Для приготовления двухфазных композитов был использован метод быстрого спекания [35-40]. Один из компонентов композита — ВТСП — приготавливается по стандартной керамической технологии. Далее, после тщательного помола ВТСП и второго, несверхпроводящего ингредиента (в данном случае взят ОСЧ оксид меди), ингредиенты перемешиваются, прессуются в таблетки, которые помещаются в предварительно нагретую печь. Отжиг при высокой температуре проводится в течение очень короткого времени, для того чтобы избежать возможности химического взаимодействия компонентов композита и роста кристаллитов и, как следствие, образования границ между ВТСП-гранулами типа сверхпроводящих микромостиков. После этого образцы помещаются в другую печь для насыщения ВТСП кислородом. Результаты, подобные приведенным ниже, были получены нами на различных композитах, приготовленных по этой методике. В данной работе приведены результаты для композитов $Y_{3/4}Lu_{1/4}Ba_2Cu_3O_7$ + CuO. Температурный режим для них следующий: 2 мин при T = 910 °C, затем 3 ч при T = 350 °C. Согласно данным рентгеноструктурного анализа, композиты состоят только из двух исходных компонентов — Y_{3/4}Lu_{1/4}Ba₂Cu₃O₇ и CuO. По данным сканирующей электронной микроскопии средний размер гранул ВТСП в композите составляет около 1.5 мкм. Магнитные измерения композитов показали, что все образцы имеют одинаковую температуру перехода $T_c = 93.5$ K, что совпадает с критической температурой исходного ВТСП. Обозначим далее композиты согласно объемному содержанию CuO в них: YBCO + VCuO, где V — объемные % СиО в композите, содержание сверхпроводника (YBCO) — (100 - V) %.

¹⁾ Данное соединение по своим физическим свойствам идентично классическому YBa₂Cu₃O₇, поскольку Lu занимает позиции иттрия в структуре 1-2-3 и не меняет его сверхпроводящих свойств, одновременно облегчая процесс приготовления.

2.2. Методики измерения

Для транспортных измерений использовался стандартный четырехзондовый метод. Образцы выпиливались в форме параллелепипеда с размерами $1 \times 1 \times 8$ мм³. Ввиду одинаковости этих размеров для всех образцов данные по сопротивлению R приведены в Ом, а по току I — в мА. Для измерения зависимости критического тока от магнитного поля $I_c(H)$ устанавливалось значение внешнего поля и измерялась вольт-амперная характеристика. Величина критического тока І_с определялась по стандартному критерию 1 мкВ/см [41]. Затем внешнее поле изменялось до следующего Зависимости магнитосопротивления значения. R(H) = U(H)/I измерялись при постоянном токе I. Образец охлаждался в нулевом внешнем магнитном поле. Магнитное поле Н прикладывалось перпендикулярно направлению тока. Скорость развертки по магнитному полю составляла примерно 300 Э/мин. Авторы не обнаружили влияния скорости развертки по полю в пределах 50-800 Э/мин на зависимости R(H). После изменения поля от H = 0 до фиксированного значения H_{max} внешнее поле с той же скоростью уменьшалось до нуля. Для снятия магнитной предыстории после цикла измерения образец отогревался выше Т_с. Обозначим внешнее магнитное поле как H_{\uparrow} , если поле увеличивается (dH/dt > 0), и H_{\downarrow} , если поле уменьшается (dH/dt < 0).

Магнитные измерения проводились на автоматизированном вибрационном магнетометре со сверхпроводящим соленоидом [42]. Скорость развертки по полю была той же, что и в измерениях R(H).

2.3. Композиты как сеть джозефсоновских переходов

Зависимости R(T) исследованных композитов приведены на рис. 1. Зависимости R(T) характеризуются резким скачком сопротивления при $T_c = 93.5$ К, что совпадает с критической температурой, определенной из магнитных измерений, а затем плавной частью. Влияние транспортного тока I и магнитного поля на зависимость R(T)подробно исследовано в работах [37, 30]: увеличение I и приложенное магнитное поле не влияют на величину скачка, а уширяют вторую, плавную, часть зависимости R(T). Поэтому скачок сопротивления однозначно интерпретируется как переход сверхпроводящих кристаллитов, а вторая, плавная, ступень зависимости R(T) — как переход сети джозефсоновских контактов. Значения плотности

Рис. 1. Зависимости R(T) исследованных композитов при измерительном токе 0.1 мА и T = 4.2 К: • — YBCO + 15CuO, $I_c = 80$ мА, $j_c \approx 19$ A/см²; • — YBCO + 30CuO, $I_c = 4.5$ мА, $j_c \approx 0.5$ A/см²

Рис.2. Полевая зависимость критического тока $I_c(H)$ образца YBCO + 15CuO при $T=4.2~{\rm K}.$ На вставке: $I_c(H)$ в области малых полей. Стрелки указывают направление изменения внешнего поля H. Горизонтальные пунктирные линии соответствуют величинам транспортного тока I в измерениях R(H) на рис. 3 и демонстрируют соотношение I и $I_c(H_{\uparrow}), I_c(H_{\downarrow})$ для исследованного диапазона магнитных полей. На рисунке указаны значения $I_c(H_{\downarrow}=H_{ext})\approx 8.4~{\rm MA}$ и $I_c(H_{\downarrow}=0)\approx 3.0~{\rm MA}$

критического тока композитов приведены на рис. 1. В диапазоне выше T_c зависимости R(T) композитов имеют квазиполупроводниковый характер [37, 38], что также указывает на то, что транспортный ток протекает как по гранулам ВТСП, так и по несверхпроводящему ингредиенту.

Рис.3. Зависимости R(H) образца YBCO + 15CuO при различных соотношениях транспортного тока I (3, 6, 8, 10 мА) и величин $I_c(H_{\downarrow} = H_{ext}) \approx 8.4$ мА и $I_c(H_{\downarrow} = 0) \approx 3.0$ мА (см. рис. 2). Стрелки указывают направление изменения внешнего поля **H**. На рисунках указаны измерительный ток I, поле H_{tr} , при котором появляется ненулевое падение напряжения, и остаточное сопротивление $R(H_{\downarrow} = 0)$ после воздействия магнитным полем $H_{max} = 5 \ \kappa \Im$

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Взаимосвязь гистерезиса критического тока и магнитосопротивления

На рис. 2 приведена гистерезисная полевая зависимость критического тока композита YBCO + 15CuO при T = 4.2 К (на вставке к рис. 2 показан участок $I_c(H)$ в области малых полей). Прямой ход зависимости $I_c(H)$ характеризуется резким уменьшением критического тока в слабых полях (десятки Эрстед). На ветви обратного хода зависимость $I_c(H_{\downarrow})$ характеризуется максимумом при некотором поле H_{ext} . Для $H_{max} = 5$ кЭ при T = 4.2 К величина H_{ext} составляет около 1.1 кЭ (рис. 2). Поле H_{ext} , при котором наблюдается максимум I_c , увеличивается с ростом H_{max} . Величина критического тока I_c в точке максимума уменьшается с ростом максимально приложенного поля H_{max} . Объяснение поведения $I_c(H)$ будет дано в п. 3.3, а здесь остановимся подробнее на взаимосвязи зависимостей $I_c(H)$ и R(H).

Зависимости R(H) для того же образца YBCO + + 15 CuO, на котором получена $I_c(H)$ на рис. 2, при различных значениях транспортного тока I приведены на рис. 3. Величина максимально приложенного поля $H_{max} = 5$ кЭ одинакова как для зависимостей R(H), так и для $I_c(H)$. Для всех случаев, показанных на рис. 3, $I < I_c(H_{\uparrow} = 0)$, поэтому сопротивление на ветви $R(H_{\uparrow})$ появляется при пороговом поле H_{tr} , при котором критический ток становится равным измерительному $I_c(H_{\uparrow} = H_{tr}) = I$, что видно при сопоставлении данных по $I_c(H_{\uparrow})$, рис. 2, и $R(H_{\uparrow})$, рис. 3. Использованные величины транспортного тока для измерения зависимостей R(H) достаточно малы, чтобы индуцировать магнитное поле, сравнимое с внешним полем. И это еще один положительный момент использования композитов, так как в случае поликристаллов с «естественными» межкристаллитными границами поле, индуцированное транспортным током, вносит заметный вклад [5].

Поскольку сопротивление и критический ток взаимообратные величины [41], ясно, что ветвь $I_c(H)$ с бо́льшими величинами I_c будет соответствовать ветви R(H) с меньшим сопротивлением. Однако, если в некотором диапазоне полей измерительный ток будет меньше, чем критический ток зависимости $I_c(H_{\perp})$, то сопротивление в этом диапазоне полей на зависимости $R(H_{\perp})$ станет опять равным нулю. Значения транспортного тока I (3, 6, 8 и 10 мА), использованные для измерения зависимостей R(H) (рис. 3), указаны на рис. 2 горизонтальными пунктирными линиями. При сравнении данных на рис. 2 и рис. 3 видна корреляция между зависимостями $I_c(H)$ и R(H). Для случая I = 3 мА, $I < I_c(H_{\perp} = H_{ext}) \approx 8.4$ мА существует широкий полевой интервал зависимости $R(H_{\downarrow}) \ (H_{\downarrow} \leq 4.6 \text{ к} \Im),$ в котором R = 0, см. рис. 3a. А поскольку, как видно на рис. 2, $I_c(H_{\downarrow} = 0) \approx 3$ мА = I, при данном транспортном токе I = 3 мА остаточное сопротивление образца равно нулю, $R(H_{\downarrow}=0) \approx 0$. При увеличении транспортного тока, $I > I_c(H_{\downarrow} = 0) \approx 3$ мA, появляется ненулевое остаточное сопротивление R_{res} , которое увеличивается с ростом тока, см. рис. 36-г, поскольку ВАХ нелинейные. Кроме того, с ростом транспортного тока уменьшается интервал полей H_{\perp} , в котором R = 0. Это видно на рис. 36, 6: при I = 6 мА нулевое сопротивление наблюдается в диапазоне 0.4 к $\Im \leq H_{\downarrow} \leq 3.0$ к \Im (см. рис. 36). При I = 8 мА участок с R = 0 еще больше сужается — 0.8 к
Э $\,\leq\,\,H_{\downarrow}\,\,\leq\,\,1.5\,$ к Э $\,$ (см. рис. 3e), а при токе I = 10 мА, что уже больше, чем $I_c(H_{\downarrow} = H_{ext}) \approx 8.4$ мА, зависимость $R(H_{\downarrow})$ не достигает нуля, на ней появляется минимум, что видно на рис. 3г. Поле, при котором на зависимости $R(H_{\perp})$ наблюдается минимум, совпадает с полем Hext, при котором зависимость $I_c(H)$ имеет максимум (рис. 2).

До настоящего времени в литературе не было приведено экспериментальных результатов, показывающих эволюцию R(H) (участок с нулевым сопротивлением на ветви H_{\downarrow} , появление остаточного сопротивления и минимума) гранулярных ВТСП с ростом транспортного тока от значения I меньшего $I_c(H_{\downarrow} = H_{ext})$ до величины большей максимума зависимости $I_c(H_{\downarrow})$. В данной работе экспериментально продемонстрировано, что остаточное сопротивление на зависимости R(H) появляется при транспортном токе I, большем критического после воздействия магнитным полем, т.е. при $I > I_c(H_{\downarrow} = 0)$, а участок с нулевым сопротивлением, либо минимум на ветви обратного хода R(H), определяется соотношением измерительного тока и критического тока в точке максимума на зависимости $I_c(H)$.

3.2. Модель для гранулярных ВТСП

Можно упрощенно представить гранулярные BTCΠ как двухуровневую сверхпроводящую систему [15]: ВТСП-кристаллиты с сильной сверхпроводимостью и межкристаллитные границы, формирующие слабые связи джозефсоновского типа. Известно, что при достаточно высоких температурах (около 77 К) величина первого критического поля H_{c1J} джозефсоновской среды для гранулярных ВТСП меньше поля Земли [18, 33], в то время как первое критическое поле H_{c1a} для гранул Y-Ba-Cu-О может составлять десятки Эрстед [18, 20, 22, 29]. При гелиевых температурах эти параметры возрастут, но не более, чем в несколько раз. Например, величина H_{c1g} для гранул Y-Ва-Сu-О составляет порядка 100-200 Э при T = 4.2 K [43]. Плотность критического тока сети джозефсоновских переходов j_{cJ} ($j_{cJ} \sim 10^3 \text{ A/cm}^2$ для поликристаллов ВТСП, $j_{cJ} \sim 10^{-1} - 10^2 \text{ A/cm}^2$ для композитов при гелиевой температуре) много меньше внутригранульной плотности критического тока $j_{cg}~(j_{cg} \sim 10^5 - 10^7 {\rm ~A/cm^2}),~j_{cJ} \ll j_{cg}$. Кроме того, практически всегда в области низких температур в эксперименте выполняются неравенства $H \ll H_{c2a}$ (*H_{c2q}* — верхнее критическое поле для ВТСП-гранул)
и $j \ll j_{cq}.$ Поэтому, если гранулярный ВТСП обладает ненулевым электросопротивлением, то вся диссипация как в присутствии внешнего магнитного поля, так и без него, происходит только в джозефсоновской среде. Поле, большее H_{c1J} , проникает в систему межкристаллитных границ в виде гипервихрей или джозефсоновских вихрей, размер которых уменьшается с ростом поля [18, 33]. Из-за сильной зависимости критического тока (а значит, и сопротивления) джозефсоновских переходов от магнитного поля [41], а также огромного числа межкристаллитных границ (порядка 10³ на 1 мм) в поликристалле эти объекты демонстрируют высокую чувствительность к внешнему полю.

Вначале упростим упомянутую выше двухуровневую систему, считая, что пиннинг в джозефсоновских барьерах, т. е. в межгранульных границах, пренебрежимо мал и магнитный поток захватывается только внутри сверхпроводящих гранул. При-

Рис. 4. Схематическое представление гранулярного ВТСП во внешнем поле Н. Сверхпроводящие гранулы заштрихованы, точками показана межгранульная среда. Показано направление плотности транспортного тока **j**, **j** ⊥ **H**, на рис. *a* внешнее поле возрастает (**H** = H_↑), на рис. *б* — убывает (**H** = H_↓) после приложения некоторого поля H_{max}; **M**_g — магнитный момент гранул ВТСП, на рис. *б* показан случай, когда внешнее поле H_↓ достаточно далеко от H_{max} и намагниченность M(H_↓) принимает положительные значения (см. рис. 5 — M(H) исследованного образца), **M**_J — магнитный момент джозефсоновской среды; он гораздо меньше по величине, чем **M**_g. Штриховыми линиями показаны линии напряженности магнитного поля, индуцированного магнитным откликом ВТСП-гранул

мем также, что и вклад межгранульных границ в диамагнитный отклик образца тоже пренебрежимо мал. В этом случае при $H > H_{c1J}$ на каждую точку джозефсоновской среды действует локальное поле \mathbf{B}_{local} — векторная сумма внешнего поля **H** и поля \mathbf{B}_{ind} , индуцированного диамагнитным откликом гранул, окружающих данную точку:

$$\mathbf{B}_{local} = \mathbf{H} + 4\pi \mathbf{M}k, \quad \mathbf{B}_{ind} = 4\pi \mathbf{M}k, \quad (1)$$

где *k* — коэффициент, зависящий от расположения и формы гранул, окружающих данную точку, М намагниченность гранул ВТСП. На рис. 4 схематично показаны линии магнитной индукции **B**_{ind} в джозефсоновской среде, возникшие от диамагнитного отклика ВТСП-гранул. Рассмотрим направление \mathbf{B}_{ind} в границе между гранулами ВТСП, через которую туннелируют носители тока (**j** \perp **H**). В случае возрастания внешнего поля (рис. 4а) в большей части переходов, по которым течет транспортный ток, линии магнитной индукции **B**_{ind} направлены преимущественно в ту же сторону, что и внешнее поле Н. Поэтому локальные поля в указанной области границ между гранулами будут больше внешнего поля. Если внешнее поле убывает, $H = H_{\downarrow}$, рис. 46, и H_{\downarrow} находится достаточно далеко от H_{max} , то намагниченность гранул становится положительной, см. рис. 5 (это следует из классического рассмотрения

пиннинга абрикосовских вихрей). Тогда в рассматриваемой области границ между ВТСП-гранулами линии магнитной индукции \mathbf{B}_{ind} направлены уже против внешнего поля. Можно говорить об эффективном поле B_{eff} , в котором находится джозефсоновская среда, если усреднить значения модуля $|\mathbf{B}_{local}|$ по всем межгранульным границам, через которые туннелируют носители:

$$B_{eff} = \langle |\mathbf{B}_{i\,local}| \rangle = H - 4\pi M(H)\alpha(H), \qquad (2)$$

 α возникает при усреднении коэффициента k в формуле (1) по всем джозефсоновским переходам в образце. Зависимость M(H) для гранул определяется как мейсснеровскими токами, так и абрикосовскими вихрями, поэтому α будет функцией внешнего поля H.

Выражение для эффективного поля усложнится, если учесть пиннинг в джозефсоновской среде и ее намагниченность M_J ; M_J является откликом джозефсоновской среды на суперпозицию внешнего поля H и поля, индуцированного гранулами, \mathbf{B}_{ind} . В общем случае вектор \mathbf{M}_J направлен в ту же сторону, что и \mathbf{M}_g — намагниченность гранул. В области рассматриваемых межгранульных границ \mathbf{M}_J дает вклад в \mathbf{B}_{local} , противоположный \mathbf{B}_{ind} , см. рис. 4. Подобный результат был получен в работе [34], в которой рассчитывались кривые намагничивания гра-

7 ЖЭТФ, вып.6(12)

Рис. 5. Зависимости намагниченности образца YBCO + 30CuO от внешнего поля H при T = 4.2 K. Стрелки указывают направление изменения H. Каждое измерение для нового значения H_{max} проведено после снятия магнитной предыстории. Зависимости $R(H_{\uparrow})$ (поле возрастает) показаны темными точками, а зависимости $R(H_{\downarrow})$ (поле убывает) — светлыми

нулярных ВТСП. По аналогии с формулой (2) можно записать

$$B_{eff} = H - 4\pi (M_g(H)\alpha(H) - M_J(H, j)).$$
(3)

Согласно представлениям о поведении вихрей в сверхпроводнике в случае протекания транспортного тока в присутствии магнитного поля ток, больший критического, кардинально изменяет профиль координатной функции потенциала пиннинга [44–46]. Вследствие действия силы Лоренца вихри срываются с центров пиннинга. Поэтому M_J будет функцией транспортного тока. Следовательно, если пиннинг в джозефсоновской среде значителен, то можно ожидать, что транспортный ток будет влиять на эффективное поле B_{eff} в джозефсоновской среде.

3.3. Эффективное поле в джозефсоновской среде и гистерезис $I_c(H)$ и R(H)

Выражения (2) и (3) объясняют гистерезис зависимостей $I_c(H)$ и R(H) через известный гистерезис M(H). Зависимости M(H), измеренные на образце YBCO + 30CuO, приведены на рис. 5. Поскольку $M(H_{\downarrow}) > M(H_{\uparrow})$ при $H_{\uparrow} = H_{\downarrow}$, согласно формуле (2) $B_{eff}(H_{\uparrow}) < B_{eff}(H_{\downarrow})$. Это приведет к тому, что критический ток при уменьшении внешнего поля будет больше, чем при увеличении поля, и, соответ-

ственно, $R(H_{\perp}) < R(H_{\uparrow})$. При дальнейшем уменьшении внешнего поля наступает момент, когда внешнее поле в наибольшей степени компенсируется индуцированным гранулами полем \mathbf{B}_{ind} и, следовательно, эффективное поле B_{eff} минимально. Именно в этой точке при $H = H_{ext}$ наблюдается максимум критического тока зависимости $I_c(H_{\perp})$ и минимум зависимости $R(H_{\perp})$. При дальнейшем уменьшении H менее H_{ext} поле, индуцированное замороженным потоком, будет преобладать над внешним полем, величина B_{eff} будет расти, следовательно, будет уменьшаться критический ток и расти сопротивление, что наблюдается в эксперименте (рис. 2, 36, в, г). В нулевом внешнем поле $H_{\downarrow} = 0$ образец обладает положительным магнитным моментом (см. рис. 5) и в межгранульной среде остается индуцированное поле B_{ind}. Поэтому образец обладает ненулевым остаточным электросопротивлением.

На рис. 6 приведены гистерезисные зависимости R(H) образца YBCO + 30CuO при различных величинах транспортного тока 2-10 мА и различных фиксированных значениях $H_{max} = 1, 2, 3, \ldots, 7$ кЭ. На рис. 6 отчетливо видны рост остаточного сопротивления $R(H_{\downarrow} = 0)$ и увеличение значения поля *H*_{ext} (при котором наблюдается минимум зависимости $R(H_{\perp}))$ при возрастании максимального приложенного поля H_{max}. Такое поведение имеет место благодаря тому, что с увеличением H_{max} в сверхпроводящих гранулах захватывается больший магнитный поток и величина B_{eff} возрастает. В результате наибольшая компенсация внешнего и индуцированного полей происходит при большей величине $H_{\downarrow} = H_{ext}$, а также большее эффективное поле наводится в джозефсоновской среде в точке $H_{\downarrow} = 0$, и, как следствие, с увеличением H_{max} возрастает величина $R(H_{\downarrow}=0).$

3.4. Влияние транспортного тока на гистерезисные зависимости R(H)

Для композита YBCO + 30CuO низкая плотность критического тока позволяет исследовать зависимости R(H) при T = 4.2 K в случае, когда транспортный ток не только больше значения критического тока в точке максимума $j(H_{\downarrow} = H_{ext})$, но и больше чем критический ток в отсутствие поля, $j > j_c(H_{\uparrow} = 0)$. Гистерезисные зависимости R(H) образца YBCO + 30CuO, приведенные на рис. 6, измерены при величинах транспортного тока (I = 2-10 мA) как меньше критического в нулевом внешнем поле, I_c (T = 4.2 K, H = 0) ≈ 4.5 мA, так и

Рис. 6. Зависимости R(H) образца YBCO + + 30СuO при различных значениях транспортного тока I (2, 4, 7, 10 мА — снизу вверх) и различных величинах максимального приложенного поля $H_{max} = 1, 2, 3, \ldots, 7$ кЭ при T = 4.2 К. Стрелки указывают направление изменения внешнего поля **H**. Зависимости $R(H_{\uparrow})$ (поле возрастает) показаны темными символами, а зависимости $R(H_{\downarrow})$ (поле убывает) — светлыми. Каждое измерение для нового значения H_{max} и I проведено после снятия магнитной предыстории. Штриховые линии поясняют определение значения полевой ширины гистерезиса $\Delta H_{R=const} = H_{\downarrow} - H_{\uparrow}$

больше. Акцентируем внимание на влиянии тока на полевую ширину гистерезиса R(H).

Равенство сопротивлений в полях H_{\uparrow} и H_{\downarrow} , $R(H_{\uparrow}) = R(H_{\downarrow})$, означает равенство эффективных полей в этих точках: $B_{eff}(H_{\uparrow}) = B_{eff}(H_{\downarrow})$. В случае, когда пиннинг в джозефсоновской среде и вклад в намагниченность от нее малы, из формулы (2) получим

$$H_{\uparrow} - 4\pi M(H_{\uparrow})\alpha(H_{\uparrow}) = H_{\downarrow} - 4\pi M(H_{\downarrow})\alpha(H_{\downarrow}), \quad (4)$$

следовательно, ширина гистерезиса магнитосопро-

Рис. 7. Ширина гистерезиса магнитосопротивления $\Delta H_{R=\text{const}} = H_{\downarrow} - H_{\uparrow}$ при R = const (транспортный ток 2–10 мА) в зависимости от значений H_{\downarrow} для данных R(H) образца YBCO + 30CuO на рис. 6

тивления $\Delta H = H_{\downarrow} - H_{\uparrow}$ при R = const будет равна

$$\Delta H_{R=\text{const}} = H_{\downarrow} - H_{\uparrow} =$$

= $4\pi \left(M(H_{\downarrow})\alpha(H_{\downarrow}) - M(H_{\uparrow})\alpha(H_{\uparrow}) \right).$ (5)

Видно, что параметр $\Delta H_{R=\text{const}}$ зависит только от намагниченности и не зависит от транспортного тока. Как отмечалось в п. 3.2, ввиду пиннинга и, как следствие, различного магнитного состояния гранул на прямой и обратной ветвях зависимости M(H), $\alpha(H_{\uparrow})$ и $\alpha(H_{\downarrow})$ не равны, что подтверждается анализом наших экспериментальных результатов по R(H)и M(H), полученных на одном и том же образце.

Для случая, когда закрепление вихрей в джозефсоновской среде может дать заметный вклад в локальные поля (1), из уравнения (3) получим

$$\Delta H_{R=\text{const}} = H_{\downarrow} - H_{\uparrow} = 4\pi \left(M_g(H_{\downarrow})\alpha(H_{\downarrow}) - M_J(H_{\downarrow}, j) \right) - 4\pi \left(M(H_{\uparrow})\alpha(H_{\uparrow}) - M_J(H_{\uparrow}, j) \right).$$
(6)

В этом случае ширина гистерезиса магнитосопротивления должна зависеть от транспортного тока ввиду зависимостей $M_J(H, j)$.

Анализируя наши экспериментальные результаты на рис. 6, а также данные, полученные на других композитных образцах, мы обнаружили, что ширина петли гистерезиса магнитосопротивления действительно не зависит от транспортного тока (естественно, в случае, когда транспортный ток I больше величины $I_c(H_{\downarrow} = H_{ext})$ и $R(H_{\downarrow})$ не обращается в нуль, см. п. 3.1). Рисунок 7 иллюстрирует описанную особенность. На этом рисунке представлена разность $\Delta H_{R={
m const}}$ = $(H_{\downarrow}-H_{\uparrow})$ в зависимости от H_{\perp} , т.е. длина отрезка между точками пересечения линии $R = \mathrm{const}$ с зависимостями $R(H_{\uparrow})$ и $R(H_{\downarrow})$ (для данных рис. 6) как функция поля H_{\downarrow} . Данные по $\Delta H_{R=\text{const}}$ для измерений R(H) при различных токах совпадают в пределах точности эксперимента, т.е. несмотря на то, что сама форма кривых $R(H_{\uparrow})$ и $R(H_{\downarrow})$ сильно изменяется с ростом тока, что видно на рис. 6, остается постоянной разница $\Delta H_{R=\text{const}} = H_{\downarrow} - H_{\uparrow}$. Величина $\Delta H_{R=\text{const}}$ определяется только максимальным введенным полем *H_{max}*, т. е. захваченным внутри гранул потоком или внутригранульным пиннигом. Исходя из приведенных выше соображений, мы считаем, что независимость ширины гистерезиса от транспортного тока может быть однозначно интерпретирована как то, что гистерезис магнитосопротивления в случае объектов, исследованных в данной работе, определяется только потоком, захваченным внутри ВТСП-гранул.

3.5. Магнитная предыстория и частные петли гистерезиса R(H)

Остановимся подробнее на влиянии захваченного гранулами потока после воздействия поля на зависимости R(H). На рис. 8*a* приведены гистерезисные зависимости сопротивления образца S + 30CuO при T = 4.2 K, измеренные как после охлаждения в нулевом поле, так и после приложения и снятия поля $H_{max} = 2$ кЭ. Чтобы различать зависимости R(H) с магнитной предысторией и без нее, обозначим полевые зависимости сопротивления после воздействия поля H_{max} как $R_{trapped}(H)$ (см. также подпись к рис. 8). Обращает на себя внимание участок зависимости $R_{trapped}(H_{\uparrow})$ с отрицательным магнитосопротивлением в области малых полей, см. рис. 8а. Пройдя минимум, зависимость $R_{trapped}(H_{\uparrow})$ начинает возрастать и совпадает с зависимостью $R(H_{\uparrow})$ в поле 2 к \Im , т. е. в максимальном поле H_{max} , приложенном до этого к образцу. Зависимость $R_{trapped}(H_{\downarrow})$ совпадает с зависимостью $R(H_{\downarrow})$, включая значение при $H_{\downarrow} = 0$. При дальнейшем изменении поля от 0 до $H_{max} = 2$ кЭ зависимости $R_{trapped}(H)$ повторяются. Если при уменьшении внешнего поля до некоторого ненулевого значения H_{\perp} поле снова начать

Рис. 8. Влияние магнитной предыстории на зависимости R(H) (a) и M(H) (б) для образца YBCO + 30CuO при T = 4.2 К. Стрелки указывают направление изменения внешнего поля H. Зависимости $R(H_{\uparrow})$ и $M(H_{\uparrow})$ (поле возрастает) показаны темными символами, а зависимости $R(H_{\downarrow})$ и $M(H_{\downarrow})$ (поле убывает) — светлыми. Темные кружки — измерения после охлаждения в нулевом поле, темные треугольники — измерения после приложения поля $H_{max} = 2$ кЭ

увеличивать, то зависимости $R_{trapped}(H_{\uparrow})$ и $R(H_{\uparrow})$ совпадут опять в точке $H_{\uparrow} = H_{max}$. Это видно на рис. 8, на котором приведена частная петля гистерезиса $R_{trapped}(H)$ в диапазоне 1 к $\Im \leq H \leq 2$ к \Im . Если в точке $H = H_{max} = 2$ к \Im внешнее поле увеличивать, то на участке $H \geq H_{max}$ зависимость $R_{trapped}(H_{\uparrow})$ будет вести себя так же, как и после охлаждения в нулевом поле.

На рис. 86 представлены зависимости M(H), измеренные на том же образце и в той же последовательности, что и R(H) на рис. 8*a*. Как видно, намагниченность гранул положительна в точке $H_{\downarrow} = 0$. После ввода/вывода магнитного поля в гранулах остается захваченный магнитный поток, который индуцирует поле в межгранульную среду. Если внешнее поле начать увеличивать в положительном направлении, то **B**_{ind} будет направлено противоположно **H** и эффективное поле, определяемое

Рис. 9. Гистерезисные зависимости R(H) образца YBCO + 15CuO при T = 5 К (измерительный ток 12 мА) при изменении поля от H = 0 до H_{max} , затем до $H = -H_{max}$ и после до H = 0. Стрелки указывают направление изменения внешнего поля **H**

выражением (2), будет уменьшаться. Это объясняет участок с отрицательным магнитосопротивлением на зависимости $R_{trapped}(H_{\uparrow})$. В точке наибольшей компенсации внешнего и индуцированного гранулами полей наблюдается минимум зависимости $R_{trapped}(H_{\uparrow})$, см. рис. 8*a*. С ростом внешнего поля намагниченность уменьшается и становится отрицательной (см. рис. 86) и \mathbf{B}_{ind} будет уже совпадать по направлению с внешним полем. Из наших экспериментов следует, что поле, при котором наблюдается минимум зависимости $R_{trapped}(H_{\uparrow})$, не зависит от транспортного тока, а определяется только величиной H_{max} . Это дополнительно подтверждает вывод п. 3.4 о том, что гистерезис зависимости R(H) исследованных образцов вызван только захватом потока в сверхпроводящих гранулах. В точке $H = H_{max}$ намагниченность $M_{trapped}$ образца совпадает с M, измеренной в условиях охлаждения в нулевом поле (рис. 86), т. е. в точке $H_{\uparrow} = H_{max}$ образец приходит в то же магнитное состояние, что при приложении магнитного поля в первый раз. Поэтому в данном поле $H = H_{max}$ эффективное поле в межгранульной среде то же, что и в измерениях после охлаждения в нулевом поле. Это объясняет равенство значений $R_{trapped}(H_{\uparrow} = H_{max})$ и $R(H_{\uparrow} = H_{max})$ и совпадение зависимостей $R_{trapped}(H_{\downarrow})$ и $R(H_{\downarrow})$ (см. также зависимости $M_{trapped}(H_{\downarrow})$ и $M(H_{\downarrow})$ на рис. 86).

Если после воздействия полем до H_{max} в точке $H_{\downarrow} = 0$ приложить отрицательное внешнее поле, то оно будет давать вклад в B_{eff} того же знака, что и индуцированное гранулами поле. В результате в области $H_{\uparrow} < 0$ магнитосопротивление положительное. На ветви обратного хода внешнего поля от $-H_{max}$ индуцированное поле опять будет противоположно внешнему и $B_{ind}(H_{\uparrow}) < B_{ind}(H_{\downarrow})$. Таким образом, в случае поля **H**, приложенного в отрицательном направлении, картина с взаимным расположением векторов **H** и **B**_{ind} на рис. 4 повторится (направления **H** и **B**_{ind} изменятся на противоположные). А поскольку диссипация не зависит от знака поля, при циклировании поля от $-H_{max}$ до H_{max} зависимость R(H) симметрична относительно линии H = 0 и имеет характерный вид «бабочки», см. рис. 9.

Таким образом, зависимости магнитосопротивления после воздействия внешнего поля, а также частные петли гистерезиса R(H) определяются магнитным состоянием сверхпроводящих гранул образца.

4. ЗАКЛЮЧЕНИЕ

В данной работе экспериментально исследованы гистерезисные зависимости магнитосопротивления двухфазных композитов Y_{3/4}Lu_{1/4}Ba₂Cu₃O₇ + + CuO. Эти объекты можно считать «модельными» гранулярными ВТСП, в которых джозефсоновские связи между ВТСП-кристаллитами искусственно ослаблены.

Экспериментально показано, что остаточное сопротивление, участок с нулевым сопротивлением и минимум на ветви обратного хода зависимости R(H) определяются соотношением величины транспортного тока и критического тока в точке максимума $I_c(H_{\downarrow})$.

Гистерезисные зависимости $I_c(H)$ и R(H), а также отрицательное магнитосопротивление объясняются в рамках модели гранулярного ВТСП, рассматривающей захват магнитного потока в гранулах. Межгранульная среда находится в эффективном поле, которое является суперпозицией внешнего поля **H**, поля мейсснеровских токов и поля, индуцированного захваченным магнитным потоком. Межгранульные границы, т.е. джозефсоновские переходы, являются чувствительным «резистивным сенсором», реагирующим на это эффективное поле.

Показано, что гистерезисные зависимости R(H) характеризуются универсальным параметром — полевой шириной гистерезиса $\Delta H_{R=const} = H_{\downarrow} - H_{\uparrow}$, которая не зависит от плотности транспортного тока, а определяется только магнитным потоком, захваченным в сверхпроводящих гранулах. Влияние захвата магнитного потока в джозефсоновской среде несущественно для гистерезиса транспортных свойств исследованных объектов.

В заключение авторы считают своим приятным долгом поблагодарить А. Д. Балаева, С. В. Комогорцева, А. В. Митина, Л. П. Ичкитидзе, Н. Д. Кузьмичева за плодотворные дискуссии. Работа выполнена в рамках программы РАН «Квантовая макрофизика», комплексного интеграционного проекта СО РАН № 3.4, лаврентьевского конкурса молодежных проектов СО РАН (проект № 52), а также частично поддержана грантом Президента РФ по поддержке молодых ученых МК-7414.2006.02 и Фондом содействия отечественной науке.

ЛИТЕРАТУРА

- H. Nojima, S. Tsuchimoto, and S. Kataoka, Jpn. J. Appl. Phys. 27, 746 (1988).
- Y. J. Quian, Z. M. Yang, K. Y. Chen, B. Zhou, J. W. Qiu, B. C. Miao, and Y. M. Cai, Phys. Rev. B 39, 4701 (1989).
- K. Y. Chen and Y. J. Quian, Physica C 159, 131 (1989).
- G. J. Russel, D. N. Matthews, K. N. R. Taylor, and B. Perczuk, Mod. Phys. Lett. B 3, 437 (1989).
- M. E. McHenry, P. P. Maley, and J. O. Willis, Phys. Rev. B 40, 2666 (1989).
- Б. А. Аронзон, Ю. В. Гершанов, Е. З. Мейлихов, В. Г. Шапиро, СФХТ 2, 83 (1989).
- Н. В. Афанасьев, Ю. Е. Григорашвили, Ю. А. Чаплыгин, СФХТ 3, 2343 (1990).
- 8. Ю. С. Каримов, А. Д. Кикин, СФХТ 3, 631 (1990).
- 9. Я. В. Копелевич, В. В. Леманов, В. В. Макаров, ФТТ 32, 3613 (1990).
- М. А. Васютин, А. И. Головашкин, Н. Д. Кузьмичев, и др., Препринт ФИАН им. Лебедева № 85, Москва (1990).
- 11. D. N. Matthews, G. J. Russel, and K. N. R. Taylor, Physica C 171, 301 (1990).
- E. Altshuler, S. Garcia, and J. Barroso, Physica C 177, 61 (1991).
- А. И. Пономарев, К. Р. Крылов, М. В. Медведев и др., СФХТ 4, 2149 (1991).
- 14. M. Celasco, A. Masoero, P. Mazzetti, and A. Stepanescu, Phys. Rev. B 44, 5366 (1991).
- L. Ji, M. S. Rzchowski, N. Anand, and M. Tinkham, Phys. Rev. B 47, 470 (1993).

- 16. M. Prester and Z. Mahornic, Phys. Rev. B 47, 2801 (1993).
- 17. А. В. Митин, СФХТ 7, 62 (1994).
- 18. Н. Д. Кузьмичев, Письма в ЖЭТФ 74, 291 (2001).
- 19. P. Mune, E. Govea-Alcaide, and R. F. Jardim, Physica C 354, 275 (2001).
- 20. D. Daghero, P. Mazzetti, A. Stepanescu, P. Tura, and A. Masoero, Phys. Rev. B 66, 11478 (2002).
- 21. C. A. M. dos Santos, M. S. da Luz, B. Ferreira, and A. J. S. Machado, Physica C 391, 345 (2003).
- 22. P. Mune, F. C. Fonesca, R. Muccillo, and R. F. Jardim, Phycica C 390, 363 (2003).
- 23. L. Burlachkov, E. Mogilko, Y. Schlessinger, Y. M. Strelniker, and S. Havlin, Phys. Rev. B 67, 104509 (2003).
- 24. O. V. Gerashchenko, Supercond. Sci. Technol. 16, 690 (2003).
- I. Felner, E. Galstyan, B. Lorenz, D. Cao, Y. S. Wang, Y. Y. Xue, and C. W. Chu, Phys. Rev. B 67, 134506 (2003).
- **26**. А. Суханов, В. Омельченко, ФНТ **29**, 396 (2003).
- **27**. А. Суханов, В. Омельченко, ФНТ **30**, 604 (2004).
- **28**. В. В. Деревянко, Т. В. Сухарева, В. А. Финкель, ФТТ **46**, 1740 (2004).
- 29. В. В. Деревянко, Т. В. Сухарева, В. А. Финкель, ФТТ 48, 1374 (2006).
- 30. Д. А. Балаев, С. И. Попков, К. А. Шайхутдинов, М. И. Петров, ФТТ 48, 588 (2006).
- **31**. L. P. Ichkitidze, Physica C **435**, 136 (2006).
- 32. Д. А. Балаев, А. Г. Прус, К. А. Шайхутдинов, М. И. Петров, Письма в ЖТФ 32, 67 (2006).
- **33**. Э. Б. Сонин, Письма в ЖЭТФ **47**, 415 (1988).
- 34. M. Mahel' and J. Pivarc, Physica C 308, 147 (1998).
- 35. M. I. Petrov, D. A. Balaev, S. V. Ospishchev, K. A. Shaihutdinov, B. P. Khrustalev, and K. S. Aleksandrov, Phys. Lett. A 237, 85 (1997).
- 36. M. I. Petrov, D. A. Balaev, D. M. Gohfeld, S. V. Ospishchev, K. A. Shaihutdinov, and K. S. Aleksandrov, Physica C 314, 51 (1999).
- 37. М. И. Петров, Д. А. Балаев, К. А. Шайхутдинов, К. С. Александров, ФТТ 41, 969 (1999).

- 38. M. I. Petrov, D. A. Balaev, K. A. Shaihutdinov, and K. S. Aleksandrov, Supercond. Sci. Technol. 14, 798 (2001).
- **39**. M. I. Petrov, D. A. Balaev, and K. A. Shaihutdinov, Physica C **361**, 45 (2001).
- 40. К. А. Шайхутдинов, Д. А. Балаев, С. И. Попков, М. И. Петров, ФТТ 45, 1776 (2003).
- 41. А. Бароне, Дж. Патерно, Физика и применение эффекта Джозефсона, Мир, Москва (1984), с. 639.
- 42. А. Д. Балаев, Ю. В. Бояршинов, М. И. Карпенко, Б. П. Хрусталев, ПТЭ 3, 167 (1985); Деп. в ВИНИТИ рег. № 69-85.

- 43. D.-X. Chen, R. B. Goldfarb, R. W. Gross, and A. Sanchez, Phys. Rev. B 48, 6426 (1993).
- 44. Y. M. Kim, C. F. Hempstead, and A. M. Strnad, Phys. Rev. 131, 2486 (1963).
- 45. L. F. Cohen and H. J. Jensen, Rep. Progr. Phys. 60, 1581 (1997).
- 46. G. Blatter, M. V. Feigel'man, V. B. Gekshkebein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).