ОРИЕНТАЦИОННАЯ ОПТИЧЕСКАЯ НЕЛИНЕЙНОСТЬ, ИНДУЦИРОВАННАЯ ГРЕБНЕОБРАЗНЫМИ ПОЛИМЕРАМИ В НЕМАТИЧЕСКОМ ЖИДКОМ КРИСТАЛЛЕ

И. А. Будаговский, А. С. Золотько^{*}, В. Н. Очкин, М. П. Смаев

Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

А. Ю. Бобровский, В. П. Шибаев

Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

М. И. Барник

Институт кристаллографии им. А. В. Шубникова Российской академии наук 117333, Москва, Россия

Поступила в редакцию 3 июля 2007 г.

Исследован эффект оптической ориентации в нематических жидких кристаллах, содержащих небольшие добавки высокомолекулярных соединений — гребнеобразных полимеров с поглощающими свет азобензольными боковыми фрагментами. Проведено детальное сравнение эффектов светоиндуцированной переориентации директора нематических жидких кристаллов, обусловленных поглощением света полимерами и низкомолекулярным соединением, аналогичным по строению боковым фрагментам полимеров. Предложено объяснение большим значениям ориентационной нелинейности, индуцированной полимерами.

PACS: 61.30.-v, 42.70.Df, 82.35.Ej, 42.65.Jx

1. ВВЕДЕНИЕ

Жидкокристаллические фазы являются разновидностью «мягкой материи» [1]. Их высокая чувствительность к разнообразным внешним воздействиям [2, 3] приводит, в частности, к очень сильным оптическим ориентационным эффектам. Так, световая волна, проходя через прозрачный нематический жидкий кристалл (НЖК), вызывает переориентацию директора **n** [4–6]. При этом пороговая плотность мощности для перехода Фредерикса составляет всего около 10³ Вт/см² [6].

Поворот директора изменяет показатель преломления необыкновенной волны, обуславливая, тем самым, ориентационную нелинейность НЖК. Соответствующая «гигантская» ориентационная оптическая нелинейность на девять порядков превышает керровскую нелинейность обычных жидкостей [5].

Переориентация молекул прозрачных НЖК вызвана прямым силовым воздействием светового поля на диполи, индуцированные этим же полем; вращающий момент, отнесенный к единице объема НЖК, имеет вид

$$\Gamma = \frac{\zeta |A|^2}{8\pi} (\mathbf{n} \cdot \mathbf{e}) [\mathbf{n} \times \mathbf{e}], \qquad (1)$$

где параметр ζ равен оптической анизотропии $\Delta \varepsilon$, A — амплитуда светового поля, е — единичный вектор поляризации света. Поскольку величина $\Delta \varepsilon$ положительна, директор поворачивается параллельно световому полю и, соответственно, показатель преломления для необыкновенной волны возрастает («положительная» нелинейность).

Добавление в нематическую матрицу небольшого количества (около 1% по весу) молекул краси-

^{*}E-mail: zolotko@lebedev.ru

телей может значительно повысить эффективность ориентационного воздействия света (нелинейность может возрасти еще на два порядка) [7, 8]. Момент сил, действующий на директор поглощающего НЖК, также описывается соотношением (1), в котором, однако, под параметром ζ следует понимать некоторую величину $\Delta \varepsilon_{eff}$, называемую эффективной оптической анизотропией. При этом в зависимости от типа красителя и геометрии эксперимента величина $\Delta \varepsilon_{eff}$ может быть как положительной, так и отрицательной, т. е. директор может поворачиваться как параллельно световому полю, так и перпендикулярно к нему [9, 10] (в последнем случае показатель преломления уменьшается и кристалл обнаруживает отрицательную ориентационную нелинейность). Нелинейно-оптический отклик поглощающих НЖК можно характеризовать отношением $\eta = \Delta \varepsilon_{eff} / \Delta \varepsilon$, называемое фактором усиления нелинейности.

Физические механизмы ориентационных эффектов в поглощающих НЖК являются в настоящее время предметом исследований. При этом общепризнано, что поворот директора происходит вследствие изменения межмолекулярных сил в образце НЖК при возбуждении введенных молекул красителя [8].

Ориентационные нелинейности позволяют наблюдать и исследовать разнообразные эффекты (например, аберрационное самовоздействие световых пучков [6, 11–14], обращение волнового фронта [15–22], формирование и взаимодействие оптических солитонов [23–29], возникновение периодических и стохастических колебаний поля директора [30–38], оптические бистабильности [39–45] и т.д.) при весьма малых значениях плотности мощности световой волны.

До сих пор в качестве добавок, индуцирующих ориентационную нелинейность, связанную с изменением межмолекулярных сил, использовались практически только низкомолекулярные красители. Оставалось неясным, как может сказаться усложнение молекулярной структуры на оптических ориентационных эффектах. В работе [46] впервые наблюдалась светоиндуцированная переориентация директора, обусловленная высокомолекулярным соединением — сопряженным полимером МЕН-РРV. Соответствующая ориентационная нелинейность была отрицательной, независимо от геометрии эксперимента, и по величине на порядок превышала нелинейность исходной (нелегированной) нематической матрицы.

В работе [47] сообщалось о наблюдении большой

ориентационной оптической нелинейности, индуцированной в нематической матрице гребнеобразным полимером П1 и превышающей нелинейность, индуцированную низкомолекулярным азосоединением АК, аналогичным по строению боковым фрагментам полимера. В настоящей работе представлены результаты экспериментального исследования воздействия света на жидкокристаллические системы с добавкой гребнеобразных полимеров П1 и П2, различающихся длиной развязок, соединяющих азофрагменты с полимерной цепочкой. Проведено детальное сравнение ориентационных нелинейностей, индуцированных полимерами и низкомолекулярным азосоединением. Предложено объяснение возрастания нелинейности при усложнении молекулярной структуры.

2. УСЛОВИЯ ЭКСПЕРИМЕНТА И ЭКСПЕРИМЕНТАЛЬНЫЕ ОБРАЗЦЫ

Структурные формулы гребнеобразных полимеров П1 (молекулярная масса $M=4.7\cdot10^4$) и П2 ($M=7\cdot10^3$) имеют вид

Полимеры содержат цианобифенильные и азофрагменты, присоединенные к алкильной цепи с помощью оксиалифатической (П1) и алифатической

ЖЭТФ, том **133**, вып. 1, 2008

(П2) развязок разной длины. Выбор в качестве объекта исследования полимеров, содержащих азогруппы, связан с тем, что при возбуждении светом двойной связи азобензольного хромофора могут проявляться сильные ориентационные эффекты, обусловленные изменением межмолекулярных сил. Такие эффекты известны, например, для смесей низкомолекулярных азосоединений с вязкими жидкостями [48, 49], нематическими матрицами [10, 12, 50], а также для различных жидкокристаллических фаз полимеров [51, 52].

Структурная формула используемого нами низкомолекулярного азокрасителя AK, аналогичного боковым азофрагментам полимеров, имеет вид

Максимумы поглощения полимеров и азокрасителя АК лежат в ультрафиолетовой области спектра. В сине-зеленой области ($\lambda = 440-550$ нм) поглощение этих соединений монотонно уменьшается с увеличением длины световой волны. Так, для 0.5 % раствора П1 в нематической матрице ЖКМ-1277 коэффициенты поглощения $\alpha_{\parallel} = 51, 43, 33, 14$ см⁻¹ и $\alpha_{\perp} = 13,$ 11, 8, 3 см⁻¹ для значений длины волны соответственно $\lambda = 458, 473, 488, 515$ нм. Те же самые значения коэффициентов поглощения были получены и для образца ЖКМ-1277 + 0.3 % АК, имевшего примерно такую же концентрацию азофрагментов. Для 0.5 % раствора П2 в матрице ЖКМ-1277 $\alpha_{\parallel} = 23$ см⁻¹ и $\alpha_{\perp} = 8$ см⁻¹ ($\lambda = 473$ нм).

Нематическая матрица ЖКМ-1277 (НИОПИК, Россия), использовавшаяся в экспериментах, представляет собой смесь бифенилов и сложных эфиров. Она образует нематическую фазу в широком температурном диапазоне -20 °C-60 °C и характеризуется положительной низкочастотной диэлектрической анизотропией. Показатели преломления необыкновенной и обыкновенной волн для ЖКМ-1277 равны соответственно $n_{\parallel} = 1.71$ и $n_{\perp} = 1.52$ ($\lambda = 589$ нм). Отметим, что присутствие в полимерах П1 и П2 боковых цианобифенильных групп обеспечивало их хорошую растворимость в данной матрице.

Исследования проводились с жидкокристаллическими смесями, содержащими 0.1, 0.5 и 2 % П1, 0.5 % П2 и 0.3 % азосоединения АК. Использовались планарно и гомеотропно ориентированные ячейки толщиной L = 100 мкм. Внутренние стенки кювет были покрыты токопроводящими слоями из окиси индия и олова, что позволяло прикладывать к образцам низкочастотное электрическое поле, изменяя тем самым угол δ между **n** и **E** [53].

В качестве источников излучения использовались аргоновые и твердотельные лазеры, излучавшие на длинах волн $\lambda = 458, 473, 476, 488, 515, 532$ нм. Световой пучок фокусировался в НЖК линзой с фокусным расстоянием f = 18 см. Для поворота его плоскости поляризации использовался двойной ромб Френеля. Плоскость жидкокристаллического слоя была вертикальна, невозмущенный директор \mathbf{n}_0 лежал в горизонтальной плоскости. Угол падения света на кристалл α мог изменяться вращением кюветы с НЖК вокруг вертикальной оси. Световой пучок, прошедший через НЖК, наблюдался на экране.

Светоиндуцированное изменение показателя преломления изучалось с помощью самовоздействия светового пучка, проявлявшегося в формировании характерной системы аберрационных колец в его поперечном сечении [6, 11]. Число аберрационных колец N связано со средним по толщине образца изменением показателя преломления необыкновенной волны Δn простым соотношением $\Delta n = N\lambda/L$. Знак светоиндуцированного показателя преломления (т. е., фактически, направление поворота директора) определялся по трансформации аберрационной картины при сдвиге НЖК перпендикулярно оси падающего светового пучка [12].

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

При облучении кристаллов ЖКМ-1277, легированных полимерами или азокрасителем, возникала характерная аберрационная картина. Картина имела ориентационную природу, о чем свидетельствовала динамика ее формирования и релаксации: время формирования составляло $\tau_d \sim 20$ с–1 мин (в зависимости от мощности излучения и угла падения света); время релаксации — $\tau_r \sim 15$ с.

Определение знака самовоздействия показало, что для образцов, легированных полимерами (гомеотропных и планарных), а также гомеотропно ориентированного образца, содержащего AK, имеет место самодефокусировка светового пучка (отрицательная нелинейность). Соответствующее уменьшение показателя преломления необыкновенной волны, очевидно, обусловлено поворотом директора **n** перпендикулярно световому полю **E**. В случае же планарно ориентированного кристалла, легированного AK, на-

Рис.1. Зависимости числа аберрационных колец N самодефокусировки от мощности светового пучка P ($\lambda = 473$ нм, $\alpha = 50^{\circ}$), прошедшего через гомеотропно ориентированные образцы ЖКМ-1277 с добавкой 0.5% полимера П1 — кривая 1, 0.5% полимера П2 — кривая 2 и 0.3% красителя АК — кривая 3

блюдалась самофокусировка светового пучка (положительная нелинейность; показатель преломления возрастает благодаря повороту директора **n** параллельно полю **E**).

Наблюдение самодефокусировки однозначно указывает на связь ориентационных эффектов в изучаемых жидкокристаллических системах с присутствием поглощающих добавок.

Зависимости числа аберрационных колец N от мощности светового пучка P представлены на рис. 1 и 2. На рисунках видно, что увеличение P приводит к монотонному росту и насыщению N. Из рис. 1 также следует, что вне области насыщения величина отрицательного пелинейно-оптического отклика, обусловленного присутствием полимера П1, примерно в 5 раз больше, чем величина отклика, индуцируемого П2, и примерно в 10 раз больше, чем соответствующая величина для «свободных» молекул азокрасителя. Основная часть экспериментов была проведена с полимером П1 (закономерности для кристалла, содержащего П2, аналогичны, различие лишь в величине нелинейно-оптического отклика).

На рис. 3 изображены зависимости числа аберрационных колец N от мощности светового пучка P для различных углов α падения света на планарный НЖК, легированный П1. Как видно на рисунке, при нормальном падении света ($\alpha = 0$) переориентация директора носит пороговый характер,

Рис.2. Зависимости числа аберрационных колец N от мощности светового пучка P ($\lambda = 473$ нм, $\alpha = 50^{\circ}$), прошедшего через планарно ориентированные образцы ЖКМ-1277 с добавкой 0.5% полимера П1 (самодефокусировка пучка) — кривая 1, 0.5% полимера П2 (самодефокусировка пучка) — кривая 2 и 0.3% красителя АК (самофокусировка) — кривая 3

Рис.3. Зависимости числа аберрационных колец N самодефокусировки от мощности светового пучка P ($\lambda = 476$ нм), прошедшего через планарно ориентированный образец ЖКМ-1277 + 0.5% П1, при различных углах падения: $\alpha = 0$ — кривая 1, $20^{\circ} - 2$, $40^{\circ} - 3$

 $P_{th} = 1.9 \text{ мBт.}$ Аналогичное поведение наблюдалось и для планарного образца, легированного П2; пороговая мощность составляла $P_{th} = 17.5 \text{ мBт.}$ Следует отметить, что при нормальном падении света на

гомеотропные образцы и на планарный кристалл с добавкой AK ориентационное самовоздействие светового пучка не развивалось, поскольку в этих геометриях эксперимента директор **n** изначально ориентирован в том же направлении, к которому его стремится повернуть световое поле **E**.

При достаточно большой мощности P, в области насыщения (рис. 1–3), число аберрационных колец N приближается к максимальному значению N_{sat} , соответствующему полному повороту директора **n** перпендикулярно или параллельно световому полю. Так, например, при нормальном падении светового пучка на планарный НЖК (рис. 3, кривая 1) $N_{sat} = 37$. Максимально возможное число колец, оцененное для $\Delta n = 0.19$ при полном повороте директора **n** на оси пучка перпендикулярно **E**, составляет $N_{max} = 40$.

Отметим, что закономерности светоиндуцированной переориентации директора в НЖК с добавками полимеров (порог при нормальном падении и насыщение переориентации) такие же, как и в случае светоиндуцированного перехода Фредерикса в прозрачных (нелегированных) гомеотропных кристаллах [6, 54].

Эффективность воздействия светового поля возрастает с увеличением концентрации c_p полимера П1 или уменьшением длины световой волны. Так, при увеличении c_p с 0.1 до 2 % пороговая мощность переориентации директора P_{th} уменьшается с 7 до 0.6 мВт (планарный кристалл, $\lambda = 473$ нм). Более медленное, чем рост концентрации c_p , уменьшение P_{th} можно объяснить увеличением затухания световой волны. При $c_p = 0.5$ % уменьшение длины волны от 515 до 476 нм приводит к примерно трехкратному понижению P_{th} , что связано, очевидно, с изменением коэффициентов поглощения света.

Было проведено количественное определение нелинейно-оптического отклика в поле необыкновенной световой волны, индуцированного полимером П1 и азокрасителем АК. Для этого в одних и тех же геометриях взаимодействия директора НЖК и светового поля сравнивались значения мощностей светового пучка, при которых наблюдался одинаковый нелинейно-оптический отклик жидкокристаллической системы (в качестве сравниваемых величин использовались пороговые мощности перехода Фредерикса или мощности, при которых наблюдается одинаковое число аберрационных колец). При этом в случае отрицательной (индуцированной добавками) нелинейности сравнивался отклик в НЖК разной ориентации (например, порог перехода Фредерикса в нелегированном

Рис.4. Зависимость числа аберрационных колец самодефокусировки N от угла поворота плоскости поляризации φ для планарного образца ЖКМ-1277 + 0.5 % П1 (λ = 473 нм, P = 4 мВт, α = 60°). На вставке показана зависимость $N(\varphi)$ для планарного ЖКМ-1277 + 0.3 % АК (λ = 473 нм, P = 4 мВт, α = 60°); ∇ соответствует самодефокусировке пучка, Δ — самофокусировке

гомеотропном и легированном планарном НЖК).

Для $\lambda = 488$ нм порог светоиндуцированного перехода Фредерикса в планарном образце ЖКМ-1277 + 0.5 % П1 равен $P_{th} = 2$ мВт. Порог перехода в гомеотропно ориентированном образце нелегированной матрицы ЖКМ-1277 той же толщины *P*_{th} = 115 мВт. Соответствующий фактор усиления нелинейности (определенный во Введении) равен $\eta = -57.5$. Сравнение зависимостей N(P), измеренных нами при $\alpha = 50^\circ$ и $\lambda = 473$ нм для гомеотропного и планарного образцов ЖКМ-1277 + 0.1 %П1, с соответствующими зависимостями для чистых НЖК привело к значению $\eta = -30$. В случае НЖК, легированных AK, при $\alpha = 50^{\circ}$ и $\lambda = 473$ нм были получены значения $\eta = 10$ и $\eta = -12.5$ соответственно для планарного и гомеотропного образцов. Для планарного и гомеотропного образцов, легированных 0.5% П2, имеем соответственно $\eta = -20$ и $\eta = -10 \ (\alpha = 50^{\circ}$ и $\lambda = 473$ нм).

На рис. 4 представлена зависимость числа колец N от угла поворота плоскости поляризации φ (относительно горизонтальной плоскости) для светового пучка, прошедшего через НЖК. Видно, что в случае планарного образца ЖКМ-1277 + 0.5 % П1 переход от горизонтальной поляризации ($\varphi = 0$, *e*-волна) к вертикальной ($\varphi = 90^\circ$, *o*-волна) приводит к «схло-

Рис.5. Зависимости числа аберрационных колец самодефокусировки N от низкочастотного ($\nu = 3 \ \kappa \Gamma$ ц) напряжения U для планарно ориентированного образца ЖКМ-1277 + 0.5% П1 ($\lambda = 473 \ \text{нм}, P = 1 \ \text{мBT}$) при различных углах падения: $\alpha = 40^\circ - \kappa$ ривая 1, $\alpha = -40^\circ - 2$. На вставке показана зависимость N(U) для планарного ЖКМ-1277 + 0.3% АК ($\lambda = 473 \ \text{нм}, P = 1 \ \text{мBT}$) при $\alpha = 40^\circ - \kappa$ ривая 1 и $\alpha = -40^\circ - 2$; \mathbf{V}, ∇ соответствуют самодефокусировке пучка

пыванию» аберрационной картины (N уменьшается с 33 до 0). Аналогичная зависимость наблюдается и при облучении образца, содержащего П2. Однако зависимость самовоздействия света от его поляризации для планарного образца ЖКМ-1277 + 0.3 % АК (рис. 4, вставка) принципиально отличается. В этом случае поворот плоскости поляризации приводит к изменению знака самовоздействия (самофокусировка сменяется самодефокусировкой).

Принципиальное различие имеет место и при воздействии низкочастотного ($\nu = 3 \ \kappa \Gamma \mu$) поля на планарные НЖК с добавкой гребнеобразных полимеров и АК. В случае ЖКМ-1277 + 0.5 % П1 (рис. 5) и ЖКМ-1277 + 0.5 % П2 при возрастании напряжения U все время наблюдается самодефокусировка светового пучка. Зависимость N(U) является немонотонной; ее вид зависит от знака угла α (кривые 1 и 2). Приложение внешнего низкочастотного напряжения к планарному кристаллу, легированному молекулами АК (рис. 5, вставка), приводит при отрицательном α к смене знака самовоздействия (кривая 2). При положительном α знак самовоздействия (самофокусировка) не изменяется.

Приложение низкочастотного поля к гомеотроп-

ным НЖК приводит к монотонному уменьшению N (подавлению деформации поля директора) независимо от состава образцов.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Таким образом, в НЖК с добавкой гребнеобразных полимеров П1 и П2 независимо от геометрии эксперимента (угла δ между **E** и **n**) наблюдается отрицательная нелинейность. Действительно, для необыкновенно поляризованной волны самодефокусировка наблюдалась и в гомеотропном, и в планарном образцах, в том числе в присутствии низкочастотного электрического поля. Воздействие низкочастотного электрического поля на планарный НЖК позволило установить знак нелинейности при значениях угла δ , недостижимых в планарном и гомеотропном образцах из-за преломления света на их границах ($32^{\circ} < \delta < 58^{\circ}$). При этом различие зависимостей N(U) для положительного и отрицательного углов α (рис. 5) связано с преднаклоном директора, задающим вполне определенное направление поворота n под действием низкочастотного поля [53]; при достаточно больших U директор в объеме НЖК ориентируется перпендикулярно стенкам и светоиндуцированная переориентация подавляется. В случае взаимодействия света с суперпозицией необыкновенной и обыкновенной волн (рис. 4) нелинейность также была отрицательной.

Сравним величину нелинейности, индуцированной полимером П1, с результатами, полученными ранее для других жидкокристаллических систем. Прежде всего, отметим, что фактор усиления нелинейности η пропорционален концентрации поглощающих молекул, поэтому нелинейно-оптический отклик целесообразно характеризовать отношением фактора η к величине поглощения $\eta' = \eta/\alpha$ или, например, величине поглощения $\eta' = \eta/\alpha$ или, например, величиной $\eta_{\alpha} = \eta/(\alpha_{\parallel} + 2\alpha_{\perp})$, пропорциональной отношению фактора η к поглощению $\alpha_{av} = (\alpha_{\parallel} + 2\alpha_{\perp})/3$, усредненному по ориентациям директора. Преимуществом величины η_{α} является ее независимость от геометрии эксперимента в случае постоянства конформационного состава хромофоров.

Для жидкокристаллической системы с полимером П1 измеренное нами при $\lambda = 473$ нм в случае наклонного падения значение $\eta = -30$ соответствует $\eta_{\alpha} = -2.3$ см (значения η' для гомеотропного и планарного НЖК равны -8 и -3.9 см). Параметр η_{α} , определенный при $\lambda = 488$ нм по порогу перехода Фредерикса, оказался меньше в 2.5 раза. В слу-

чае планарного образца ЖКМ-1277 + 0.5 % П2 величина $\eta_{\alpha} = -0.5$ см, в случае гомеотропного имеем $\eta_{\alpha} = -0.25$ см ($\lambda = 473$ нм).

Параметр нелинейности $\eta_{\alpha} = -2.3$ см по абсолютной величине более чем на порядок превышает максимальное, известное нам, значение $\eta_{\alpha} =$ = -0.05 см для отрицательной нелинейности (рассчитано по данным работы [9], в которой нелинейность была индуцирована антрахиноновым красителем D4). Он также превышает максимальное значение для положительной нелинейности $\eta_{\alpha} = 0.8$ см (рассчитано по параметру $\eta' = 3.4$ см [55], нелинейность была обусловлена олиготиофеном TR5).

Рассмотрим теперь нелинейность, индуцированную низкомолекулярным красителем АК. Как было указано выше, АК относится к классу азосоединений. В НЖК с красителями этого класса ранее наблюдалась знакопеременная, зависящая от угла δ , нелинейность [10, 12, 50, 56]. Этот эффект связан с различием свойств транс- и цис-изомеров азомолекул. Присутствие транс-изомеров в нематической матрице индуцирует отрицательную нелинейность, а присутствие цис-изомеров — положительную. В отсутствие облучения молекулы, в основном, находятся в транс-состоянии. Поглощение световых квантов увеличивает концентрацию цис-изомеров, причем соотношение концентраций изомеров становится зависящим от δ (эта зависимость обусловлена меньшим значением параметра ориентационного порядка цис-изомеров в нематической матрице). В результате с увеличением в нелинейность при некотором критическом значени
и δ_c изменяет знак с плюса на минус.

Именно этим эффектом объясняются результаты, полученные для НЖК с добавкой АК. Изменение знака с плюса на минус происходило с увеличением δ при переходе от планарной к гомеотропной ориентации при воздействии низкочастотного поля на планарный НЖК (рис. 5, вставка) и при повороте плоскости поляризации — переходе от необыкновенной волны к обыкновенной (рис. 4, вставка).

Критический угол δ_c можно оценить посредством соотношения

$$\varphi_c = \arccos\left(\frac{\sin\delta_c}{\sin\delta}\right),\tag{2}$$

где φ_c — критический угол поворота плоскости поляризации, при котором меняется знак зависимости $N(\varphi)$. Он равен $\varphi_c = 35^{\circ}$ (рис. 4, вставка), а величина угла преломления δ , определенная из закона Снеллиуса (для угла падения $\alpha = 60^{\circ}$), составляет 58°. В результате получаем $\delta_c = 44^{\circ}$.

Обратимся теперь к возможным причинам различия между нелинейностями, индуцированными полимерами и «свободными» азомолекулами. Для их точного установления необходима детальная информация о фотоконформационной активности и вращательной диффузии фрагментов полимера и азомолекул, их пространственном расположении по отношению к молекулам нематической матрицы, изменении межмолекулярных потенциалов при поглощении световых квантов и т. д. Некоторые предположения, тем не менее, можно высказать, опираясь на модели знакопеременности нелинейности [50] и светоиндуцированной переориентации директора [57].

Согласно работе [50] на нелинейность, индуцированную азосоединениями, влияет соотношение концентраций транс- и цис-изомеров, зависящее, в свою очередь, от их сечений фотоизомеризации и параметров ориентационного порядка.

Однако процессы фотоизомеризации азосоединений должны определяться, в основном, частью молекулы, непосредственно связанной с азогруппой, а она одинакова для азофрагментов полимеров и молекулы AK. Поэтому вопрос о влиянии усложнения молекулярной структуры на соотношение изомеров в световом поле требует отдельного изучения. Влияние развязок на параметры порядка в нашем случае представляется маловероятным из-за упоминавшегося выше совпадения спектров поглощения полимера П1 и молекул AK.

По нашему мнению, важную роль в увеличении нелинейности играет различие в симметрии расположения молекул нематической матрицы по отношению к «свободной» молекуле и к связанному фрагменту — «свободная» молекула окружена молекулами матрицы со всех сторон; в случае боковых азобензольных групп полимеров этому мешает основная полимерная цепь.

Поясним это подробнее. Согласно работе [57], причиной светоиндуцированной переориентации директора является вращающий момент, возникающий вследствие изменения межмолекулярных сил при ориентационно-селективном возбуждении молекул поляризованным светом. При этом необходимым условием возникновения такого момента является нецентральность потенциала межмолекулярного взаимодействия [58].

Рассмотрим сначала момент, возникающий при возбуждении «свободной» молекулы красителя. Пусть направление ее длинной оси задается единичным вектором $\mathbf{l}^{(d)}$ (рис. 6). Потенциал дисперсионного взаимодействия между флуктуаци-

Рис. 6. Геометрия взаимодействия возбужденных молекулы красителя или фрагмента полимера с окружающими молекулами нематической матрицы: $\mathbf{l}^{(d)}$ и $\mathbf{l}^{(m)}$ — единичные векторы, параллельные длинным полуосям молекул красителя (фрагмента) и матрицы; \mathbf{R} — радиус-вектор, соединяющий центры молекул красителя (фрагмента) и матрицы; $\mathbf{m} = \mathbf{R}/R$; \mathbf{n} — директор НЖК; β — угол между длинной осью молекулы красителя и директором; a и b — длинная и короткая оси эллипсоида вращения, на котором могут быть расположены молекулы матрицы; Ω_0 — полярный угол, в пределах которого (в случае полимера) не могут находиться молекулы матрицы

онными дипольными моментами молекул красителя и нематической матрицы имеет вид

$$U^{(d,m)} = -\frac{B}{R^6} \left[\left(\mathbf{l}^{(d)} \cdot \mathbf{l}^{(m)} \right)^2 - 6 \left(\mathbf{l}^{(d)} \cdot \mathbf{l}^{(m)} \right) \times \left(\mathbf{m} \cdot \mathbf{l}^{(d)} \right) \left(\mathbf{m} \cdot \mathbf{l}^{(m)} \right) + 9 \left(\mathbf{m} \cdot \mathbf{l}^{(d)} \right)^2 \left(\mathbf{m} \cdot \mathbf{l}^{(m)} \right)^2 \right], \quad (3)$$

где B — коэффициент, зависящий от квантового состояния молекулы красителя, $\mathbf{l}^{(m)}$ — единичный вектор, параллельный длинной оси молекулы матрицы, и $\mathbf{m} = \mathbf{R}/R$, где $\mathbf{R} = \mathbf{r}_m - \mathbf{r}_d$ — вектор, соединяющий центры молекул красителя и матрицы.

Нецентральность потенциала (3), т.е. непараллельность сил, действующих на молекулы красителя ($\mathbf{F}^{(d)} = -\partial U^{(d,m)}/\partial \mathbf{r}_d$), матрицы ($\mathbf{F}^{(m)} = -\partial U^{(d,m)}/\partial \mathbf{r}_m$) и на вектор **R**, приводит к возникновению ненулевого вращающего момента, действующего на рассматриваемую пару молекул,

$$\mathbf{M}^{(d,m)} = \left[\mathbf{m} \times \frac{\partial U^{(d,m)}}{\partial \mathbf{m}}\right].$$
 (4)

Изменение этого момента, вызванное возбуждением молекулы красителя (изменением на величину ΔB коэффициента B в формуле (3)), равно

$$\Delta \mathbf{M}^{(d,m)} = \frac{6\Delta B}{R^6} \left(\left(\mathbf{l}^{(d)} \cdot \mathbf{l}^{(m)} \right) - 3 \left(\mathbf{m} \cdot \mathbf{l}^{(d)} \right) \times \left(\mathbf{m} \cdot \mathbf{l}^{(m)} \right) \right) \left(\left(\left(\mathbf{m} \cdot \mathbf{l}^{(m)} \right) \left[\mathbf{m} \times \mathbf{l}^{(d)} \right] + \left(\mathbf{m} \cdot \mathbf{l}^{(d)} \right) \left[\mathbf{m} \times \mathbf{l}^{(m)} \right] \right).$$
(5)

Величину $\Delta \mathbf{M}^{(d,m)}$ необходимо усреднить по взаимной ориентации молекул красителя и матрицы. Для этого предположим, что центры соседних молекул матрицы (число которых будем считать равным $N_n \sim 6$) с равной вероятностью расположены на поверхности эллипсоида вращения (вытянутого вдоль $\mathbf{I}^{(d)}$, рис. 6) с полуосями *a* и *b* (*a* > *b*). В этом случае усредненный момент имеет вид

$$\langle \Delta \mathbf{M}^{(d,m)} \rangle = \frac{N_n}{S_{el}} \int\limits_{S} \Delta \mathbf{M}^{(d,m)} dS, \tag{6}$$

где интегрирование осуществляется по поверхности эллипсоида, а S_{el} — площадь этой поверхности. Введем систему координат, ось Z которой параллельна длинной оси молекулы красителя (вектору $\mathbf{l}^{(d)}$), ось X перпендикулярна оси Z и лежит в плоскости, определяемой $\mathbf{l}^{(d)}$ и директором \mathbf{n} , а ось Y перпендикулярна плоскости XZ (рис. 6). В этой системе координат, полагая для простоты вычислений $\mathbf{l}^{(m)} = \mathbf{n}$

$$l_x^{(d)} = 0, \qquad l_y^{(d)} = 0, l_z^{(d)} = 1, \qquad l_x^{(m)} = \sin \beta, l_y^{(m)} = 0, \qquad l_z^{(m)} = \cos \beta, \qquad (7) m_x = \sin \Omega \cos \varphi, \qquad m_y = \sin \Omega \sin \varphi, m_z = \cos \Omega,$$

где
 β — угол между $\mathbf{l}^{(d)}$ и
 $\mathbf{n},$ а Ω и φ — полярный и азимутальный уг
лы.

Подставляя (7) в (6), получаем

$$\langle \Delta \mathbf{M}^{(d,m)} \rangle = \frac{3\Delta B}{b^6} g(\mu) \left(\mathbf{l}^{(m)} \cdot \mathbf{l}^{(d)} \right) \left[\mathbf{l}^{(m)} \times \mathbf{l}^{(d)} \right], \quad (8)$$

где

211

 14^{*}

$$g(\mu) = \left\{ \int_{0}^{\pi} d\Omega \sin \Omega (1 - \mu \cos^{2} \Omega) \times (1 - \mu (2 - \mu) \cos^{2} \Omega)^{1/2} (15 \cos^{4} \Omega - 12 \cos^{2} \Omega + 1) \right\} \times \left\{ \int_{0}^{\pi} d\Omega \sin \Omega \frac{(1 - \mu (2 - \mu) \cos^{2} \Omega)^{1/2}}{(1 - \mu \cos^{2} \Omega)^{2}} \right\}^{-1}$$
(9)

и $\mu = (a^2 - b^2)/a^2$. Соотношение (8), очевидно, остается справедливым при любой ориентации молекулы матрицы. Вероятность того, что молекула красителя находится в возбужденном состоянии (в предположении, что ее осциллятор поглощения параллелен $\mathbf{l}^{(d)}$), равна

$$w(\mathbf{l}^{(d)}) = \frac{S_p \tau^* \sigma_0}{\hbar \omega} \left(\mathbf{e} \cdot \mathbf{l}^{(d)} \right)^2, \qquad (10)$$

где $S_p = cn|A|^2/8\pi$ — величина вектора Пойнтинга, е — вектор поляризации, ω — частота, n — показатель преломления, A — комплексная амплитуда световой волны, $\sigma_0 = (\alpha_{\parallel} + 2\alpha_{\perp})/c_d$, c_d — концентрация молекул красителя, а τ^* — минимальное из двух времен — времени жизни молекулы красителя в возбужденном состоянии и времени вращательной диффузии. Домножая (8) на (10) и c_d и усредняя затем по ориентации молекул красителя и матрицы, приходим к выражению (1), в котором

$$\begin{aligned} \zeta &= \Delta \varepsilon_{eff} = \\ &= \frac{2N_n \Delta Bg(\mu) cn\tau^* (\alpha_{\parallel} + 2\alpha_{\perp}) S_m (7 + 5S_d - 12S_d')}{35b^6 \hbar \omega}, \end{aligned}$$
(11)

где $S_d = \langle P_2((\mathbf{n} \cdot \mathbf{l}^{(d)})^2) \rangle$, $S_m = \langle P_2((\mathbf{n} \cdot \mathbf{l}^{(m)})^2) \rangle$ и $S'_d = \langle P_4((\mathbf{n} \cdot \mathbf{l}^{(d)})^2) \rangle$ — параметры порядка молекул красителя и матрицы, выраженные через усредненные полиномы Лежандра.

Из формул (9) и (11) следует, что при a = b величина $\Delta \varepsilon_{eff} = 0$. Таким образом, необходимым условием возникновения оптической нелинейности является анизотропия корреляционной функции, т.е. зависимость расстояния между молекулами с заданными ориентациями длинных осей от направления. Используя формулу (11) и значения $N_n = 6$, $\Delta B/a^6 \sim k_B T \sim 4 \cdot 10^{-14}$ эрг, $c = 3 \cdot 10^{10}$ см/с, n = 1.5, $\tau^* \sim 10^{-8}$ с, $\hbar \omega = 4 \cdot 10^{-12}$ эрг ($\lambda = 473$ нм), $S_m \sim S_d \sim S'_d \sim 0.5$, g = 1 для параметра $\eta_{\alpha} = \Delta \varepsilon_{eff} / \Delta \varepsilon (\alpha_{\parallel} + 2\alpha_{\perp})$, получаем $\eta_{\alpha} \sim 3$, что по порядку величины соответствует экспериментальным данным.

Соотношение (11) относится к молекулам низкомолекулярных красителей (к «свободным» азофрагментам). В случае полимера окружающие молекулы нематической матрицы не распределены в пределах полного телесного угла 4π (этому препятствует полимерная цепь). Для оценки влияния этого фактора интегрирование по полярному углу Ω в формуле (9) следует проводить не от 0 до π , а в интервале $\Omega_0 < \Omega < \pi$. При этом величина g, входящая в качестве множителя в формулу (11), становится отличной от нуля даже при $\mu = 0$:

$$g = \frac{3\cos^5 \Omega_0 - 4\cos^3 \Omega_0 + \cos \Omega_0}{2}.$$
 (12)

В первом неисчезающем по μ и Ω_0 приближении $g = -\Omega_0^2 - 16\mu/105$. Следовательно, прикрепление азофрагмента к полимерной цепи может увеличить величину ориентационной нелинейности.

Различие нелинейностей, индуцированных полимерами П1 и П2, обусловлено, очевидно, различием длины развязок, соединяющих хромофоры с алкильной цепочкой. Более короткие развязки П1 в большей степени ограничивают расположение молекул матрицы вокруг хромофоров, что и приводит к большей нелинейности.

Отметим, что объяснение знакопостоянства нелинейности, индуцированной полимерами, в рамках рассматриваемой модели требует, в частности, достаточно сложного учета различия пространственной структуры транс- и цис-изомеров.

5. ЗАКЛЮЧЕНИЕ

Таким образом, в настоящей работе детально исследована светоиндуцированная переориентация директора НЖК с добавками гребнеобразных полимеров П1 и П2, содержащих поглощающие свет боковые азофрагменты, и азосоединения АК, аналогичного по строению азофрагментам.

Установлено, что ориентационная оптическая нелинейность, индуцированная полимерами, отрицательна (директор поворачивается перпендикулярно световому полю), в то время как знак нелинейности, индуцированной АК, зависит от геометрии взаимодействия директора и светового поля. В планарно ориентированных образцах с добавкой полимеров наблюдаются все характерные черты светоиндуцированного перехода Фредерикса.

Отношение величины индуцированной нелинейности к усредненному по ориентации директора коэффициенту поглощения больше для полимера П1 с меньшей длиной развязки, чем у полимера П2, и превышает соответствующие значения для азосоединения АК и других ранее исследованных красителей.

Показано, что различие в величинах ориентационных оптических нелинейностей, обусловленных полимерами и «свободными» азомолекулами, можно объяснить изменением симметрии расположения молекул матрицы относительно азофрагмента при его связывании с полимерной цепью.

Результаты настоящей работы свидетельствуют о перспективности сложных жидкокристаллических систем, содержащих макромолекулы, для увеличения эффективности оптической ориентации жидкокристаллических систем.

Авторы благодарны С. Г. Костромину и А. И. Стаханову за синтез сополимеров и азобензольного мономера АК. Работа выполнена при финансовой поддержке РФФИ (гранты №№ 05-02-17418, 05-03-33193), в рамках Федеральной научно-технической программы (контракт № 02.434.11.2025) и программы поддержки молодых ученых Президиума РАН (И. А. Будаговский, М. П. Смаев).

ЛИТЕРАТУРА

- 1. P. G. De Gennes, Rev. Mod. Phys. 64, 645 (1992).
- 2. П. Де Жен, Физика жидких кристаллов, Мир, Москва (1977).
- Л. М. Блинов, Электро- и магнитооптика жидких кристаллов, Наука, Москва (1978).
- I. C. Khoo and S. L. Zhuang, Appl. Phys. Lett. 37, 3 (1980).
- **5**. Б. Я. Зельдович, Н. Ф. Пилипецкий, А. В. Сухов, Н. В. Табирян, Письма в ЖЭТФ **31**, 287 (1980).
- А. С. Золотько, В. Ф. Китаева, Н. Кроо и др., Письма в ЖЭТФ 32, 170 (1980).
- I. Janossy, A. D. Lloyd, and B. S. Wherrett, Mol. Cryst. Liq. Cryst. 179, 1 (1990).
- I. Janossy, L. Csillag, and A. D. Lloyd, Phys. Rev. A 44, 8410 (1991).
- 9. I. Janossy and T. Kosa, Opt. Lett. 17, 1183 (1992).
- 10. М. И. Барник, А. С. Золотько, В. Г. Румянцев, Д. Б. Терсков, Кристаллография 40, 746 (1995).
- 11. А. С. Золотько, В. Ф. Китаева, Н. Н. Соболев, А. П. Сухоруков, ЖЭТФ 81, 933 (1981).

- 12. V. F. Kitaeva, A. S. Zolot'ko, and M. I. Barnik, Mol. Mater. 12, 271 (2000).
- N. V. Tabiryan, B. Ya. Zeldovich, M. Kreuzer et al., J. Opt. Soc. Amer. B 13, 1426 (1996).
- 14. I. A. Budagovsky, A. S. Zolot'ko, V. F. Kitaeva, and M. P. Smayev, Mol. Cryst. Liq. Cryst. 453, 71 (2006).
- С. М. Аракелян, С. Д. Дарбин, И. Р. Шен, Письма в ЖТФ 8, 1353 (1982).
- 16. I. C. Khoo and J. L. Zhuang, IEEE J. Quant. Electron. QE-18, 246 (1982).
- 17. Т. В. Галстян, А. В. Сухов, ЖТФ 60, 81 (1990).
- M. A. Venables and D. L. Tunnicliffe, J. Phys. D: Appl. Phys. 22, 225 (1989).
- 19. S. H. Chen and Y. Shen, J. Opt. Soc. Amer. B 14, 1750 (1997).
- 20. A. Miniewicz, S. Bartkiewicz, and J. Parka, Opt. Comm. 149, 89 (1998).
- 21. I. C. Khoo and Y. Liang, Phys. Rev. E 62, 6722 (2000).
- 22. L. Lucchetti, M. Gentili, and F. Simoni, Mol. Cryst. Liq. Cryst. 429, 313 (2005).
- 23. C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. E 72, 066614 (2005).
- 24. M. Peccianti, C. Conti, G. Assanto et al., Nature 432, 733 (2004).
- 25. W. Hu, T. Zhang, Q. Guo et al., Appl. Phys. Lett. 89, 071111 (2006).
- 26. A. Fratalocchi and G. Assanto, Opt. Lett. 31, 1489 (2006).
- 27. A. De Luca, G. Coschignano, C. Umeton, and M. Morabito, Opt. Exp. 14, 5548 (2006).
- 28. M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assanto, Nature Phys. 2, 737 (2006).
- 29. J. F. Henninot, J. F. Blach, and M. Warenghem, J. Opt. A: Pure Appl. Opt. 9, 20 (2007).
- 30. А. С. Золотько, В. Ф. Китаева, Н. Кроо и др., ЖЭТФ 87, 859 (1984).
- 31. A. S. Zolot'ko, V. F. Kitaeva, N. N. Sobolev et al., Liq. Cryst. 15, 787 (1993).
- 32. G. Russo, V. Carbone, and G. Cipparrone, Phys. Rev. E 62, 5036 (2000).
- 33. A. Vella, A. Setaro, B. Piccirillo, and E. Santamato, Phys. Rev. E 67, 051704 (2003).

- 34. I. C. Khoo and A. Diaz, Phys. Rev. E 68, 042701 (2003).
- 35. B. Piccirillo, A. Vella, and E. Santamato, Phys. Rev. E 69, 021702 (2004).
- 36. G. Demeter, D. O. Krimer, and L. Kramer, Phys. Rev. E 72, 051712 (2005).
- 37. E. Brasselet and L. J. Dube, Phys. Rev. E 73, 021704 (2006).
- 38. B. Piccirillo, A. Vella, A. Setaro, and E. Santamato, Phys. Rev. E 73, 062701 (2006).
- 39. I. C. Khoo, P. Y. Yan, T. H. Liu et al., Phys. Rev. A 29, 2756 (1984).
- 40. A. J. Karn, S. M. Arakelian, Y. R. Shen, and H. L. Ong, Phys. Rev. Lett. 57, 448 (1986).
- 41. J. J. Wu and S. H. Chen, J. Appl. Phys. 66, 1065 (1989).
- 42. А. С. Золотько, А. П. Сухоруков, Письма в ЖЭТФ
 52, 707 (1990).
- 43. D. B. Terskov, A. S. Zolot'ko, M. I. Barnik, and V. G. Rumyantsev, Mol. Mater. 6, 151 (1996).
- 44. E. Brasselet, B. Doyon, T. V. Galstian, and L. J. Dube, Phys. Rev. E 67, 031706 (2003).
- 45. А. С. Золотько, М. П. Смаев, В. Ф. Китаева, М. И. Барник, КЭ 34, 1151 (2004).
- 46. A. S. Zolot'ko, A. S. Averyushkin, V. F. Kitaeva et al., Mol. Cryst. Liq. Cryst. 451, 41 (2006).

- 47. И. А. Будаговский, А. С. Золотько, Н. И. Люханов и др., Жидкие кристаллы и их практическое использование, Вып. 4, 22 (2006).
- 48. А. М. Макушенко, Б. С. Непорент, О. В. Столбова, Опт. и спектр. 31, 741 (1971).
- 49. I. Janossy and E. Benkler, Europhys. Lett. 62, 698 (2003).
- 50. I. Janossy and L. Szabados, Phys. Rev. E 58, 4598 (1998).
- 51. V. Shibaev, A. Bobrovsky, and N. Boiko, Prog. Polym. Sci. 28, 729 (2003).
- 52. T. Ikeda, J. Mater. Chem. 13, 2037 (2003).
- 53. M. I. Barnik, S. A. Kharchenko, V. F. Kitaeva, and A. S. Zolot'ko, Mol. Cryst. Liq. Cryst. 375, 363 (2002).
- 54. В. Ф. Китаева, А. С. Золотько, Н. Н. Соболев, УФН 138, 324 (1982).
- T. Kosa, P. Palffy-Muhoray, H. Zhang, and T. Ikeda, Mol. Cryst. Liq. Cryst. 421, 107 (2004).
- 56. M. Becchi, I. Janossy, D. S. Shankar Rao, and D. Statman, Phys. Rev. E 69, 051707 (2004).
- **57**. А. С. Золотько, Письма в ЖЭТФ **68**, 410 (1998).
- 58. И. П. Базаров, Э. В. Геворкян, Статистическая физика жидких кристаллов, Изд-во МГУ, Москва (1992).