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FLEXIBLE-TO-SEMIFLEXIBLE CHAIN CROSSOVER ON THEPRESSURE�AREA ISOTHERM OF A LIPID BILAYERI. N. Krivonos, S. I. Mukhin *Mosow Institute for Steel and Alloys119049, Mosow, Russian FederationReeived June 11, 2007We �nd theoretially that ompetition between � Kfq4 and � Qq2 terms in the Fourier-transformed onfor-mational energy of a single lipid hain, in ombination with interhain entropi repulsion in the hydrophobipart of the lipid (bi)layer, may ause a rossover on the bilayer pressure�area isotherm P (A) � (A � A0)��.The rossover manifests itself in the transition from � = 5=3 to � = 3. Our mirosopi model representsa single lipid moleule as a worm-like hain with a �nite irreduible ross-setion area A0, a �exural rigidityKf , and a strething modulus Q in a paraboli potential with the self-onsistent urvature B(A) formed byentropi interations between hydroarbon hains in the lipid layer. The rossover area A� obeys the relationQ=pKfB(A�) � 2. We predit a peuliar possibility of deduing the e�etive elasti moduli Kf and Q ofan individual hydroarbon hain from the analysis of the isotherm with suh a rossover. Also alulated isrossover-related behavior of the area ompressibility modulus KA, the equilibrium area per lipid At, and thehain order parameter S(�).PACS: 87.16.Dg, 87.15.Kg, 31.15.Kb1. INTRODUCTIONStudying thermodynamis of lipid bilayers thatform biologial membranes is of fundamental interestfor understanding the relation between the membranestate and the funtioning of integral membrane pro-teins [1�3℄. The latter are of vital importane for manyproesses in living ells. Experimental data in lipidmembranes indiate the presene of a rossover in thepressure�area isotherms P (A) � (A�A0)�� [4; 5℄. For-mally, this means that the exponent � hanges substan-tially within some �nite interval along the area axis A.A substantial amount of theoretial work has been de-voted to the desription of the thermodynami prop-erties of lipid layers inluding pressure�area isotherms,the hain order parameter as a funtion of temperature,spei� heat, et. Theoretial approahes range fromphenomenologial Landau�de Gennes theory [6℄ to sur-fae equations of states involving lustering [7�10℄ andraft formation [11℄. Moleular dynamis [12℄ and MonteCarlo simulations [13℄ have also been used. Besides, themodels were onsidered with a phase transition due to*E-mail: sergeimosow�online.ru

a hange in the number of gauhe onformations of thehydroarbon hains [14�20℄, as well as models fousedon the role of the exluded-volume interations betweenthe hains [21; 22℄. These fators were also ombinedin the form of an additive area-dependent ontributionsto the surfae pressure [20℄.In the previous work [23℄, a theoretial method wasproposed for alulating the thermodynami harater-istis of a lipid bilayer starting from a �mirosopi�model of a smeti array of semi-�exible �nite-lengthstrings with a given �exural rigidity (see Fig. 1). Thestring is an idealized model of the hydroarbon hain.The entropi repulsion between the neighboring hainsin a lipid membrane is modeled with an e�etive po-tential. This entropi potential is then found self-onsistently, by minimizing the free energy of the bi-layer, whih is in turn alulated using path integrationover possible onformations of the strings. As a result,the lateral pressure pro�le inside the lipid bilayer wasderived analytially, together with the area ompress-ibility modulus and the temperature oe�ient of areaexpansion of the membrane.In [23℄, only the bending energy of strings and theentropi repulsion were inluded in the onformational162



ÆÝÒÔ, òîì 133, âûï. 1, 2008 Flexible-to-semi�exible hain rossover : : :energy funtional. In the Fourier-transformed represen-tation, the bending energy is proportional to � Kfq4,where q is the wave vetor along the hain axis and Kfis the hain �exural rigidity modulus. The resultingpressure�area isotherm of the lipid bilayer was derivedin the form of a power law Pt(A) � (A � A0)��, withthe onstant exponent � = 5=3. The lateral pressureof the lipid hydroarbon hains (tails) Pt(A) is hereexpressed as a funtion of the area per lipid A in thelayer at a given temperature, with A0 being the haininompressible ross-setion area. In the present work,we add the strething energy of the string to the energyfuntional [24℄. In the Fourier-transformed representa-tion, this energy is proportional to � Qq2, where Qis the hain strething modulus. Hene, our new hainenergy funtional ontains the sumKfq4+Qq2+B(A),where B(A) is the self-onsistently determined urva-ture of a paraboli e�etive entropi repulsive potentialfelt by a single hain due to surrounding hains in thelipid layer. The bending (�exural) energy dominates atlarge wave vetors q, while the strething energy domi-nates in the small-q limit. The entropi repulsion termB(A) sets an upper limit for the wave vetors q that areessential for thermodynamis. The entropi repulsioninreases as the area per lipid in the layer dereases,i.e., the parameter B(A) beomes greater as A ! A0,making the large q important. As a result, the bend-ing energy term � Kfq4 dominates, and we reoverthe pressure�area isotherm in [23℄ with the exponent� = 5=3. On the other hand, when the area per lipidinreases, the entropi repulsion beomes weaker, andthe parameter B(A) beomes smaller. Hene, the im-portant q also beome smaller and the strething energyterm � Qq2 dominates. As a result, a new exponentarises [24℄: � = 3, orresponding to the strething-dominated onformational energy of the strings (Figs. 2and 3). This limit value of the exponent is in agree-ment with the result in [25℄, where it was derived usinga polymer entropy model (harmoni regime) for lipidbilayer surfae pressure and on�rmed with bilayer elas-tiity measurements.We �nd that the rossover between the twoarea-per-lipid regions with di�erent values of theexponent � ours at the area per lipid A� determinedfrom the ondition Q=pKfB(A�) � 2. The physialstates of the lipid layer in the two regions separatedby rossover di�er by a substantial hange in the valueof the hain order parameter, whih haraterizesdeviations of the hain from the straight line (seeFig. 7). Also alulated are elasti moduli of themembrane and their dependenes on temperature andon the mirosopi elasti moduli of the individual

hains onstituting the lipid bilayer (see Figs. 4�6).Finally, we disuss how the �tting of experimentalisotherms of lipid bilayers to our theoretial isothermsmay help to dedue the elasti moduli Kf and Q ofindividual lipid hains onstituting the membrane.The plan of the paper is as follows. In Se. 2, weformulate the physial model [24℄ of a bilayer and re-view the path-integral method of summation over allonformations of an idealized hydroarbon hain [23℄.In Se. 3, we derive and analytially solve (in two dif-ferent limits) a self-onsisteny equation for the urva-ture B(A) of the e�etive paraboli entropi potentialin the layer. The pressure�area isotherms are then de-rived in analyti form. In Ses. 4�6, we present theresults of alulations of the thermodynami and elas-ti harateristis of the whole bilayer that follow fromour mirosopi model. In the Conlusions, we disussthe orrespondene of the theoretial results with avail-able experimental data, and onsider the appliabilityregion of the approximations that we use.2. ENERGY FUNCTIONAL OF A LIPIDLAYER: THE STRING MODELA hydroarbon hain (see Fig. 1) is modeled as a�exible string with the �exural rigidity Kf and streth-ing modulus Q; entropi repulsion from surroundinglipid hains is modeled via a paraboli potential withthe self-onsistently determined urvature B(= B(A)):E = LZ0  Kf �d2Rdz2 �2 +Q�dRdz �2 +BR2! dz; (1)where L is the hain length. We onsider only small de-viations of the hains from a straight line: jR(z)j � L.This ondition is satis�ed ifphR2(z)iL � � kBTL2Peff �1=2 � 1;where Peff is the e�etive tension in the bilayer andkB is the Boltzmann onstant. The returning fore�BR(z) ats against the deviation R(z) of the hainfrom the vertial straight line, where the oordinatez measures the depth inside the lipid layer with thehydrophili (polar) heads residing at the layer sur-fae z = 0, while hydrophobi (nonpolar) tails formedfrom hydroarbon hains onstitute the body of theslab 0 < z � L. Here, R(z) is the vetor in thexy plane haraterizing the deviation from the z axis:R2(z) = X2(z) + Y 2(z).The energy of a single string therefore onsists ofthree parts: bending, strething and e�etive entropi163 11*
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zzFig. 1. The model of a lipid membrane in the mean-�eld approximation. Left panel: sketh of the lipid monolayer (themirror-symmetri part of the bilayer is not shown). Hydroarbon tails of lipid moleules form the hydrophobi part of the lipidmonolayer. Hydrophili polar heads (�lled ellipses) form the hydrophobi�hydrophili interfae. Right panel: the mean-�eld�exible-string model of a hydrophobi layer. The arrows indiate entropi fores �BX ating on the hydroarbon hain inthe self-onsistent entropi potential BX2, whih arises due to surrounding neighborspotential energies. In equilibrium, the e�et of the en-tropi repulsion is ompensated by the interhain at-tration due to van der Waals interations and by thesurfae tension energy A, where  is the surfae ten-sion at the hydrophobi�hydrophili interfae [4℄:Pt (A(T )) = Peff =  + Phg + PvdW ;where A(T ) is the equilibrium area per lipid at a giventemperature. The total tension in the bilayer is zero.The integral Pt = LZ0 �t(z) dzof the repulsive (hain) part of the lateral pressurepro�le �t(z) over the bilayer hydrophobi region isequal to the balaning e�etive tension in the bi-layer Peff , whih, besides the surfae tension , in-ludes the head group repulsion of eletrostati ori-gin Phg, the pressure arising from van der Waalsinterations between hains PvdW , et. We hoosePeff = 100 dyn/m >  � 50 dyn/m, beause at-trative dispersion interations between hydroarbonhains are inluded in the e�etive surfae tension [26℄.In general, at room temperature, the e�etive sur-fae tension for a typial lipid bilayer is in the range50 � Peff � 150 dyn/m [2; 26℄. Considering a singlehain onsisting ofN links of equal length a for simpli-ity, we rewrite Fourier-transformed energy funtional(1) as

E = L2 �=aZ��=a jRq j2(Kfq4 +Qq2 +B) dq2� == LXq jRq j2Eq ; (2)where summation over the wave vetor q ranges the in-terval 2�=a with the step 2�=L, Eq = Kfq4+Qq2+B,and Rq is the Fourier transform of the funtion R (z).Beause we onsider the membrane that is isotropi inthe xy plane, the x- and y-omponents of the vetor�eld R(z) make equal ontributions to the partitionfuntion of the string, and thereforeZ = ZxZy = Z2x == 0�Yq 1Z0 exp��LEqkBT jXqj2� jXq jdjXq j1A2 ==  Yq kBT2LEq!2 : (3)The free energy F = �kBT lnZ an then be expressedas�F = F (B)� F (B = 0) == 2kBTXq ln EqEq(B = 0) ; (4)where the free energy of a free single hain is subtratedfor the onvergene of the sum.164



ÆÝÒÔ, òîì 133, âûï. 1, 2008 Flexible-to-semi�exible hain rossover : : :3. PRESSURE�AREA ISOTHERM OF THELIPID LAYER EXPRESSED THROUGH THECURVATURE OF THE INTER-CHAINENTROPIC POTENTIALThe self-onsistent equation for the urvature Bof the paraboli potential modeling the interhain en-tropi repulsion in the lipid layer takes the form�F�B = 2kBTXq 1Eq = hR2iL == �pA�pA0 �2� L; (5)where A0 = V0=L is the inompressible area of thehain ross setion, V0 is the inompressible volume ofthe lipid hain, and �pA�pA0 �2 is the area sweptby the string formed by the enters of the hain rosssetions. Obviously, when the area per lipid A is loseto the inompressible area A0, the self-onsistent ur-vature B is large, and we an therefore pass from sum-mation to the integration over the wave vetor q inEq. (5): �pA�pA0 �2 = kBT �=aZ��=a dqEq : (6)The resulting self-onsisteny equation for the urva-ture B is�pA�pA0 �2 == �p2 kBTK1=4f B3=4  1 + Q2pBKf !�1=2 : (7)This equation is solved numerially, but analyti re-sults an also be obtained in the two limit ases: � � 1and � � 1, where � � Q=2pBKf . These two limits re-spetively orrespond to the domination of the bendingenergy and of the strething energy:B(A) = 1K1=3f �4=3(kBT )4=33p4 �pA�pA0 ��8=3 ;� � 1; (8)B(A) = �2(kBT )2Q �pA�pA0 ��4 ;� � 1: (9)Relation (8) oinides with the result in Eq. (A.5)in [23℄, whih was obtained by a more detailed method

without using the Fourier-transformed version of en-ergy funtional (2) and without taking the strethingenergy into aount. As long as � = �(A), due to thedependene of the urvature B = B(A) on the area A,the rossover from limit expression (8) to limit expres-sion (9) may our at some partiular area per lipidA� determined from the ondition �(A�) � 1. Thisrossover area A� is found below (see Eq. (14)).Substituting the self-onsistent solution B = B(A)in hain free energy (4), we �nd the lateral pressure�area-per-lipid isotherm for the hydrophobi part of thelipid (bi)layer:Pt � ���F (A)�A = �B�AXq 2kBTEq : (10)Beause the sum in the right hand side of Eq. (10) alsoenters self-onsisteny equation (5), the pressure�areaisotherm an be expressed in the losed analyti formPt(A) = ��1 �pA�pA0 �2 L�B(A)�A (11)with the urvature B(A) diretly involved.4. CROSSOVER ON THE LIPID LAYERISOTHERM: COMMUNICATION BETWEEN�MACRO� AND �MICRO�It is remarkable that rossover in the isotherm of alipid (bi)layer in priniple provides an intriguing possi-bility to follow the link between maro- and mirosopiproperties of the biomembrane. Namely, it is possibleto dedue the e�etive elasti moduli of the individuallipid hains onstituting the bilayer from the pressure�area isotherm of the entire marosopi system.To explain the dedution �reipe� (see Eqs. (15) and(16) below), we onsider theoretial preditions follow-ing from the general model desribed in the previoussetion. First, we suessively substitute Eqs. (8) and(9) in general equation (11) and (in the limit of smallenough areas per lipid, A=A0 � 1) �nd analyti for-mulas desribing the lateral pressure�area isotherms ofthe lipid layer:PtkBT = 23 ��kBT4Kf �1=3 �� V A�3=2 �pA�pA0 ��5=3 ; � � 1; (12)PtkBT = 2�kBTQ �� V A�3=2 �pA�pA0 ��3 ; � � 1; (13)165
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Fig. 2. The alulated pressure�area-per-lipidisotherms for the lateral pressure Pt in the hydropho-bi (tails) part of the lipid bilayer with di�erentrelative strengths of the single-hain strething andbending energies haraterized by the dimensionlessparameter � = QL2=Kf . Isotherm 1 (� ! 0)orresponds to the dominating bending energy of thehains (see Eq. (12)); urve 3 (� ! 1) orrespondsto the dominating strething energy of the hains(see Eq. (13)). Curve 2 (� � 102) orresponds toan intermediate ase and shows a rossover betweenthe two isotherms drawn in the two limits. A0 is theinompressible area of the hydroarbon hain. Thetemperature for all the urves is T = 300 Kwhere V = AZm � AL is the (onserved) volume perlipid moleule in the hydrophobi part of the lipid layer,Zm is the atual thikness of the hydrophobi part ofthe lipid layer, and Zm � L in the limit of small devi-ations from the straight line of the string modeling thehain. Asymptoti relation (12), whih is valid for thebending-dominated free energy, is the same as in [23℄,but relation (13) is new and orresponds to dominationof the strething energy. The rossover region betweenthese two limit ases is di�ult to express analytially,but the result of numerial alulation based on Eqs. (7)and (11) is presented in Fig. 2 together with the twourves orresponding to the analyti results in (12) and(13).Before onsidering Figs. 2 and 3, we �nd therossover area per lipid A� using the de�nition�(A�) � Q=2qB(A�)Kf � 1and substituting asymptoti equations (8) and (9) forB(A�), whih both lead to the result
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Fig. 3. The same ases as in Fig. 2, but for the al-ulated logarithmi derivative of the lateral pressurewith respet to the area per lipid. The logarithmiderivative gives the value of the exponent ��(A) inthe limit A ! A0 in the isotherm equation of stateof the lipid bilayer: Pt � (A � A0)��(T ). Curve 2(� � 102) demonstrates a rossover between the expo-nents � = 5=3 (4 ) and � = 3 (5 ) that are shown withstraight dashed lines. The other two urves are the ex-at dependenes given by Eqs. (12) and (13) desribingthe isotherms in the respetive limits of the dominantbending (1, �! 0) and strething (2, � !1) energyof the hydroarbon hains. The temperature for all theurves is T = 300 KA� =  pA0 + p2�kTpKQ3=4 !2 : (14)It follows from (14) that as Q ! 0, we have A� ! 1and, hene, the rossover to the strething-dominatedregion of areas per lipid is shifted away from the intervalof reasonable areasA: A � A0. Therefore, for too smallstrething modulus Q, the bending-dominated depen-dene P (A) derived in (8) oupies the whole A axisand rossover does not our. It is onvenient to eval-uate the relative strength of the strething and bend-ing energies of a hain by a dimensionless parameter� = QL2=Kf . Hene, the bending-dominated isothermis marked 1 in Fig. 2. In the opposite limit K ! 0,it follows from (14) that A� ! A0, i.e., the whole Aaxis is oupied by the strething-dominated region,and the orresponding strething-dominated isothermderived in (9) is marked 3 in Fig. 2.Isotherm 2 in Fig. 2 exhibits the rossover fromthe bending-dominated region at small areas per lipid,A � A�, to the strething-dominated interval at greaterareas, A � A�. As follows from Eq. (14), the bending-166



ÆÝÒÔ, òîì 133, âûï. 1, 2008 Flexible-to-semi�exible hain rossover : : :dominated region A0 � A � A� shrinks when the tem-perature T dereases.It turns out that more informative than isothermsthemselves are the plots of their logarithmi derivativespresented in Fig. 3, d lnPt=d ln(A � A0) � ��(A) vs.A=A0. This beomes obvious after writing isothermequations (12) and (13) in the limit A! A0:Pt � 4�1=3(kBT )4=3LA1=303K1=3f (A�A0)�5=3;� = 5=3; � � 1; (15)Pt � 16�(kBT )2LA0Q (A�A0)�3;� = 3; � � 1: (16)Hene, by �tting the experimental isotherm of a lipidbilayer with the hyperbolas in Eq. (15) or Eq. (16), itis possible, in priniple, to determine whih ase, � � 1or � � 1, orresponds to the state of the lipid bilayer.Subsequently, the relevant e�etive �mirosopi� elas-ti moduli Kf and Q of an individual lipid hain an bededued using Eqs. (15) and (16), whih ontain theseparameters as prefators.5. CHAIN ORDER PARAMETER ANDMACROSCOPIC ELASTIC MODULI OF ALIPID BILAYER FROM THE STRINGMODELTo make numerial estimates based on our modelof a lipid (bi)layer, Eq. (1), we use the following pa-rameters: hain length L = 15Å, hain inompressiblearea A0 = 20Å2, and T0 = 300 K as the referene tem-perature. The hain �exural rigidity is de�ned as [27℄Kf = EI , where E � 0:6 GPa is the hain Young mod-ulus [28℄ and I = A20=4� is the (geometri) moment ofinertia. The �exural rigidity an also be evaluated fromthe polymer theory [29℄ asKf = kBT lp, where lp � L=3is the hain persistene length [28℄. Both estimates ap-proximately give Kf � kBTL=3 at the hosen L andT = T0. The value of the strething modulus Q anbe estimated using energy funtional (1) and assumingthat both ontributions due to bending and strethingenergies are of the same order; this yields Q � 10�6�10�5 dyn.Di�erentiation of Pt(A) gives the area ompressibil-ity modulus Ka = �AdPt(A; T )=dA as a funtion ofthe area per hain and temperature. Analyti expres-sions for this modulus are then derived from Eqs. (12)and (13):

Ka = V kT ��kBT4Kf �1=3 ���A�3=2 �pA�pA0 ��5=3++ 59A�1 �pA�pA0 ��8=3� ; � � 1; (17)Ka = 3�V (kT )2Q �A�3=2 �pA�pA0 ��3++ A�1 �pA�pA0 ��4� ; � � 1: (18)Equation (17) is valid in the area interval with domi-nant bending energy, while Eq. (18) applies to the areainterval with dominant strething energy. When areasper lipid are su�iently lose to A0, expressions (17)and (18) an be further simpli�ed by retaining only themost diverging terms. In this way, we onlude thatunder a derease in the area per lipid A (shrinking ofthe bilayer), the dependene of the area ompressibil-ity modulus on the area per lipid Ka(A) must hangefrom Ka � (A�A0)�4 in the strething-dominated re-gion to Ka � (A � A0)�8=3 in the bending-dominatedregion. The absolute value of the modulus Ka alu-lated using (18) with other parameters T = 300 K,L = 15Å, A0 = 20Å2, Peff = 100 dyn/m, andQ � 10�6 dyn is Ka � 420 erg/m2. This theo-retial value agrees quite well with the known dataKa � 300 erg/m2 [26℄. The alulated temperaturedependene of the equilibrium area At for a �xed valueof � = QL2=Kf � 102 is shown in Fig. 4. From thisdata, we also �nd the temperature oe�ient of areaexpansion KT = dAt=AtdT � 0:9 � 10�3 K�1, in goodagreement with the data in [26; 30℄: KT � 10�3 K�1.It is also interesting to �nd how the area ompress-ibility modulus depends on the relative strength of thestrething energy with respet to the bending energyof the lipid hain, whih is re�eted by the dimension-less parameter � = QL2=Kf introdued above. Ourtheoretial results presented in Fig. 5 demonstrate aninrease in the area ompressibility modulus Ka of thelipid bilayer as a funtion of �. However, an inrease inKa by approximately three times neessitates the or-responding inrease in the parameter � by three ordersof magnitude. Simultaneously, under suh an inreasein �, the equilibrium area per lipid At in the layer de-reases approximately by a fator of 2, as follows fromour results presented in Fig. 6. The urves in Figs. 5and 6 together may be interpreted as lateral �harden-ing� of the lipid layer due to shrinking of the averagenearest-neighbor interhain distanes when strething167
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Fig. 4. The alulated temperature dependene of theequilibrium area per lipid At in the lipid bilayer for the�xed value � � 102 haraterizing the ratio of thehain strething and bending energies. Other param-eters are: T0 = 300 K, L = 15Å, A0 = 20Å2, andPeff = 100 dyn/m
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Fig. 5. The alulated area ompressibility modulusKaof the lipid bilayer as a funtion of the dimensionlessparameter � = QL2=Kf . The other parameters areas in Fig. 4. The greater values of � orrespond tothe relative strength of the strething energy of a hy-droarbon hain inreasing with respet to its bendingenergyenergy is added. This is understandable if we realizethat the strething energy makes wiggling of the lipidtails energetially unfavorable. This, in turn, �pushes�the lipid layer loser to a gel-like state with a higherarea density of lipids. This semi-intuitive explanationis further supported by our alulations of the hain
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Fig. 7. The alulated hain order parameterS(�) = 1=2 �3hos2 �i � 1� as a funtion of the areaper lipid in a lipid (bi)layer. A0 is the inompress-ible area of the hydroarbon hain. The loal tangentangle �(z) is averaged over the length of the hain0 � z � L and over di�erent hain onformations.Curve 1 (SK(�), � ! 0) orresponds to the dominantbending energy of the hains; urve 2 (SQ(�), � !1)orresponds to the dominant strething energy of thehains; urve 3 (SP(�), � � 102) orresponds to anintermediate ase and shows a rossover between theurves drawn in the two limits mentioned above. Theother parameters are as in Fig. 4is easier to understand the origin of the di�erent limiturves in Fig. 7 when Eq. (19) is rewritten using thede�nition given after Eq. (3):Eq = Kfq4 +Qq2 +B: (20)Then, in the limit as � ! 0, when bending energydominates, the term proportional to q2 in Eq vanishes.Simultaneously, due to the bending energy ontribu-tion (� Kfq4), the integral in Eq. (19) onverges atsmall wave vetors q � (B(A)=Kf )1=4, leading to a de-rease in the order parameter with inreasing the areaper lipid: S(�) � 1� onst (B(A))�1=4 ;where B(A) � (A�A0)�8=3 in aordane with Eq. (8).In the opposite limit � ! 1, when strething energydominates, we obtain the following expression for theintegral in Eq. (19):

h(X 0(z))2i = 12� �=aZ��=a q2dqQq2 +B(A) == TaQ  1�sBQ LN� artg rQB N�L !! : (21)Hene, in the limit pB(A)=QL=N� � 1, i.e.,as A ! A0, we �nd h(X 0)2i ! 0, and there-fore S(�)�!1 ! 1. In the opposite limitpB(A)=QL=N� � 1, i.e., when A su�iently exeedsA0, h(X 0)2i � NT=LQ, and hene the order parameteris pratially area-independent, S(�)�!1 � onst < 1,as seen in Fig. 7, where S(�)�!1 � SQ beomes �atas A=A0 inreases. In the intermediate ase (see urve3 ), the order parameter as a funtion of the area perlipid interpolates qualitatively between the two limitdependenes just desribed.Finally, we observe that as follows from Fig. 7, ourapproximation of small deviations of the hain from astraight line is valid with the hosen numerial valuesof the basi parameters of the lipids up to areas perlipid A=A0 � 3, beause the deviation of the order pa-rameter S(�) from 1 in all the onsidered regimes turnsout to be small: 1� S(�) � 0:3.6. CONCLUSIONSWe derived analyti expressions for the pressure�area isotherms of a lipid bilayer using the stringmodel of hydroarbon hains that inludes �exuraland strething moduli of a single hain and the self-onsistent entropi repulsion ating between the hainsin the lipid bilayer. A rossover on the pressure�areaisotherm is predited to arise due to the ompetitionbetween bending and strething ontributions tothe total onformational energy of the individualhains. A theoretial method of the data analysisis proposed that in priniple permits deduing themirosopi e�etive elasti moduli of the individuallipid moleules by studying pressure�area isothermsof the marosopi lipid (bi)layer. The appliabilityriteria and heks of the theory using omparisonwith known experimental and numerial simulationdata for lipid bilayers are presented. A generalizationof the proposed model to the desription of spatiallyinhomogeneous thermodynami states of lipid bilayersis in progress.The authors are grateful to M. Deserno for his use-ful omments on the preprint of this work.169
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