СВЯЗАННЫЕ МНОГОВОЛНОВЫЕ ВЗАИМОДЕЙСТВИЯ В АПЕРИОДИЧЕСКИ ПОЛЯРИЗОВАННЫХ НЕЛИНЕЙНО-ОПТИЧЕСКИХ КРИСТАЛЛАХ

А. А. Новиков^а^{*}, А. С. Чиркин^{b**}

^а Международный лазерный центр, Московский государственный университет им. М. В. Ломоносова 119992, Москва, Россия

^b Физический факультет, Московский государственный университет им. М. В. Ломоносова 119992, Москва, Россия

Поступила в редакцию 2 мая 2007 г.

Исследован новый вид связанных нелинейно-оптических взаимодействий, который можно осуществить в кристаллах с апериодической модуляцией нелинейной восприимчивости. Условие квазисинхронизма реализуется одновременно для нескольких вовлеченных во взаимодействие традиционных трехчастотных процессов благодаря апериодическому изменению нелинейности в пространстве. Изучен простой способ создания апериодически поляризованных нелинейно-оптических кристаллов, основанный на методе суперпозиции модуляции нелинейности одновременно несколькими периодическими функциями, каждая из которых по отдельности соответствует своему квазисинхронному нелинейному процессу. Подробно изучена динамика энергообмена при взаимодействии пяти волн с разными частотами, состоящего из трех связанных параметрических трехчастотных процессов. Найдено соотношение между эффективными нелинейными коэффициентами связи волн и амплитудами волн накачек, для которого начальный этап взаимодействия носит характер параметрической неустойчивости. Показано, что вторичное упрощение связанных дифференциальных уравнений с пространственно-модулированными нелинейными коэффициентами, которое приводит их к системе уравнений с постоянными нелинейными коэффициентами, правильно описывает динамику взаимодействия волн на расстояниях около пятидесяти характерных нелинейных длин.

PACS: 42.25.-p, 42.15.Eq, 42.65.-k, 42.79.Nv

1. ВВЕДЕНИЕ

Как известно [1, 2], для реализации эффективного взаимодействия световых волн в нелинейных кристаллах необходимо выполнение условий фазового синхронизма, для чего традиционно используют двулучепреломляющие кристаллы. В последние два десятилетия в связи с развитием техники создания нелинейно-оптических кристаллов с регулярной доменной структурой (РДС-кристаллов) широкое распространение получили так называемые квазисинхронные взаимодействия, в которых волновая расстройка взаимодействующих волн компенсируется вектором обратной решетки периодически изменяющегося в пространстве нелинейного коэффициента связи волн, обеспечивая тем самым эффективный энергообмен между взаимодействующими волнами [2–4]. Применение квазисинхронных взаимодействий существенно расширяет возможности нелинейной оптики, позволяя использовать наибольшие нелинейные коэффициенты и реализовывать нелинейно-оптические процессы даже тогда, когда условия обычного фазового синхронизма за счет двулучепреломления не могут быть выполнены.

Путем подбора периода изменения нелинейного коэффициента в РДС-кристаллах в геометрии коллинеарного взаимодействия можно осуществить одновременно два связанных волновых процесса — так называемые последовательные взаимодействия (см. обзор [5]). Для этого вектор обратной решетки должен компенсировать волновые расстройки одновре-

^{*}E-mail: alexey_novikov@bk.ru

^{**}E-mail: aschirkin@rambler.ru

менно двух нелинейных процессов. В силу дисперсионных свойств такую компенсацию удается осуществить лишь в некоторых нелинейно-оптических кристаллах и для ограниченного числа длин взаимодействующих волн.

Одновременное осуществление двух и более нелинейно-оптических процессов возможно с использованием кристаллов, у которых нелинейный коэффициент в пространстве меняется по апериодическому закону (так называемые апериодически поляризованные кристаллы) [6-16]. При апериодической модуляции нелинейного коэффициента кристалл обладает большим набором векторов обратной решетки, позволяющих скомпенсировать волновые расстройки для нескольких волновых процессов. На данный момент предложены апериодические доменные структуры типа Фибоначчи [6–11], принцип построения которых основан на закономерности числовой последовательности Фибоначчи, а также структуры, апериодическое построение которых основано на других, более сложных алгоритмах [12–15]. Для апериодических структур типа Фибоначчи набор векторов обратной решетки определяется двумя целыми числами, оптимальный подбор которых необходим для компенсации волновых расстроек и, как следствие, осуществления нелинейного процесса [7, 9]. Для произвольных длин взаимодействующих волн выбор таких чисел может приводить к существенному уменьшению эффективного нелинейного коэффициента или/и вовсе к невозможности одновременного осуществления нескольких процессов из-за частотной дисперсии кристалла [7]. В связи с этим апериодические структуры типа Фибоначчи при произвольных длинах волн накачек позволяют достаточно просто осуществить только один трехчастотный процесс. Сказанное относится и к апериодическим структурам, сформированным по более сложным алгоритмам [12-15].

Настоящая работа посвящена систематическому изучению динамики многоволновых взаимодействий, которые можно реализовать в кристаллах с апериодической нелинейной структурой, формируемой довольно простым методом [16], который будем называть методом суперпозиции модуляций (MCM) (см. ниже разд. 3). Впервые, по-видимому, подобный подход был предложен в работе [17], где на его основе в кристалле ниобата лития была создана соответствующая нелинейная структура и одновременно осуществлены два нелинейных процесса: параметрическая генерация света и генерация второй оптической гармоники. Однако возможности MCM в полной мере не были изучены.

Ниже продемонстрирована возможность управления величинами эффективных нелинейных коэффициентов в апериодических кристаллах, созданных МСМ, и проведено сравнение этих нелинейных коэффициентов с их значениями в РДС-кристаллах (разд. 3). Кроме того, показано, что в кристалле ниобата лития можно сформировать апериодическую доменную структуру, с использованием которой можно одновременно реализовать несколько связанных нелинейно-оптических процессов. Такие взаимодействия вызывают интерес как в прикладной, так и в квантовой нелинейной оптике соответственно для создания компактных многоцветных источников когерентного излучения и многомодовых перепутанных фотонных состояний. Последние являются ключевым ресурсом для квантовой информации.

В связи с этим в предлагаемой работе основное внимание уделено исследованию связанных параметрических процессов и изучению динамики энергообмена между волнами в этих процессах (разд. 4). Заключение (разд. 5), помимо обобщения основных результатов, содержит обсуждение возможности практической реализации изученного процесса в апериодически поляризованном кристалле ниобата лития.

2. НЕЛИНЕЙНО-ОПТИЧЕСКИЕ КРИСТАЛЛЫ С РЕГУЛЯРНОЙ ДОМЕННОЙ СТРУКТУРОЙ

В РДС-кристаллах модуляция нелинейного коэффициента достигается за счет того, что при переходе от одного домена к другому знак нелинейного коэффициента связи волн периодически меняется на противоположный. Это обусловлено связью знака квадратичной восприимчивости и направления вектора спонтанной поляризации домена. Зависимость нелинейного коэффициента от продольной координаты кристалла аналитически можно записать в виде

$$\chi^{(2)} = dg(z), \tag{1}$$

где d — коэффициент, связанный с квадратичной нелинейностью, а g(z) — периодическая функция с периодом Λ , характеризующая изменение знака (модуляцию) нелинейного коэффициента по длине кристалла и принимающая значение +1 или -1 в соседних доменах кристалла с толщинами соответственно l_+ и l_- (см. рис. 1*a*). Ось *z* направлена вдоль направления распространения волн в процессе их нелинейного взаимодействия.

Рис. 1. Функции g(z), характеризующие изменение знака нелинейного коэффициента связи волн: a — периодическое, δ — апериодическое (формула (9)). На рис. 1a $\Lambda = l_+ + l_-$ — период модуляции, l_+ (l_-) — толщина «положительного») («отрицательного») домена

Разложим функцию g(z) в ряд Фурье:

$$g(z) = \sum_{p=-\infty}^{\infty} g_p \exp(i2\pi p z/\Lambda), \qquad (2)$$

где

$$g_p = \frac{1 - \exp(-i2\pi p l_+ / \Lambda)}{i\pi p}$$

— спектральный коэффициент, p — целое число, $2\pi p/\Lambda$ — дискретный набор векторов обратной «нелинейной» решетки. Эффективное нелинейное взаимодействие световых волн реализуется, когда один из векторов набора компенсирует волновую расстройку Δk взаимодействующих волн, т.е. при условии нахождения такого числа m, что справедливо равенство

$$\Delta k = 2\pi m / \Lambda. \tag{3}$$

Соотношение (3) называют условием квазисинхронизма, а целое число m — порядком квазисинхронизма. При выполнении условия (3) нелинейное взаимодействие волн происходит так же, как в однородном по нелинейным свойствам кристалле с эффективной нелинейностью dg_m . При этом максимальное значение спектрального коэффициента g_m , равное $2/\pi m$, имеет место при $l_+ = l_- = \Lambda/2$ (при одинаковых толщинах «положительного» — с положительным знаком нелинейности — и «отрицательного» доменов. Таким образом возможна эффективная реализация коллинеарного трехчастотного взаимодействия волн, для компенсации волновой расстройки которого всегда можно подобрать соответствующее значение периода модуляции Λ нелинейного коэффициента.

Более того, оказалось (см. обзор [5]), что в РДС-кристаллах можно реализовать два коллинеарных квазисинхронных процесса, если при одинаковом значении периода одновременно удовлетворить условию $\Delta k_j = 2\pi m_j / \Lambda$ (j = 1, 2 — номер процесса) для двух волновых расстроек. Это возможно при выполнении соотношения

$$\Delta k_1 / \Delta k_2 = m_1 / m_2, \tag{4}$$

которое можно достичь посредством подбора порядков квазисинхронизма $m_{1,2}$ и длин волн, участвующих во взаимодействии. При этом в силу обратной зависимости эффективного нелинейного коэффициента от порядка квазисинхронизма $(dg_{m_i} = 2d/\pi m_j)$ числа $m_{1,2}$ нужно подбирать как можно меньшими по абсолютному значению. В связи с этим и из-за дисперсионных свойств кристаллов осуществление такого подбора для произвольных длин взаимодействующих волн удается выполнить лишь в частных случаях (см., например, [5]). Реализация более чем двух коллинеарных квазисинхронных нелинейных процессов в РДС-кристаллах представляется еще более затруднительной задачей. Вместе с тем такие взаимодействия могут быть осуществлены в кристаллах с апериодической доменной структурой.

3. АПЕРИОДИЧЕСКИ ПОЛЯРИЗОВАННЫЕ НЕЛИНЕЙНО-ОПТИЧЕСКИЕ КРИСТАЛЛЫ И ВЕКТОРЫ ОБРАТНОЙ «НЕЛИНЕЙНОЙ» РЕШЕТКИ

Основная особенность апериодически поляризованных кристаллов состоит в том, что функция g(z), описывающая изменение знака нелинейного коэффициента, при разложении в ряд Фурье содержит такой набор векторов обратной «нелинейной» решетки, в котором достаточно просто найти векторы для компенсации волновой расстройки в каждом из нескольких нелинейных процессов. Однако, как уже отмечалось во Введении, основным недостатком кристаллов с апериодической модуляцией нелинейного коэффициента, детально исследованных к настоящему моменту, является ограниченность их применения в силу дисперсионных свойств, что не дает возможности осуществить одновременно несколько нелинейных процессов.

Для одновременной реализации нескольких нелинейно-оптических волновых взаимодействий апериодическая структура кристалла должна удовлетворять следующим требованиям: 1) иметь нужный набор значений векторов обратной решетки; 2) обладать высоким значением спектрального коэффициента, определяющего эффективный нелинейный коэффициент; 3) давать возможность использовать во взаимодействиях различные длины волн. Эти требования накладывают существенные математические ограничения на функцию g(z), которая может принимать только значения +1 и -1 из-за связи знака коэффициента нелинейной восприимчивости с направлением вектора поляризации домена кристалла. В этом разделе изложена идея нового метода создания апериодической структуры кристалла и исследованы ее свойства, позволяющие сравнительно просто удовлетворить перечисленным выше требованиям.

В аналитическом виде функция, характеризующая периодическое изменение нелинейного коэффициента в РДС-кристалле с одинаковыми толщинами «положительного» и «отрицательного» доменов $(l_+ = l_- = \Lambda/2)$, может быть записана в виде

$$g(z) = \operatorname{sign}\left[\sin(2\pi z/\Lambda)\right],\tag{5}$$

где функция $\mathrm{sign}[x]=1$ при $x\geq 0$ и $\mathrm{sign}[x]=-1$ при x<0.

Рассматриваемый в настоящей работе метод создания апериодической структуры основан на обобщении соотношения (5) на случай произвольного числа протекающих одновременно нелинейно-оптических процессов, а именно:

$$g(z) = \operatorname{sign}\left[\sum_{j=1}^{N} a_j \sin\left(\frac{2\pi z}{\Lambda_j} + \varphi_j\right)\right], \quad (6)$$

где a_i и φ_i — соответственно амплитуда и фаза гармонической составляющей, N — число трехчастотных процессов, для которых одновременно должна компенсироваться волновая расстройка, $\Lambda_i = 2\pi/|\Delta k_i|$ — период модуляции, необходимый для реализации j-го процесса, Δk_j — волновая расстройка в *j*-м процессе. Обсуждаемый метод, имея в виду соотношение (6), будем называть МСМ. Следует ожидать, что в фурье-спектре апериодической функции g(z) (6) будут присутствовать такие векторы обратной «нелинейной» решетки, которые компенсируют соответствующие волновые расстройки Δk_i . Поскольку значения периодов Λ_i не связаны между собой, возможен подбор векторов обратной «нелинейной» решетки независимо от длин волн, участвующих в рассматриваемых процессах.

В качестве примера рассмотрим сначала кристалл с апериодической функцией изменения нелинейного коэффициента вида

$$g(z) = \operatorname{sign}\left[a_1 \sin \frac{2\pi z}{\Lambda_1} + a_2 \sin \frac{2\pi z}{\Lambda_2}\right], \qquad (7)$$

с помощью которой возможно одновременное осуществление двух нелинейно-оптических процессов. На рис. 2, 3 представлен фурье-спектр этой функции:

$$F(K) = \frac{1}{L} \int_{0}^{L} g(z) \exp(-iKz) \, dz,$$
 (8)

где К — пространственная частота спектра (непрерывный набор значений векторов обратной «нелинейной» решетки), *L* — длина кристалла. Для сравнения на тех же рисунках приведены фурье-спектры, соответствующие периодическим функциям (5) изменения нелинейного коэффициента для реализации отдельных квазисинхронных процессов. При расчетах спектров использованы следующие значения параметров: L = 1 см, периоды $\Lambda_1 = 6.5$ мкм и $\Lambda_2 = 1.5$ мкм. Значения этих периодов соответствуют волновым расстройкам для процессов генерации второй гармоники $\omega + \omega \rightarrow 2\omega$ и третьей гармоники $\omega + 2\omega \rightarrow 3\omega$ в кристалле ниобата лития при длине волны основного излучения $\lambda = 2\pi c/\omega = 1.064$ мкм (периоды вычислены с использованием дисперсионных соотношений работы [18]).

Рис.2. Модуль фурье-спектра функции g(z): $1 - g(z) = \operatorname{sign}[\sin(2\pi z/\Lambda_1) + \sin(2\pi z/\Lambda_2)], 2 - g(z) = \operatorname{sign}[\sin(2\pi z/\Lambda_1)], 3 - g(z) = \operatorname{sign}[\sin(2\pi z/\Lambda_2)]$

Рис.3. Модуль фурье-спектра функции g(z): $1 - g(z) = \text{sign}[\sin(2\pi z/\Lambda_1) + 2\sin(2\pi z/\Lambda_2)], 2 - g(z) = \text{sign}[\sin(2\pi z/\Lambda_1)], 3 - g(z) = \text{sign}[\sin(2\pi z/\Lambda_2)]$

Кривые на рис. 2, рассчитанные для $a_1 = a_2$, показывают, что величины спектральных коэффициентов F(K) апериодической функции g(z) (7), соответствующих каждому из двух векторов обратной решетки $K = 2\pi/\Lambda_1$ и $K = 2\pi/\Lambda_2$, приблизительно равны между собой, т.е. $|F(2\pi/\Lambda_1)| \approx |F(2\pi/\Lambda_2)|$. Отношение величин спектральных коэффициентов для периодической (5) и апериодической функций (7) составляет около 1.6, что свидетельствует о незначительном уменьшении нелинейных коэффициентов связи волн для каждого из двух одновременно происходящих процессов по сравнению с ситуацией, когда в РДС-кристалле реализуется только один нелинейный процесс.

Кривые на рис. 3 построены для соотношения амплитуд $2a_1 = a_2$, когда влияние периода Λ_2 сильнее проявляется в апериодической структуре, что видно также из фурье-спектров. Таким образом, меняя значение амплитуд гармонических составляющих в выражении (7), можно увеличивать или уменьшать эффективность одного из одновременно протекающих нелинейных процессов. Из рис. 2, 3 также следует, что ширины спектральных максимумов апериодической функции (7) практически не отличаются от таковых для периодической функции РДС-кристалла.

Проведенные нами вычисления показали, что изменение фаз φ_j в выражении (6) не меняет модуля спектральных компонент апериодической функции g(z), приводя лишь к изменению их действительной и мнимой частей. Анализ также показал, что уменьшение длины кристалла приводит к увеличению ширины спектральных максимумов.

Из полученных результатов следует, что одновременное осуществление нескольких нелинейных взаимодействий в кристаллах с апериодически меняющимся нелинейным коэффициентом приводит лишь к уменьшению эффективного нелинейного коэффициента для каждого из процессов и не приводит к уменьшению ширины спектральных максимумов «нелинейной» решетки по сравнению со случаем, когда каждый из процессов реализуется по отдельности.

4. ДИНАМИКА СВЯЗАННЫХ КВАЗИСИНХРОННЫХ ПЯТИВОЛНОВЫХ ВЗАИМОДЕЙСТВИЙ

Обратимся теперь к многоволновому взаимодействию, состоящему из трех связанных нелинейно-оптических процессов, протекающих одновременно в апериодически поляризованном кристалле. Предположим, что для взаимодействующих волн имеют место следующие соотношения частот: 1) $\omega_1 = \omega_2 + \omega_3$, 2) $\omega_4 = \omega_1 + \omega_2$, 3) $\omega_5 = 2\omega_1 = \omega_3 + \omega_4$. В рассматриваемом процессе в общем случае принимают участие пять волн с разными частотами, причем две частоты кратные (ω_1 и $\omega_5 = 2\omega_1$). В зависимости от частот интенсивных волн на входе кристалла (волн накачки) могут осуществляться различные взаимодействия. Остановимся на некоторых из них.

Пусть $\omega_2 = \omega_3 = \omega$ и интенсивная волна накачки имеет частоту ω . В этом случае в кристалле генерируются высшие гармоники: вторая (2ω), третья (3ω) и четвертая (4ω) гармоники излучения накачки. Такой процесс может быть интересен, например, тем, что суперпозиция одновременно генерируемых гармоник при определенных условиях приводит к формированию субфемтосекундных импульсов [19]. Если же частоты двух исходных волн не равны друг другу ($\omega_2 \neq \omega_3$), то в кристалле возбуждаются частоты $\omega_1 \neq \omega_4 \neq \omega_5$.

В настоящей работе мы подробно изучим динамику следующих трех связанных параметрических процессов: 1) невырожденного по частоте параметрического процесса $\omega_1 \rightarrow \omega_2 + \omega_3$, 2) генерацию суммарной частоты $\omega_1 + \omega_2 \rightarrow \omega_4, 3$) параметрического процесса $\omega_5 = 2\omega_1 \rightarrow \omega_3 + \omega_4$ (знак « \rightarrow » здесь условно обозначает направление протекания процесса). В этом случае на вход кристалла подаются интенсивные волны накачки с частотами ω_1 и ω_5 , а одна из участвующих во взаимодействии волн имеет малую интенсивность на входе кристалла (так называемый «затравочный» сигнал). Как известно (см., например, [20, 21]), в невырожденных по частоте параметрических процессах рождаются коррелированные фотоны с разными частотами. Поэтому рассматриваемое нами многоволновое взаимодействие

в квантовой оптике представляет интерес для получения трехчастотных перепутанных состояний [22].

Обсуждаемые процессы могут быть реализованы в нелинейно-оптическом кристалле, в котором нелинейный коэффициент связи волн изменяется с длиной по апериодическому закону (N = 3):

$$g(z) = \operatorname{sign}\left[\sum_{j=1}^{3} a_j \sin(2\pi z/\Lambda_j)\right].$$
 (9)

В (9) приняты фазы $\varphi_j = 0$ в силу их слабого влияния на модуль спектра функции g(z).

На рис. 4 представлены спектры функции (9). Как и выше, для удобства сравнения на этом же рисунке приведены соответствующие спектры функции модуляции g(z) для РДС-кристалла. Расчеты выполнены для кристалла ниобата лития длиной L = 1 см и периодами модуляции $\Lambda_1 = 21.2$ мкм, $\Lambda_2 = 14.3$ мкм и $\Lambda_3 = 8$ мкм, которые соответствуют взаимодействиям 1), 2) и 3) при длинах волн $\lambda_1 = 1.064$ мкм, $\lambda_2 = 2.129$ мкм, $\lambda_3 = 2.127$ мкм, $\lambda_4 = 0.709$ мкм, $\lambda_5 = 0.532$ мкм. Вид апериодической структуры, соответствующий этим периодам модуляции, для случая $a_1 = a_2 = a_3 = 1$ изображен на рис. 1*б*.

Из рис. 4 следует, что значения спектральных коэффициентов, соответствующих необходимым для реализации процесса векторам обратной решетки, в апериодически поляризованном кристалле примерно в 2 раза меньше, чем для РДС-кристалла, реализующего только один из процессов, и примерно в 1.2 раза меньше, чем в кристалле с апериодической структурой (7), рассчитанной для осуществления двух процессов. При этом закономерности для ширины спектральных максимумов остаются такими же, что и в предыдущем разделе.

Рассматриваемый пятиволновой процесс описывается следующими укороченными уравнениями для комплексных амплитуд взаимодействующих волн:

$$\frac{dA_1}{dz} = ig(z) \left(\beta_{11}A_2A_3e^{i\Delta k_1 z} + \beta_{21}A_2^*A_4e^{-i\Delta k_2 z}\right),$$
(10)

$$\frac{dA_2}{dz} = ig(z) \left(\beta_{12}A_1A_3^*e^{-i\Delta k_1 z} + \beta_{22}A_4A_1^*e^{-i\Delta k_2 z}\right),$$
(11)

$$\frac{dA_3}{dz} = ig(z) \left(\beta_{13}A_1A_2^*e^{-i\Delta k_1 z} + \beta_{33}A_5A_4^*e^{-i\Delta k_2 z}\right),$$
(12)

Рис. 4. Модуль фурье-спектра функции g(z): $1 - g(z) = \text{sign}\left[\sum_{j=1}^{3} \sin(2\pi z/\Lambda_j)\right]$, $2, 3 - g(z) = \text{sign}[\sin(2\pi z/\Lambda_2)]$, $4 - g(z) = \text{sign}[\sin(2\pi z/\Lambda_3)]$

$$+ \beta_{34} A_5 A_3^* e^{-i\Delta k_3 z}), \qquad (13)$$

$$\frac{iA_5}{dz} = ig(z)\beta_{35}A_3A_4e^{i\Delta k_3 z}.$$
 (14)

В системе уравнений (10)–(14) введены следующие обозначения: A_j — амплитуда волны с частотой ω_j ; $\Delta k_1 = k_1 - k_2 - k_3$, $\Delta k_2 = k_4 - k_1 - k_2$, $\Delta k_3 = k_5 - k_3 - k_4$ — волновые расстройки соответственно для процессов 1), 2), 3), удовлетворяющие условию квазисинхронизма $\Lambda_j = 2\pi/|\Delta k_j|$; $\beta_{lj} = 4\pi\omega_j d_j^{(l)}/cn_j$ — коэффициенты нелинейной связи волн [1, 2]; $d_j^{(l)}$ — эффективный нелинейный коэффициент для волны с частотой ω_j в *l*-м процессе (см. выше) (например, $d_3^{(1)} = 0.5\mathbf{e}_3\chi(\omega_3 = \omega_1 - \omega_2)\mathbf{e}_1 \cdot \mathbf{e}_2)$; χ — тензор 3-го ранга квадратичной восприимчивости; \mathbf{e}_j и n_j — соответственно единичный вектор поляризации и показатель преломления кристалла для волны с частотой ω_j ; c — скорость света в вакууме.

Для коэффициентов связи имеют место приближенные соотношения: $\beta_{11} \approx \beta_{12} + \beta_{13}$, $\beta_{24} \approx \beta_{21} + \beta_{22}$, $\beta_{35} \approx \beta_{33} + \beta_{34}$. Наличие двух слагаемых в правых частях уравнений (10)–(13) связано с тем, что волны соответствующих частот одновременно участвуют в двух трех частотных процессах.

Из системы уравнений (10)–(14) нетрудно получить следующие законы сохранения:

$$\sum_{j=1}^{3} I_j(z) = \text{const},$$

$$\frac{2}{\omega_1}I_1(z) + \frac{1}{\omega_2}I_2(z) + \frac{1}{\omega_3}I_3(z) + \frac{3}{\omega_4}I_4(z) + \frac{4}{\omega_5}I_5(z) = \text{const},$$

где

$$I_j(z) = cn_j |A_j(z)|^2 / 8\pi$$

— интенсивность волны с частотой ω_j .

На рис. 5-7 представлены результаты численного решения уравнений (10)-(14). Соотношения между нелинейными коэффициентами брались следующими: $\beta_{11} = \beta_{24} = \beta_{35}, \ \beta_{12} = \beta_{13}, \ \beta_{21} = 2\beta_{22},$ $\beta_{34} = 3\beta_{33}$. Как отмечалось выше, для реализации рассматриваемых взаимодействий необходимо наличие интенсивных волн на частотах ω_1 и ω_5 на входе кристалла. При расчетах мы полагали, что на входе кристалла волны накачек с частотами ω_1 и ω_5 имеют одинаковые интенсивности: $I_1(0) = I_5(0)$, а начальные интенсивности остальных волн существенно меньше этих значений. Для удобства компьютерных вычислений использовалось соотношение $I_{2,3,4}(0) = 10^{-4} I_{1,5}(0)$. Расчеты проведены для нескольких соотношений между действительными и мнимыми частями амплитуд волн. Как уже отмечалось, для реализации рассматриваемого взаимодействия достаточно, вообще говоря, затравочного сигнала на одной из трех усиливаемых частот. Длина кристалла нормировалась на характерную нелинейную длину $L_{nl} = (\beta_{11} \sqrt{I_1(0)})^{-1}$, а интенсивности были нормированы на величину $I_1(0)$.

Расчеты выполнены для двух соотношений между амплитудами a_j в выражении (9): $a_1 = a_2 = a_3$ (рис. 5, 7) и $2a_1 = 2a_2 = a_3$ (рис. 6). Из рис. 5, 6 следует, что в рассматриваемом процессе имеет место эффективный энергообмен между волнами. При этом динамика энергообмена имеет сложный характер, изменяющийся в зависимости от соотношения между действительными и мнимыми частями комплексных амплитуд интенсивных волн (т. е. от фаз волн) на входе кристалла.

Рисунок 7 наглядно иллюстрирует зависимость

Рис. 5. Интенсивности I_j (нормированные на интенсивность $I_1(0)$) волн с частотами ω_j (j = 1, 2, 3, 4, 5) в зависимости от длины взаимодействия при $a_1 = a_2 = a_3$: $a - \operatorname{Re}A_1(0) = \operatorname{Re}A_5(0)$, $\operatorname{Re}A_{2,3,4}(0) = 10^{-2} \operatorname{Re}A_1(0)$, $\operatorname{Im}A_j(0) = 0$; $\delta - \operatorname{Re}A_1(0) = \operatorname{Im}A_5(0)$, $\operatorname{Re}A_{2,3,4}(0) = 10^{-2} \operatorname{Re}A_1(0)$, $\operatorname{Im}A_{1,2,3,4}(0) = \operatorname{Re}A_5(0) = 0$; $\delta - \operatorname{Im}A_1(0) = \operatorname{Re}A_5(0)$, $\operatorname{Re}A_{2,3,4}(0) = 10^{-2} \operatorname{Im}A_1(0)$, $\operatorname{Re}A_{2,3,4}(0) = 10^{-2} \operatorname{Im}A_1(0)$, $\operatorname{Re}A_1(0) = \operatorname{Im}A_{2,3,4,5}(0) = 0$; $\delta - \operatorname{Im}A_1(0) = \operatorname{Im}A_2(0)$, $\operatorname{Re}A_1(0) = \operatorname{Re}A_5(0) = \operatorname{Im}A_2(0)$, $\operatorname{Re}A_1(0) = \operatorname{Re}A_2(0) = 10^{-2} \operatorname{Im}A_1(0)$, $\operatorname{Re}A_1(0) = \operatorname{Re}A_5(0) = \operatorname{Im}A_2(0) = 10^{-2} \operatorname{Im}A_1(0)$, $\operatorname{Re}A_1(0) = \operatorname{Re}A_5(0) = \operatorname{Im}A_2(0) = 0$

интенсивностей волн с частотами ω_2 , ω_3 и ω_4 на начальном этапе взаимодействия от начальных параметров волн накачки с частотами ω_1 и ω_5 на входе кристалла. Видно, например, что интенсивность волны с частотой ω_3 всегда нарастает на начальном этапе. Однако интенсивности других волн могут как нарастать, так и затухать в зависимости от соотношения фаз накачек.

Анализ показал, что при соотношении $a_2 > a_{1,3}$ в формуле (9) эффективный энергообмен между взаимодействующими волнами не происходит (см. также ниже формулы (21) и (22)).

Таким образом, наряду с изменением эффективных коэффициентов связи волн, изменение параметров накачек можно использовать для управления динамикой волновых взаимодействий в исследуемом процессе. Представленные на рис. 5–7 зависимости относятся к случаю, когда длина нелинейного взаимодействия существенно больше характерной длины изменения нелинейного коэффициента кристалла, т. е. при $L_{nl} \gg \max\{\Lambda_1, \Lambda_2, \Lambda_3\}$. Проведенные расчеты показали, что при длине нелинейного взаимодействия, сравнимой с периодами Λ_j , также имеет место эффективный энергообмен между волнами, но динамика взаимодействия оказывается несколько другой.

Вместе с тем условие $L_{nl} \gg \max\{\Lambda_1, \Lambda_2, \Lambda_3\}$ позволяет воспользоваться методом вторичного упрощения уравнений (10)–(14) [23]. В связи с этим были выполнены расчеты интенсивностей взаимодействующих волн при помощи «усредненных» уравнений (10)–(14), в которых изменяющиеся с продольной координатой *z* множители вида $g(z) \exp(i\Delta k_i z)$ и

Рис. 6. Интенсивности I_j (нормированные на интенсивность $I_1(0)$) волн с частотами ω_j (j = 1, 2, 3, 4, 5) в зависимости от длины взаимодействия при $2a_1 = 2a_2 = a_3$: $a - \operatorname{Re}A_1(0) = \operatorname{Re}A_5(0)$, $\operatorname{Re}A_{2,3,4}(0) = 10^{-2} \operatorname{Re}A_1(0)$, $\operatorname{Im}A_j(0) = 0$; $\delta - \operatorname{Re}A_1(0) = \operatorname{Im}A_5(0)$, $\operatorname{Re}A_{2,3,4}(0) = 10^{-2} \operatorname{Re}A_1(0)$, $\operatorname{Im}A_{1,2,3,4}(0) = \operatorname{Re}A_5(0) = 0$; $e - \operatorname{Im}A_1(0) = \operatorname{Re}A_5(0)$, $\operatorname{Re}A_{2,3,4}(0) = 10^{-2} \operatorname{Im}A_1(0)$, $\operatorname{Re}A_{1,3,4,5}(0) = 0$; $e - \operatorname{Im}A_1(0) = \operatorname{Re}A_5(0)$, $\operatorname{Re}A_{2,3,4}(0) = 10^{-2} \operatorname{Im}A_1(0)$, $\operatorname{Re}A_1(0) = \operatorname{Re}A_5(0) = 0$; $e - \operatorname{Im}A_1(0) = 10^{-2} \operatorname{Im}A_1(0)$, $\operatorname{Re}A_1(0) = \operatorname{Re}A_5(0) = 0$; $e - \operatorname{Im}A_1(0) = 10^{-2} \operatorname{Im}A_1(0)$, $\operatorname{Re}A_{2,3,4,5}(0) = 0$

 $g(z) \exp(-i\Delta k_j z)$ заменялись их усредненными (эффективными) значениями q_j и q_j^* по длине кристалла L:

$$q_j = \frac{1}{L} \int_0^L g(z) \exp(i\Delta k_j z) \, dz. \tag{15}$$

Такая замена часто используется для анализа динамики трехчастотных волновых взаимодействий в РДС-кристаллах (см., например, [2, 23]). С учетом соотношения (15) система уравнений (10)–(14) принимает вид

$$\frac{dA_1}{dz} = i \left(q_1 \beta_{11} A_2 A_3 + q_2^* \beta_{21} A_2^* A_4 \right), \qquad (16)$$

$$\frac{dA_2}{dz} = i \left(q_1^* \beta_{12} A_1 A_3^* + q_2^* \beta_{22} A_4 A_1^* \right), \qquad (17)$$

$$\frac{dA_3}{dz} = i \left(q_1^* \beta_{13} A_1 A_2^* + q_3^* \beta_{33} A_5 A_4^* \right), \qquad (18)$$

$$\frac{dA_4}{dz} = i \left(q_2 \beta_{24} A_1 A_2 + q_3^* \beta_{34} A_5 A_3^* \right), \qquad (19)$$

$$\frac{dA_5}{dz} = iq_3\beta_{35}A_3A_4.$$
 (20)

Результаты решения уравнений (16)–(20) для рассматриваемого процесса представлены на рис. 8, где они сравниваются с точным решением системы (10)–(14). Из рис. 8 видно, что зависимости интенсивностей волн от продольной координаты, полученные методом вторичного упрощения, хорошо согласуются с результатами точных расчетов. Заметные расхождения между результатами расчетов начинают наблюдаться только на длинах взаимодействия, больших пятидесяти характерных нелинейных длин. В то же время вторичное упрощение системы уравнений позволяет не только существенно сократить время их численного решения, но и разрабатывать квантовую теорию многоволновых про-

Рис. 7. Те же зависимости, что на рис. 5, но для начального этапа взаимодействия

цессов как для однородных нелинейных кристаллов (см. [22]).

Система уравнений (16)–(20) при постоянных амплитудах A_1 и A_5 (приближение заданного поля) допускает получение аналитического решения. В этом случае уравнения (17)–(19) можно свести к одному дифференциальному уравнению третьего порядка. Наглядное решение при этом получается при выполнении соотношения $\operatorname{Arg}\{q_2q_3A_1^2A_5^*\} = \pi/2$. Само решение, например, для амплитуды $A_2(z)$, имеет вид

$$A_{2}(z) = C_{1} \operatorname{ch}(\Gamma z) + C_{2} \operatorname{sh}(\Gamma z) + C_{3}, \qquad (21)$$

где

$$\Gamma^{2} = q_{1}^{2}\beta_{12}\beta_{13}|A_{1}|^{2} + |q_{3}|^{2}\beta_{33}\beta_{34}|A_{5}|^{2} - |q_{2}|^{2}\beta_{22}\beta_{24}|A_{1}|^{2}.$$
 (22)

Постоянные C_j определяются из граничных условий. При $\Gamma^2 > 0$ имеет место параметрическая неустойчивость, когда интенсивность рассматриваемой волны нарастает с увеличением расстояния.

Именно этому режиму взаимодействия соответствуют зависимости для $I_2(z)$, изображенные на рис. 7a, 6, c.

5. ЗАКЛЮЧЕНИЕ

В настоящей работе впервые проведены систематические исследования пятиволновых взаимодействий, которые включают два процесса параметрического преобразования частоты вниз и один процесс генерации суммарной частоты. Такие квазисинхронные взаимодействия в коллинеарной геометрии можно реализовать в нелинейно-оптических кристаллах с апериодической доменной структурой, создаваемой методом суперпозиции модуляций [16, 17].

Изучен спектр нелинейных коэффициентов связи волн в апериодических кристаллах и продемонстрирована возможность управления им с помо-

Рис. 8. Интенсивности I_j (нормированные на интенсивность $I_1(0)$) волн с частотами ω_j (j = 1, 2, 3, 4, 5) в зависимости от длины взаимодействия при $a_1 = a_2 = a_3$ для случая Re $A_1(0) = \text{Re } A_5(0)$, Re $A_{2,3,4}(0) = 10^{-2} \text{ Re } A_1(0)$, Im $A_j(0) = 0$. Сплошные линии соответствуют решению уравнений (10)-(14), штриховые линии — решению уравнений (16)-(20)

щью изменения амплитуд гармонических составляющих, ответственных за реализацию отдельного нелинейного процесса. Для кристалла ниобата лития при накачке лазерным излучением с длиной волны 1.06 мкм и его второй гармоникой выполнены соответствующие расчеты параметров апериодической структуры для пятиволнового процесса. Заметим, что кристаллы с апериодической структурой могут быть созданы одним из существующих на настоящий момент методов создания РДС-кристаллов, например, методом послеростовой переполяризации кристалла [5].

Изучена пространственная динамика пятиволновых взаимодействий. Показано, что существенный энергообмен между взаимодействующими волнами имеет место на длинах взаимодействия, равных нескольким десяткам характерных нелинейных длин. Нелинейная длина L_{nl} для кристалла ниобата лития при его накачке лазером Nd:YAG (длина волны 1.064 мкм), работающим в режиме модуляции добротности (длительность импульса ~ 0.1 нс, пиковая интенсивность ~ 10^8 BT/см²), при использовании в нелинейном процессе наибольшего нелинейного коэффициента и первого порядка квазисинхронизма составляет величину порядка 0.1 см. Тем самым рассматриваемый процесс может быть эффективно реализован в кристаллах ниобата лития длиной несколько сантиметров.

Однако при нелинейном взаимодействии коротких лазерных импульсов важным эффектом может быть расстройка групповых скоростей взаимодействующих волн $(u_i^{-1} - u_l^{-1})$, которая приводит к существенному уменьшению эффективности нелинейного процесса на длинах $L_{gr} = \tau/|u_j^{-1} - u_l^{-1}|$ [24], где u_j — групповая скорость волны с частотой ω_i , т — длительность лазерного импульса. Согласно нашим расчетам максимальное значение расстройки групповых скоростей $u_j^{-1} - u_l^{-1}$ в кристалле ниобата лития не превышает величины 10^{-11} с/см и, следовательно, в случае $\tau \sim 10^{-1}$ нс длина L_{gr} ≥ 10 см. Таким образом, для реализации исследованного в работе многоволнового взаимодействия можно применять широко распространенные кристаллы ниобата лития длиной несколько сантиметров, часто используемые в настоящий момент в качестве РДС-кристаллов, и лазерные импульсы наносекундной длительности. Заметим, что для исключения влияния дифракции можно использовать широко распространенные сейчас волноводные кристаллические структуры.

Представленные в работе результаты показывают, что применение кристаллов с апериодически изменяющимся нелинейно-оптическим коэффициентом позволяет осуществить несколько связанных многочастотных процессов. Возможные квазисинхронные пятиволновые взаимодействия не ограничиваются рассмотренными. Разумеется, разработанный метод можно распространить на большее число взаимодействующих волн, а также на двух- и трехмерные апериодические структуры. Заметим, что максимальное число нелинейно-оптических процессов, которое можно одновременно осуществить в апериодически поляризованном кристалле, ограничено имеющимися в наличии длинами волн накачек и полосой прозрачности существующих кристаллов с доменной структурой.

Квазисинхронные взаимодействия представляют интерес для создания многоцветных источников когерентного излучения и получения многочастотных перепутанных состояний в квантовой оптике.

Авторы благодарят за обсуждение настоящей работы Г. Д. Лаптева и И. В. Шутова. Работа выполнена при частичной финансовой поддержке РФФИ (грант № 05-02-17017), гранта Президента РФ МК-4708.2006.2 и INTAS (проект № 1000008-7904).

ЛИТЕРАТУРА

- 1. С. А. Ахманов, Р. В. Хохлов, Проблемы нелинейной оптики, ВИНИТИ, Москва (1964).
- 2. В. Г. Дмитриев, Л. В. Тарасов, Прикладная нелинейная оптика, Физматлит, Москва (2004).
- R. L. Byer, J. Nonlinear Opt. Phys. Mater. 6, 549 (1997).
- M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quant. Electron. 28, 2631 (1992).
- А. С. Чиркин, В. В. Волков, Г. Д. Лаптев, Е. Ю. Морозов, КЭ 30, 847 (2000).
- Y. Y. Zhu and N. B. Ming, Phys. Rev. B 42, 3676 (1990).
- J. Feng, Y. Y. Zhu, and N. B. Ming, Phys. Rev. B 41, 5578 (1990).
- X. Liu, Z. Wang, J. Wu, D. Shen, and N. Ming, Phys. Rev. B 58, 12782 (1998).
- 9. Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, Appl. Phys. Lett. 78, 577 (2001).

- X. Liu, Z. Wang, J. Wu, D. Shen, and N. Ming, Phys. Rev. A 58, 4956 (1998).
- 11. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, Phys. Rev. Lett. 78, 2752 (1997).
- L. M. Zhao, B. Y. Gu, Y. S. Zhou, and F. H. Wang, J. Appl. Phys. 94, 1882 (2003).
- B. Y. Gu, Y. Zhang, and B. G. Dong, J. Appl. Phys. 87, 7629 (2000); Y. Zhang and B. Y. Gu, Opt. Comm. 192, 417 (2001).
- 14. K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 023903-1 (2002).
- 15. H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, Appl. Phys. Lett. 79, 728 (2001).
- 16. A. A. Novikov and A. S. Chirkin, Proc. SPIE 6604, 66041D (2007).
- 17. T. Kartaloglu, Z. G. Figen, and O. Autur, J. Opt. Soc. Amer. B 20, 343 (2003).
- 18. G. K. Kitaeva, I. I. Naumova, A. A. Mikhailovsky, P. S. Losevsky, and A. N. Penin, Appl. Phys. B 66, 201 (1998).
- **19**. И. В. Шутов, А. А. Новиков, А. С. Чиркин, КЭ **38** (2008) (в печати).
- 20. D. F. Walls and G. J. Milburn, *Quantum Optics*, Springer-Verlag (1994).
- Л. Мандель, Э. Вольф, Оптическая когерентность и квантовая оптика, Физматлит, Москва (2000).
- 22. A. S. Chirkin and M. Yu. Saigin, Acta Phys. Hung. B 23, 63 (2006).
- 23. А. С. Чиркин, Д. Б. Юсупов, Изв. АН СССР, сер. физ. 45, 929 (1981).
- 24. С. А. Ахманов, В. А. Выслоух, А. С. Чиркин, Оптика фемтосекундных лазерных импульсов, Наука, Москва (1988).

Примечание при корректуре (10 декабря 2007 г.)

На основе развитого в настоящей работе подхода недавно показана возможность экспериментального осуществления в неоднородных нелинейно-оптических кристаллах невырожденного параметрического усиления при низкочастотной накачке (А. С. Чиркин, И. В. Шутов, Письма в ЖЭТФ 86, 803 (2007)).