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KINETICS OF THE SPIN-2 BLUME�CAPEL MODEL UNDERA TIME-DEPENDENT OSCILLATING EXTERNAL FIELDM. Keskin a*, O. Canko a**, M. Erta³ b***aDepartment of Physis, Eriyes University38039, Kayseri, TurkeybInstitute of Siene, Eriyes University38039, Kayseri, TurkeyReeived April 12, 2007Within a mean-�eld approah and using the Glauber-type stohasti dynamis, we study the kinetis of thespin-2 Blume�Capel model in the presene of a time-varying (sinusoidal) magneti �eld. We investigate thetime dependene of the average order parameter and the behavior of the average order parameter in a period,whih is also alled the dynami order parameter, as a funtion of the redued temperature. The nature (on-tinuous and disontinuous) of a transition is haraterized by the dynami order parameter. The dynami phasetransition points are obtained and the phase diagrams are presented in the redued magneti �eld amplitude andredued temperature plane. The phase diagrams exhibit one dynami triritial point; besides a disordered andone ordered phases, there are three phase oexistene regions that are strongly dependent on the interationparameter.PACS: 05.50.+q, 05.70.Fh, 64.60.Ht, 75.10.Hk1. INTRODUCTIONSpin-1 and spin-3/2 systems have been one of themost atively studied models in statistial mehanisand ondensed matter physis; they have been used aselementary models for a variety of phenomena for sev-eral deades. Reently, sustained researh e�ort hasbeen exerted in investigating equilibrium properties ofthe spin-2 Ising model. An early attempt to study theone-dimensional Ising model for S = 2 (also S = 1 and3/2) was made in [1℄ by generalizing the Bethe approx-imation. The authors only alulated the energy andthe spei� heat exatly. The dipolar and quadrupolarordering in the spin-2 doublet�triplet system was stud-ied in the moleular �eld approximation in [2℄. Theluster variational method in the pair approximationwas applied to a study of the Ising ferromagnet withS = 1, 3/2, 2, and 5/2 in [3℄, where only the sponta-neous magnetization was studied as a funtion of theredued temperature for S = 2. The exat solution of*E-mail: keskin�eriyes.edu.tr**E-mail: anko�eriyes.edu.tr***E-mail: mhmtertas�hotmail.om

the Ising model on a honeyomb lattie for S = 3=2and 2 was obtained in [4℄ via a straightforward gener-alization of the method used in [5℄. The mean-�eld so-lution of the Blume�Capel (BC) model for S = 1, 3/2,2, and 3 was investigated in [6℄. Bifuration diagramsfor the set of ferromagneti �xed points of the spin-2 BC model on a Cayley tree of oordination numberz = 3 were presented in [7℄. Two-spin luster e�etive�eld theory for the BC model with spins S = 1, 3/2,and 2 was developed and the phase diagrams were pre-sented in [8℄. It was also found there that the systemexhibits a triritial point for S � 1 and only if S isan integer, when the ratio D=J is less than �1. Themagneti properties of the spin-S (1, 2, and 3) Isingsystem with bilinear and biquadrati exhange intera-tions was investigated in [9℄ using the four-spin modelapproximation for a negative value of the biquadratiinteration. The temperature dependene of the dipolemoment of the model for S = 2 was investigated andthe ground state of the system was also disussed. Onthe other hand, the transverse Ising model with arbi-trary spins S was studied in [10℄ for S = 3=2 and 2and in [11℄ for S = 1=2, 1, 3/2, 2, and 5/2 within the1359



M. Keskin, O. Canko, M. Erta³ ÆÝÒÔ, òîì 132, âûï. 6 (12), 2007e�etive �eld theory. Moreover, the properties of thespin-2 transverse Ising model have been investigatedwithin the framework of the e�etive �led theory in de-tail [12�17℄. The bimodal and trimodal random-�eldspin-2 Ising systems in a transverse �eld were stud-ied by ombining the pair approximation with the dis-retized path-integral representation [18; 19℄, and thematrix produt approah was used to onstrut all opti-mum ground states of general anisotropi spin-2 hainswith nearest-neighbor interations and ommon sym-metries [20℄. Reently, the omplete phase diagrams ofthe antiferromagneti spin-2 Ising system were investi-gated on the Bethe lattie using the exat reurrenerelations [21℄. On the other hand, the zero-temperaturephase diagram of a one-dimensional spin-2 Heisenbergferromagnet was studied numerially using the density-matrix renormalization-group method [22℄, and spin-2Heisenberg antiferromagneti hains were also investi-gated by the Monte Carlo alulation [23℄. Ground-state phase diagrams of the quantum spin-2 Ising modelon the square lattie [24℄ and on the hexagonal lat-tie [25℄ were also onstruted.While the equilibrium properties of the spin-2 Isingmodel have been studied extensively, as far as we know,the nonequilibrim aspets of the spin-2 Ising modelhave not been investigated. The purpose of the presentpaper is therefore to present a study, within a mean-�eld approah, of the kinetis of the spin-2 BC modelin the presene of a time-dependent osillating exter-nal magneti �eld. We use the Glauber-type stohastidynamis to desribe time evolution of the system [26℄.Spei�ally, we investigate the time dependene of theaverage magnetization and the behavior of the dynamiorder parameter as a funtion of the redued temper-ature. In these studies, we obtain dynamial phasetransition (DPT) points and onstrut phase diagramsin the redued temperature and redued magneti �eldamplitude plane. This type of alulation was �rst ap-plied to a kineti spin-1/2 Ising system in [27℄ and thenused to study kinetis of a lassial mixed spin-1/2 andspin-1 Ising system in [28℄, and the kinetis of spin-1Ising system in [29℄ and spin-3/2 [30℄ Ising systemsin [30℄.We also mention that the DPT has attrated muhattention in reent years, theoretially [27�34℄ and fromthe standpoint of analytial studies [35℄. Experimen-tal evidenes for the DPT have been found in magnetisystems [36℄ and amorphous YBaCuO �lms [37℄. More-over, besides the sienti� interests, the study of DPTan inspire new methods in material manufaturingand proessing, and interesting methods in nanoteh-nology, suh as the pattern formation [38℄, monomole-

ular organi �lms [39℄, beam-indued transformation,and many others [40℄.The outline of this paper is as follows. In Se. 2, thespin-2 BC model is brie�y desribed and the dynamiequation of motion is derived. In Se. 3, DPT pointsare alulated and phase diagrams are presented. Thepaper ends with a summary and onlusion in Se. 4.2. THE MODEL AND DERIVATION OFMEAN-FIELD DYNAMIC EQUATIONSThe spin-2 BC model given by a spin-2 Ising Hamil-tonian with a rystal-�eld interation or single-ionanisotropy is de�ned by the HamiltonianH = �JXhiji SiSj �DXi S2i �HXi Si; (1)where Si takes the values �2, �1, and 0 at eah site iof a lattie and hiji denotes summation over all pairsof nearest-neighbor sites. J is the bilinear exhange in-teration parameter, D is the rystal-�eld interationor single-ion anisotropy, and H is a time-dependent ex-ternal osillating magneti �eld given byH(t) = H0 os(wt): (2)The system is in ontat with an isothermal heat bathat an absolute temperature TA.The system evolves aording to a Glauber-typestohasti proess at a rate of 1=� transitions per unittime. We de�ne P (S1; S2; : : : ; SN ; t) as the probabilitythat the system has the spins S1; S2; : : : ; SN at timet. The time dependene of this probability funtion isassumed to be governed by the master equation thatdesribes the interation between spins and the heatbath and an be written asddtP (S1; S2; : : : ; SN ; t) == �Xi 0� XSi 6=S0i Wi(Si ! S0i)1A�� P (S1; S2; : : : ; Si; : : : ; SN ; t) ++Xi 0� XSi 6=S0i Wi(S0i ! Si) �� P (S1; S2; : : : ; S0i; : : : ; SN ; t)1A ; (3)
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ÆÝÒÔ, òîì 132, âûï. 6 (12), 2007 Kinetis of the spin-2 Blume�Capel model : : :whereWi(Si ! S0i) is the probability per unit time thatthe ith spin S hanges from Si to S0i, and in this sensethe Glauber model is stohasti. Beause the system isin ontat with a heat bath at the absolute tempera-ture TA, eah spin an hange from the value Si to thevalue S0i with the probability per unit time given byWi(Si ! S0i) = 1� exp (���E(Si ! S0i))XS0i exp (���E(Si ! S0i)) ; (4)where � = 1=kBTA,PS0i is the sum over the �ve possiblevalues �2, �1, 0 of S0i and�E(Si ! S0i) == �(S0i ! Si)0�JXhji Sj +H1A� (S02i � S2i )D (5)gives the hange in the energy of the system when theSi spin hanges. The probabilities satisfy the detailedbalane onditionWi(Si ! S0i)Wi(S0i ! Si) = P (S1; S2; : : : ; S0i; : : : ; SN )P (S1; S2; : : : ; Si; : : : ; SN) : (6)Substituting the possible values of Si, we obtainWi(2! 0) = Wi(1! 0) == Wi(�1! 0) = Wi(�2! 0) == 1� 12 exp(�D) h(�a)+2 exp(4�D) h(2�a)+1 ; (7a)Wi(2! 1) = Wi(0! 1) == Wi(�1! 1) = Wi(�2! 1) == 1� exp(�a) exp(�D)2 exp(�D) h(�a)+2 exp(4�D) h(2�a)+1 ; (7b)

Wi(1! 2) = Wi(0! 2) == Wi(�1! 2) = Wi(�2! 2) == 1� exp(2�a) exp(4�D)2 exp(�D) h(�a)+2 exp(4�D) h(2�a)+1 ; (7)Wi(1! �1) =Wi(2! �1) == Wi(0! �1) = Wi(�2! �1) == 1� exp(��a) exp(�D)2 exp(�D) h(�a)+2 exp(4�D) h(2�a)+1 ; (7d)Wi(2! �2) =Wi(1! �2) == Wi(0! �2) = Wi(�1! �2) == 1� exp(�2�a) exp(4�D)2 exp(�D) h(�a)+2 exp(4�D) h(2�a)+1 ; (7e)where a = JXhji Sj +H:We note that beause Wi(Si ! S0i) is independent ofSi, we an write Wi(Si ! S0i) = Wi(S0i), and the mas-ter equation beomesddtP (S1; S2; : : : ; SN ; t) = �Xi 0� XSi 6=S0iWi(S0i)1A�� P (S1; S2; : : : ; Si; : : : ; SN ; t) +Xi Wi(Si)��0� XSi 6=S0i P (S1; S2; : : : ; S0i; : : : ; SN ; t)1A : (8)Beause the sum of probabilities is normalized to one,multiplying both sides of Eq. (8) by Sk and taking theaverage we obtain� ddt hSki = �hSki+ 2 exp(4�D) sh242�0�JXhji Sj +H1A35+ exp(�D) sh24�0�JXhji Sj +H1A35exp(4�D) h242�0�JXhji Sj +H1A35+ exp(�D) h24�0�JXhji Sj +H1A35+ 1=2 ; (9)or, in terms of the mean-�eld approah,� ddt hSi = �hSi+ 2 exp(4�D) sh [2� (Jz hSi+H0 os(wt))℄ + exp(�D) sh [� (Jz hSi+H0 os(wt))℄exp(4�D) h [2� (Jz hSi+H0 os(wt))℄ + exp(�D) h [� (Jz hSi+H0 os(wt))℄ + 1=2 ; (10)where z is the oordination number for this model. The system evolves aording to di�erential equation (10),whih an be written as
 dd�m = �m+ 2 exp(4d=T ) sh [(2=T )(m+ h os �)℄ + exp(d=T ) sh [(1=T )(m+ h os �)℄exp(4d=T ) h [(2=T )(m+ h os �)℄ + exp(d=T ) h [(1=T )(m+ h os �)℄ + 1=2 ; (11)8 ÆÝÒÔ, âûï. 6 (12) 1361



M. Keskin, O. Canko, M. Erta³ ÆÝÒÔ, òîì 132, âûï. 6 (12), 2007where m = hSi, � = wt, T = (�zJ)�1, d = D=zJ ,h = H0=zJ , and 
 = �w. We �xed z = 4 and 
 = 2�.A solution and a disussion of this equation are givenin the next setion.3. DYNAMIC PHASE TRANSITION POINTSAND PHASE DIAGRAMSIn this setion, we �nd the DPT points and presentthe phase diagrams. For this, we �rst have to studystationary solutions of dynami equation (11), whenthe parameters T , d, and h are varied. The station-ary solution of Eq. (11) is a periodi funtion of � withperiod 2�, m (� + 2�) = m (�). Moreover, they an beone of two types aording to whether they have or donot have the propertym (� + �) = �m (�) : (12)A solution that satis�es Eq. (12) is alled symmet-ri; it orresponds to a paramagneti (P) phase. In thissolution, the magnetization m(�) osillates around thezero value and is delayed with respet to the external�eld. Solutions of the seond type, whih do not satisfyEq. (12), are alled nonsymmetri; they orrespond toa ferromagneti (F) phase. In this ase the magneti-zation does not follow the external magneti �eld anymore but instead osillates around a nonzero value, �2or �1. If it osillates around �2, it orresponds to theferromagneti-2 (F2) phase and if it osillates around�1, it orresponds to the ferromagneti-1 (F1) phase.These fats are seen expliitly by solving Eq. (11) nu-merially.Equation (11) is solved numerially using theAdams�Moulton preditor orretor method for a givenset of parameters and initial values. The results arepresented in Fig. 1. From Fig. 1, we an see �ve di�er-ent solutions: P, F2, and three oexistene solutions,namely, F2 + P, F1 + P, and F2 + F1 + P. In Fig. 1a,only the symmetri solution is always obtained, andhene we have a paramagneti (P) solution, but inFig. 1b, only the nonsymmetri solutions are found, andwe therefore have a ferromagneti (F2) solution. Thesesolutions do not depend on the initial values. On theother hand, in Fig. 1, both the F2 and P phases alwaysexist in the system, and hene we have the oexistenesolution (F2 + P). In this ase, the solutions dependon the initial values, as an be seen in Fig. 1 expli-itly. Figures 1d�e are similar to Fig. 1, exept thatF1 and P phases exist in Fig. 1d and F2, F1, and Pphases exist in Fig. 1e. Therefore, we have three di�er-ent oexistene solutions, whih depend on the initialvalues.

To obtain the dynami phase boundaries betweenthese �ve phases or regions in Fig. 1, we have to alu-late DPT points, whih then allow us to present phasediagrams of the system. DPT points are obtained byinvestigating the behavior of the average magnetizationin a period as a funtion of the redued temperature.The average magnetization (M) in a period, whihis also alled the dynami magnetization, is given byM = 12� 2�Z0 m(�) d�: (13)The behavior of M as a funtion of the reduedtemperature for several values of h and d is obtainedby ombining the numerial Adams�Moulton preditororretor method with the Romberg integration. Wegive a few interesting examples to illustrate the alu-lation of the DPT and the dynami phase boundariesbetween the �ve phases, seen in Fig. 2. In Fig. 2, TCand Tt are a ritial (or seond-order) phase transitionand a �rst-order phase transition temperatures, respe-tively. Figure 2a shows the behavior ofM as a funtionof the redued temperature for d = 1:0 and h = 0:5. Atzero temperature, M = 2:0; M dereases to zero on-tinuously as the redued temperature T inreases, andtherefore the system undergoes a seond-order phasetransition at TC = 2:2292, the transition being fromthe F2 phase to the P phase. Figure 2b displays thebehavior of M as a funtion of the redued tempera-ture for d = 1:0 and h = 1:375. At zero temperature,M = 2:0;M dereases to zero disontinuously as the re-dued temperature inreases, and therefore a �rst-orderphase transition ours. The �rst-order phase transi-tion temperature Tt = 1:1975 is marked with a dashedarrow in Fig. 2. Figures 2 and 2d illustrate the ther-mal variations of M for d = �1:3 and h = 0:0125 fortwo di�erent initial values of M : 2:0 or 1:0 in Fig. 2and zero in Fig. 2d. In Fig. 2, the system exhibits aseond-order phase transition from the F2 phase to theP phase. In Fig. 2d, the system undergoes two sues-sive phase transitions: the �rst is a �rst-order one atTt = 0:122, the transition being from the P phase tothe F2 phase, and the seond is a seond-order phasetransition at TC = 1:418 from the F2 phase to the Pphase. This means that the F2 + P oexistene regionexists for d = �1:3 and h = 0:0125 in the system. Thisfat is seen in the phase diagram in Fig. 3 expliitly(ompare Figs. 2 and 2d with Fig. 3 for h = 0:0125).Figures 2e�g illustrate the thermal variation of M ford = �2:25 and h = 0:175 for three di�erent initial val-ues of M : 2:0 in Fig. 2e, 1:0 in Fig. 2f, and zero inFig. 2g. Figure 2e shows that the system undergoes1362
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Fig. 1. Time variations of the average magnetization (m). a) Exhibiting a paramagneti phase (P), d = 1:0, h = 1:425,and T = 1:5. b) Exhibiting a ferromagneti-2 (F2) phase, d = �1:5, h = 0:4, and T = 0:25. ) Exhibiting a oexisteneregion (F2 + P), d = �1:5, h = 0:86, and T = 0:625. d) Exhibiting a oexistene region (F1 + P), d = �2:25, h = 0:325,and T = 0:0375. e) Exhibiting a oexistene region (F2 + F1 + P), d = �2:25, h = 0:2325, and T = 0:0275two suessive �rst-order phase transitions; the �rst isfrom the F2 phase to the F1 phase at Tt = 0:0617and the seond is from the F1 phase to the P phaseat Tt = 0:1575. In Fig. 2f, the system undergoes a�rst-order phase transition from the F1 phase to theP phase at Tt0 = 0:1575. Figure 2g illustrates thatthe system does not undergo any phase transitions,but the P phase always exists for these values. There-fore, the F2 + F1 + P oexistene region ours belowTt0 = 0:1575, and the F1 + P region exists betweenTt = 0:0617 and Tt0 = 0:1575, and the P phase oursabove Tt0 = 0:1575. This fat is also seen in the phasediagram in Fig. 3e expliitly (ompare Figs. 2e�g withFig. 3e for h = 0:175).We an now obtain phase diagrams of the system.The alulated phase diagrams in the (T; h) plane arepresented in Fig. 3. The solid and dashed lines respe-tively represent the seond- and �rst-order phase tran-sition lines and the dynami triritial point is denotedby a solid irle. As seen in Fig. 3, we have obtainedseven di�erent phase-diagram topologies.(i) For d � �0:265, Fig. 3a displays the phase di-agram in the (T; h) plane for d = 1:0. In this phasediagram, the solutions are paramagneti (P) for thehigher redued temperatures T and redued external

magneti �eld amplitudes h, and ferromagneti-2 (F2)for low values of T and h. The dynami phase boundarybetween these regions, F2 ! P, is a seond-order phasetransition line. For low redued temperatures, there isa range of values of h where the P and F2 phases oex-ist, alled the oexistene region, F2 + P. The F2 + Pregion is separated from the F2 and P phases by a�rst-order phase transition line. The system also ex-hibits only one dynami triritial point where both�rst-order phase transition lines merge, whih signals ahange from a �rst-order to a seond-order phase tran-sitions. Finally, we mention that similar phase dia-grams have also been obtained in the kineti spin-1/2Ising [27℄, spin-1 Ising [29℄ and spin-3/2 Ising [30℄ sys-tems.(ii) For �0:265 > d � �1:043, we have presentedthe phase diagram at d = �1:0 in Fig. 3b. This phasediagram is similar to the one in Fig. 3a, but di�ers fromit in that at low values of T and h, one more F2 + Poexistene region exists. The dynami phase bound-ary between this F2 + P region and the F2 phase is a�rst-order line. A similar phase diagram has also beenobtained for the spin-1 Ising systems [29℄, exept thatthe ferromagneti phase is F2 instead of F1.(iii) For �1:043 > d � �1:426, the phase diagram1363 8*
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(iv) For �1:426 > d � �1:957, the phase diagramis presented for d = �1:5 in Fig. 3d. The phase dia-gram is similar to the one in Fig. 3b, with the followingdi�erenes. 1) For very low values of T and h, the F2+ F1 + P oexistene region ours. 2) The F2 + Pphase, whih exists for very high values of h, beomesthe F1 + P phase. The dynami phase boundary be-tween the F2 + F1 + P phase and F1 + P phase is alsoa �rst-order phase transition line.1364
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lar to the one in Fig. 3f but di�ers from it in that forvery low values of T and h, the F2 + F1 + P regiondisappears, as illustrated in Fig. 3g.4. SUMMARY AND CONCLUSIONWithin a mean-�eld approah, we have presenteda study of the stationary states of the kineti spin-2BC model and its kinetis desribed by the Glauber-type stohasti dynamis in the presene of a time-dependent osillating external magneti �eld. We havestudied the time dependene of the average magnetiza-1365
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