ГЕНЕРАЦИЯ СРЕДНЕГО ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ В ПОЛУПРОВОДНИКОВЫХ ЛАЗЕРАХ БЛИЖНЕЙ ИНФРАКРАСНОЙ ОБЛАСТИ НА НИЗКОРАЗМЕРНЫХ ГЕТЕРОСТРУКТУРАХ

В. А. Кукушкин*

Институт прикладной физики Российской академии наук 603950, Нижний Новгород, Россия

Поступила в редакцию 21 февраля 2007 г.

Предложен метод генерации среднего инфракрасного (ИК) излучения ($\lambda \sim 10$ мкм) в работающих в ближней ИК-области ($\lambda \sim 1$ мкм) полупроводниковых гетеролазерах с квантовыми ямами. Он основан на создании инверсии населенностей на межподзонном лазерном переходе среднего ИК-диапазона благодаря опустошению его нижнего уровня сильным ближним ИК-полем. В отличие от предыдущих исследований данной проблемы, учитывается неоднородное уширение этого перехода, возникающее вследствие зависимости его частоты от энергии носителей, и предлагается инвертировать его не во всей спектральной области, а только в диапазоне, резонансном со средним ИК-полем. Это позволяет значительно понизить (по сравнению с полученными ранее оценками) пороговую плотность тока накачки для начала средней ИК-генерации и в результате надеяться на реализацию предлагаемого лазера при комнатной температуре в непрерывном режиме.

PACS: 42.55.Px, 42.60.Pk, 73.21.Fg

1. ВВЕДЕНИЕ

Генерация мощного когерентного излучения в среднем и дальнем инфракрасном (ИК) диапазоне является важной задачей современной оптики и лазерной физики благодаря постоянно растущей сфере его применения как в фундаментальных, так и в прикладных исследованиях, таких как неразрушающее зондирование слабопроводящих материалов [1] и биологических тканей [2], электромагнитная терапия [3, 4], спектроскопия органических молекул [5], изучение поверхностных плазмон-поляритонных волн [6], когерентный контроль внутризонных переходов в полупроводниковых наноструктурах [7, 8, низкочастотная модуляция оптического излучения [9] и др. Лазеры на низкоразмерных полупроводниковых гетероструктурах являются одним из наиболее перспективных и удобных источников в данном диапазоне вследствие сравнительной легкости изготовления структур с заданными значениями частот переходов между их уровнями размерного квантования и простоте токовой накачки. Однако из-за больших потерь за счет поглощения на свободных носителях и дифракции, усиление ИК-излучения в них возможно лишь при достаточно большой инверсии населенностей на соответствующем низкочастотном переходе. К сожалению, вследствие того, что время жизни верхнего лазерного уровня в таких структурах оказывается сравнимым или даже меньшим, чем время жизни нижнего, достижение требуемой инверсии между ними является сложной задачей.

Один из методов ее решения был успешно реализован в квантовых каскадных лазерах (ККЛ) [10, 11], где нижний уровень опустошается за счет туннелирования находящихся на нем электронов на отделенные энергетическим барьером смежные состояния. Однако такие системы работают, как правило, при низких температурах и требуют изготовления сложных гетероструктур с большим числом слоев, различающихся химическим составом и степенью допирования. В связи с этим привлекает внима-

^{*}E-mail: vakuk@appl.sci-nnov.ru

ние безынверсный метод получения среднего и дальнего ИК-излучения в нелинейных ИК-лазерах на низкоразмерных полупроводниковых гетероструктурах [12, 13], при котором низкочастотный сигнал генерируется за счет нелинейного смешения двух высокочастотных полей с близкими длинами волн, лежащими в ближней ИК-области. Однако вследствие малого коэффициента нелинейности, эффективность преобразования высокочастотного излучения в низкочастотное и, следовательно, выходная мощность последнего оказываются низкими.

В настоящей статье рассмотрена модель лазера на низкоразмерных полупроводниковых гетероструктурах (конкретно — квантовых ямах (КЯ)), в которой генерация среднего ИК-излучения происходит при одновременном возбуждении играющего вспомогательную роль сильного ближнего ИК-поля. Усиление среднего ИК-сигнала в такой системе осуществляется за счет создания инверсии на соответствующем низкочастотном межподзонном лазерном переходе вследствие «выжигания» сильным ближним ИК-полем провала в населенности его нижнего уровня (подзоны). Следует отметить, что ранее подобный эффект рассматривался в работе [14]. Однако в той работе не учитывалось неоднородное уширение межподзонного перехода, возникающее из-за различия эффективных масс электронов в подзонах и, как результат, изменение частоты перехода между ними с ростом энергии носителей. Вследствие этого считалось, что генерация среднего ИК-поля на таком переходе возможна лишь при инверсии полных (т. е. интегральных по энергии носителей) населенностей подзон.

В результате оценки пороговой плотности тока накачки для начала средней ИК-генерации, J_{th}, привели автора [14] к высоким значениям при комнатной температуре, которые должны были вызвать разрушение структуры. В итоге в работе [14] был сделан вывод, что функционирование такого лазера будет возможно только при криогенных температурах, когда J_{th} снижалась до величин, приемлемых для работы в импульсном режиме. Внимание последующих исследователей было направлено на системы квантовых точек (КТ) [15], где время жизни верхнего уровня низкочастотного лазерного перехода даже при комнатной температуре могло быть увеличено более чем в 100 раз по сравнению с КЯ за счет «phonon bottle-neck effect» (эффекта узкого фононного горла) и инверсия населенностей на нем была легко достижимой.

Однако изготовление КТ более сложно, чем КЯ, а создание образцов с высокой концентрацией КТ, необходимых для создания мощных ИК-лазеров, наталкивается на серьезные технологические трудности. В работе [16] был предложен специальный дизайн структуры с КЯ, в которой малое перекрытие волновых функций нижнего и верхнего лазерных уровней обеспечивало достаточно большое время жизни последнего и делало возможным создание на этом переходе инверсии полных населенностей подзон. Однако слабое перекрытие волновых функций с неизбежностью ведет к малому дипольному моменту перехода и, следовательно, низкой мощности выходного среднего ИК-излучения.

В настоящей работе развита теоретическая модель, позволяющая последовательно учесть неоднородное уширение межподзонного лазерного перехода в КЯ, возникающее из-за различия эффективных масс носителей в подзонах и, следовательно, зависимости его частоты от энергии носителей. В результате показано, что данный эффект приводит к качественно новой физической ситуации, когда усиление среднего ИК-поля на межподзонном переходе становится возможным, если он инвертирован лишь в спектральной области, резонансной с этим полем, а инверсия полных населенностей соответствующих подзон отсутствует. Это приводит к значительному уменьшению пороговой плотности тока накачки по сравнению с оценками, приведенными в работе [14], и позволяет надеяться на реализацию такого лазера не только при низких (как утверждалось в [14]), но и при комнатных температурах, а также делает возможной его работу в непрерывном режиме.

Таким образом, предлагаемый лазер среднего ИК-диапазона не предполагает изготовления сложных многослойных систем и охлаждения до температур ниже комнатной, применяемых в ККЛ. С другой стороны, в отличие от нелинейных ИК-лазеров и предложения [16], в нем не используются относительно малые коэффициенты нелинейности в КЯ и самом полупроводнике, а также специальный дизайн КЯ, уменьшающий дипольный момент лазерного перехода, что позволяет надеяться на получение в нем низкочастотного излучения достаточно высокой мощности. Все это значительно повышает привлекательность рассматриваемого метода генерации среднего ИК-поля для практических применений.

В следующем разделе приведены основные уравнения, описывающие взаимодействие электромагнитного излучения и гетероструктур с КЯ, а также рассмотрена генерация вспомогательного ближнего ИК-излучения. В третьем разделе получено условие на пороговую плотность тока накачки для начала генерации среднего ИК-излучения и определены параметры, при которых она минимальна. В заключительном разделе сформулированы выводы, наиболее важные для практической реализации рассмотренного среднего ИК-лазера.

2. ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ И ВОЛНОВЕДУЩИХ ГЕТЕРОСТРУКТУР С КЯ — ГЕНЕРАЦИЯ БЛИЖНЕГО ИК-ИЗЛУЧЕНИЯ

Рассмотрим ближнее и среднее ИК-излучение в резонаторе, в котором ограничение поля в продольном направлении х осуществляется зеркалами, образованными торцевыми гранями полупроводниковой гетероструктуры. Вдоль поперечной координаты (ось *z* — направление роста) удержание высокочастотного поля происходит за счет уменьшения показателя преломления от центральной плоскости¹⁾ к поверхности благодаря изменению химического состава, а локализация низкочастотного излучения достигается путем нанесения на верхнюю грань структуры и размещению внутри нее двух тонких высокопроводящих слоев из металла или сильно допированного полупроводника, реальные части диэлектрических проницаемостей которых отрицательны [17]. Запишем ближнее ИК-поле в виде

$$\mathbf{E}_{N} \equiv \frac{1}{2} \sum_{n} \tilde{\mathbf{E}}_{n} \exp(-i\omega_{n}t) + \text{c.c.}, \qquad (1)$$

где

$$\tilde{\mathbf{E}}_n = \mathcal{E}_n \mathbf{e}_n \equiv \mathcal{E}(\omega_n) \mathbf{e}(\omega_n) \equiv \mathcal{E}_n \bar{\mathbf{e}}_n(z) \sin(k_n x)$$
 (2)

— комплексные амплитуды различных продольных мод резонатора n, имеющих одинаковый тип поперечной структуры $\bar{\mathbf{e}}_n(z)$ и, для определенности, TE-поляризацию (как это обычно имеет место в лазерах на KЯ), ω_n — их частоты генерации, а величины k_n определяются граничными условиями на выходных зеркалах. Что касается среднего ИК-поля, то, вследствие малого неоднородного уширения низкочастотного перехода (см. ниже), для дальнейших оценок можно считать, что оно формируется только одной (как правило, TM) модой, т.е.

$$\mathbf{E}_M \equiv \frac{1}{2} \tilde{\mathbf{E}}_M \exp(-i\omega_M t) + \text{c.c.}, \qquad (3)$$

Рис.1. Эффективная трехуровневая схема электронных и дырочных уровней размерного квантования в асимметричной КЯ, накачиваемой током с плотностью J. Порог неустойчивости к возникновению поля среднего ИК-диапазона \mathbf{E}_M достигается на фоне развитой генерации ближнего ИК-поля \mathbf{E}_N в основном благодаря созданию за счет последнего инверсии на переходе $3 \rightarrow 2$

$$\tilde{\mathbf{E}}_M = \mathcal{E}_M \mathbf{e}_M \equiv \mathcal{E}_M \bar{\mathbf{e}}_M(z) \sin(k_M x). \tag{4}$$

Величины комплексных амплитуд ближних ИК-мод можно определить из уравнений, получаемых в стандартной теории возбуждения резонаторов [18]:

$$\mathcal{E}_n = -\frac{4\pi i\omega_n \int \tilde{\mathbf{j}}_n \mathbf{e}_n dV}{(\omega_n^2 - \omega_{k_n}^2) \int \epsilon(\omega_n) \mathbf{e}_n^2 dV}.$$
(5)

Здесь \mathbf{j}_n — комплексные амплитуды плотности тока на частоте ω_n , $\omega_{k_n} = \omega'_{k_n} + i\omega''_{k_n}$ — собственные частоты ИК-мод, $\epsilon(\omega_n)$ — зависящая от z диэлектрическая проницаемость структуры.

Нахождение $\tilde{\mathbf{j}}_n$ требует рассмотрения конкретной структуры энергетических уровней электронов в КЯ. Для целей настоящего исследования она может быть аппроксимирована трехуровневой схемой (рис. 1), где первый уровень является наиболее высоколежащим уровнем размерного квантования, возникающим в валентной зоне полупроводника, тогда как второй и третий уровни являются двумя наи-

¹⁾ Здесь рассматривается типичный вариант плоско-параллельной геометрии структуры, когда ее толщина вдоль оси z много меньше ее ширины вдоль оси y, так что вариацией полей вдоль последнего направления можно пренебречь.

Рис.2. Схема структуры подзон вблизи Г-точки в КЯ AlGaAs. Энергия отсчитывается от центра запрещенной зоны. Частоты $\omega_{21} = (\xi_{20} - \xi_{10})/\hbar$, $\omega_{31} = (\xi_{30} - \xi_{10})/\hbar$ и $\omega_{32} = (\xi_{30} - \xi_{20})/\hbar$. Ближние ИК-моды (толстые стрелки) и средняя ИК-мода (тонкие стрелки) генерируются соответственно на межзонном переходе $2 \rightarrow 1$ и внутризонном межподзонном переходе $3 \rightarrow 2$. Величины μ_e , μ_h — химические потенциалы электронов и дырок. Кружки обозначают электроны

более низколежащими уровнями размерного квантования в его зоне проводимости. Вследствие движения электронов в плоскости КЯ, каждый уровень ξ_i (i = 1, 2, 3) представляет собой подзону, т.е. набор состояний с различными энергиями, зависящими (в используемом здесь приближении изотропных эффективных масс m_i) только от величины продольного квазиимпульса электрона

$$p_{\parallel} \equiv \sqrt{p_x^2 + p_y^2} : \quad \xi_i \approx \xi_{i0} + \frac{p_{\parallel}^2}{2m_i}$$

(см. рис. 2).

Расстояние ω_{21} между первым и вторым уровнями при $p_{\parallel} = 0$ (и совпадающая с ним по порядку величины аналогичная величина ω_{31} для уровней 3 и 1) соответствует вакуумной длине волны $\lambda_N \approx 1$ мкм, лежащей в ближнем ИК-диапазоне, тогда как частота перехода $3 \rightarrow 2$ при $p_{\parallel} = 0, \omega_{32}$, отвечает излучению средней ИК-области с $\lambda_M \approx 10$ мкм. Взаимодействие электромагнитного излучения с такой системой описывается известным уравнением фон Неймана [19] для ее матрицы плотности ρ_{ij} , являющейся (в принятом изотропном приближении) функцией только величины продольного квазиимпульса, или, что то же, отстройки Δ частоты перехода $2 \rightarrow 1$ от ее значения ω_{21} при нулевом квазиимпульсе:

$$\Delta \equiv \frac{p_{\parallel}^2(m_1 + m_2)}{2\hbar m_1 m_2}$$

Используя стандартное представление недиагональных элементов матрицы плотности в виде произведения плавно меняющихся амплитуд $\tilde{\rho}_{21n}$, $\tilde{\rho}_{31n}$ и $\tilde{\rho}_{32}$ на быстро осциллирующие экспоненциальные факторы с соответствующими частотами ω_n , $\omega_n + \omega_M$ и ω_M , и обозначая не зависящий от времени (и потому основной) вклад в разности населенностей $\rho_{ii} - \rho_{jj}$ через n_{ij} (т. е. считая $\rho_{ii} - \rho_{jj} \approx n_{ij}$), $\tilde{\mathbf{j}}_n$ можно представить в виде

$$\tilde{\mathbf{j}}_n = -iq\omega_n \mathbf{d}_{12} \sin(k_n x) \delta(z - z_{QW}) \int_0^\infty N \tilde{\rho}_{21n} d\Delta.$$
(6)

Здесь q — число смежных КЯ, формирующих активную область лазера, расположенную симметрично относительно плоскости $z = z_{QW}$ и имеющую пренебрежимо малую толщину по сравнению с масштабом поперечной неоднородности как ближних, так и средней ИК-мод, $\mathbf{d}_{12} = e\mathbf{z}_{12}$ — дипольный момент перехода $2 \rightarrow 1$, определяемый элементарным зарядом e и матричным элементом перехода \mathbf{z}_{12} (который отличен от нуля для асимметричных структур, например, для рассматриваемых здесь КЯ с разными высотами и ширинами левого и правого барьеров), N — эффективная плотность состояний в КЯ, для которой элементарное рассмотрение дает формулу

$$N \approx \frac{m_1 m_2}{2\pi\hbar(m_1 + m_2)}.\tag{7}$$

Величины $\tilde{\rho}_{21n}$, $\tilde{\rho}_{31n}$
и $\tilde{\rho}_{32}$ определяются из системы уравнений [19]

$$\frac{d\rho_{21n}}{dt} + \Gamma_{21}\tilde{\rho}_{21n} = ie_n n_{12} + ie_M^* \tilde{\rho}_{31n},
\frac{d\tilde{\rho}_{31n}}{dt} + \Gamma_{31}\tilde{\rho}_{31n} = -ie_n\tilde{\rho}_{32} + ie_M\tilde{\rho}_{21n}, \qquad (8)
\frac{d\tilde{\rho}_{32}}{dt} + \Gamma_{32}\tilde{\rho}_{32} = ie_M n_{23} - i\sum_n e_n^*\tilde{\rho}_{31n},$$

где

$$e_n = \mathcal{E}_n \mathbf{d}_{21} \bar{\mathbf{e}}_n(z_{QW})/2\hbar, \quad e_M = \mathcal{E}_M \mathbf{d}_{32} \bar{\mathbf{e}}_M(z_{QW})/2\hbar$$

— частоты Раби для ближнего и среднего ИК-полей,

$$\Gamma_{21} = \gamma_{21} + i(\omega_{21} + \Delta - \omega_n),$$

$$\Gamma_{31} = \gamma_{31} + i(\omega_{31} + \Delta - \omega_n - \omega_M),$$

$$\Gamma_{32} = \gamma_{32} + i(\omega_{32} - \eta\Delta - \omega_M),$$

(9)

$$\eta = \frac{m_1(m_3 - m_2)}{m_3(m_1 + m_2)},\tag{10}$$

γ₂₁, γ₃₁ и γ₃₂ — феноменологические константы релаксации недиагональных членов матрицы плотности и, вследствие хаотичности взаимных фаз ближних ИК-мод, здесь и далее в суммировании по модам опущены все перекрестные члены.

В результате введения величины η (формула (10)) в уравнениях (9) учтено различие эффективных масс носителей в третьей и второй подзонах, $m_3 \neq m_2$, что приводит к их непараллельности, т.е. зависимости частоты перехода $3 \rightarrow 2$ от энергии носителей (см. рис. 2), выполненный для рассмотренной ниже AlGaAs-системы, где $m_3 > m_2$. Как показано ниже (см. следующий раздел), данный эффект является весьма существенным, обусловливая возможность генерации среднего ИК-поля на переходе $3 \rightarrow 2$, инвертированном лишь в спектральной области, резонансной с этим полем. При этом инверсия полных (т. е. интегральных по p_{\parallel} или, что то же, Δ) населенностей третьей и второй подзон отсутствует, что позволяет значительно снизить пороговую плотность тока накачки для начала средней ИК-генерации по сравнению с оценками в работе [14] и надеяться на реализацию рассматриваемого лазера при комнатной температуре в непрерывном режиме.

Стационарное решение (8) для $\tilde{\rho}_{21n}$ в пренебрежении квадратичными членами по малой e_M вблизи порога генерации среднего ИК-поля имеет вид

$$\tilde{\rho}_{21n} \approx i e_n n_{12} / \Gamma_{21}, \qquad (11)$$

где n_{12} определяется как стационарное решение уравнения [19]

$$\frac{dn_{12}}{dt} + r(n_{12} - \bar{n}_{12}) = -4 \operatorname{Im} \sum_{n} e_n^* \tilde{\rho}_{21n}, \qquad (12)$$

в котором r — скорость релаксации разности населенностей к ее равновесному в отсутствие полей значению \bar{n}_{12} , определяемому разностью равновесных населенностей уровней 1 и 2 согласно общей формуле

$$\bar{n}_{ij} \equiv \bar{\rho}_{ii} - \bar{\rho}_{jj}.$$

Его стационарное решение имеет вид

$$n_{12} = \frac{\bar{n}_{12}}{1 + 4(\gamma/r)\sum_{n} |e_{n}|^{2}/|\Gamma_{21}|^{2}}.$$
 (13)

Для выражения \bar{n}_{12} через поверхностную концентрацию электронов или дырок в КЯ, $n_e \sim n_h$, для величин $\bar{\rho}_{ii}$ используются распределения Ферми–Дирака с различными квазихимпотенциалами μ_i :

$$\bar{\rho}_{ii} = \left\{ \exp\left[\frac{\xi_{i0} + p_{\parallel}^2 / 2m_i - \mu_i}{k_B T}\right] + 1 \right\}^{-1}, \quad (14)$$

где k_B — постоянная Больцмана, $T \approx 300$ К — температура структуры. Вследствие того, что время релаксации между третьей и второй подзонами за счет излучения и поглощения оптических фононов порядка 1 пс [20] и, следовательно, много меньше, чем время уменьшения их населенностей из-за спонтанных переходов находящихся на них электронов в валентную зону τ (порядка 1 нс), их квазихимпотенциалы должны быть практически равны, т. е. $\mu_2 \approx \mu_3 \equiv \mu_e$. Здесь μ_e определяется из уравнения

$$n_e = \frac{k_B T}{2\pi\hbar^2} \left\{ m_2 \ln \left[1 + \exp\left(\frac{\mu_e - \xi_{20}}{k_B T}\right) \right] + m_3 \ln \left[1 + \exp\left(\frac{\mu_e - \xi_{20} - \hbar\omega_{32}}{k_B T}\right) \right] \right\}.$$
 (15)

Аналогичное уравнение для $\mu_1 \equiv \mu_h$ имеет вид

$$n_h = \frac{k_B T}{2\pi\hbar^2} m_1 \ln\left[1 + \exp\left(\frac{\xi_{10} - \mu_h}{k_B T}\right)\right].$$
 (16)

Для получения дальнейших оценок можно пренебречь малым сдвигом частот генерации ближних и средних ИК-мод относительно реальных частей соответствующих частот собственных колебаний, положив $\omega_n \approx \omega'_{k_n}$ и $\omega_M \approx \omega'_{k_M}$. Для характерных образцов длиной вдоль оси x порядка 1 мм межмодовое расстояние оказывается существенно меньше однородной ширины линии $\gamma_{21} \approx \gamma_{31} \approx \gamma_{32} = \gamma \sim 10^{13} \text{ c}^{-1}$ [21] и, тем более, масштаба изменения $|e_n|$ с частотой, который, согласно (18), не может быть меньше величины $k_B T/\hbar$, определяемой температурой структуры $T \approx 300$ K. В результате можно положить $\omega'_{k_M} \approx \omega_{32}$, заменить суммирование по модам в выражении (13) интегрированием и пренебречь изменением $|e_n|$ и \bar{n}_{12} (которое, согласно конечному ответу (17), (18), оказывается существенным при изменении частоты на величину порядка $k_B T/\hbar \approx 4\gamma$) на интервале частот порядка γ . В итоге из формул (5), (6), (11) и (13) легко получается уравнение для определения комплексных амплитуд генерируемых ближних ИК-мод в виде

где

$$n_{12}(\omega_n - \omega_{21}) = \frac{\bar{n}_{12}(\omega_n - \omega_{21})}{1 + 4\pi D(\omega_n)|e(\omega_n)|^2/r},$$
 (18)

(17)

 $n_{12}(\omega_n - \omega_{21}) = n_N,$

 $D(\omega_n)$ — плотность мод и

$$n_N = \frac{\hbar \omega_{k_n}^{\prime\prime} \operatorname{Re} \left[\int \epsilon(\omega_n) \bar{\mathbf{e}}_n^2 \, dz \right]}{\pi^2 q \omega_n |\mathbf{d}_{12} \bar{\mathbf{e}}_n(z_{QW})|^2 N}.$$
 (19)

Из выражения (17) видно, что аналогично стандартной теории усиления поля в активных средах с однородным уширением [22] во всей частотной области генерации ближнего ИК-излучения разность населенностей уровней 2 и 1 приближенио равна ее пороговому значению n_N , а интенсивность мод пропорциональна $\bar{n}_{12}(\omega_n - \omega_{21}) - n_N$.

3. ПОРОГ ГЕНЕРАЦИИ СРЕДНЕГО ИК-ИЗЛУЧЕНИЯ

Условие начала генерации среднего ИК-поля может быть найдено с помощью уравнений, аналогичных уравнениям (5), (6):

$$\mathcal{E}_M = -\frac{4\pi i\omega_M \int \tilde{\mathbf{j}}_M \mathbf{e}_M \, dV}{(\omega_M^2 - \omega_{k_M}^2) \int \epsilon(\omega_M) \mathbf{e}_M^2 \, dV},\tag{20}$$

$$\tilde{\mathbf{j}}_{M} = -iq\omega_{M}\mathbf{d}_{23}\sin(k_{M}x)\delta(z - z_{QW}) \times \int_{0}^{\infty} N\tilde{\rho}_{32} d\Delta, \quad (21)$$

где $\omega_{k_M} = \omega'_{k_M} + i\omega''_{k_M}$ — комплексная собственная частота средней ИК-моды. Имея в виду определение порога генерации, достаточно найти входящую в выражение (21) величину $\tilde{\rho}_{32}$ лишь с точностью до линейных по среднему ИК-полю членов. Простое вычисление с использованием уравнений (8) дает [12]

$$\tilde{\rho}_{32} \approx i e_M \left(\frac{n_{23}}{\tilde{\Gamma}_{32}} + \frac{n_{12}}{\tilde{\Gamma}_{32}} \sum_n \frac{|e_n|^2}{\Gamma_{21}\Gamma_{31}} \right), \qquad (22)$$

где

$$\tilde{\Gamma}_{32} = \Gamma_{32} + \sum_{n} |e_n|^2 / \Gamma_{31}.$$
(23)

Первый член в выражении (22) соответствует простому однофотонному поглощению или усилению излучения, пропорциональному разности населенностей n_{23} на низкочастотном переходе. Второй член описывает параметрическое взаимодействие ближних ИК-мод с модой среднего ИК-диапазона и происходит из произведения $e_n^* \tilde{\rho}_{31n}$ в уравнениях (8), отвечающего за смешивание ближнего ИК-поля с поляризацией на переходе $3 \to 1$, которая возбуждается за счет двухфотонного процесса

$$\tilde{\rho}_{31n} \propto e_M \tilde{\rho}_{21n} \propto e_M e_n n_{12}.$$

Входящая в выражение (22) величина n_{23} может быть найдена из следующих соображений. Записывая уравнение для n_{13} [19]

$$\frac{dn_{13}}{dt} + r(n_{13} - \bar{n}_{13}) = -2 \operatorname{Im} \sum_{n} e_n^* \tilde{\rho}_{21n}, \qquad (24)$$

в котором для следующих ниже оценок принято, что скорость релаксации разности населенностей на переходе $3 \rightarrow 1$ к ее равновесному в отсутствие полей значению \bar{n}_{13} такая же, как и на переходе $2 \rightarrow 1$, и комбинируя его с уравнением (12), можно найти, что стационарное значение

$$n_{13} = \bar{n}_{13} + \frac{n_{12} - \bar{n}_{12}}{2}.$$

Отсюда следует, что

$$n_{23} \equiv n_{13} - n_{12} = \frac{\bar{\rho}_{11} + \bar{\rho}_{22}}{2} - \frac{n_{12}}{2} - \bar{\rho}_{33} \equiv \\ \equiv \bar{n}_{23} + \frac{\bar{n}_{12} - n_{12}}{2}.$$
 (25)

Так как третья подзона расположена выше второй, а их квазихимпотенциалы практически равны (см. предыдущий раздел), величина $\bar{n}_{23} > 0$ при любом токе накачки. Однако из выражения (25) видно, что n_{23} при $0 < p_{\parallel} < p_{\parallel 0}$ (или, что то же, при $0 < \Delta < p_{\parallel 0}^2 (m_1 + m_2)/2\hbar m_1 m_2$), соответствующих области генерации ближнего ИК-излучения, может стать отрицательной (т. е. переход $3 \rightarrow 2$ может инвертироваться) за счет увеличения $n_{12} < 0$ по сравнению с ее равновесным значением \bar{n}_{12} вследствие «выжигания» ближним ИК-полем провала в населенности второй подзоны. Ниже будет показано, что это действительно имеет место при определенном режиме работы рассматриваемых лазеров.

Подставив (22) в (21) и (21) в (20) и, как выше, переходя от суммирования по модам к интегрированию, можно получить следующее равенство, которое должно выполняться на пороге генерации средней ИК-моды:

$$\operatorname{Re} \int_{0}^{\infty} \left[\frac{rn_{12}}{4\pi \tilde{\Gamma}_{32}} \int_{\omega_{21}}^{\omega_{31}} \frac{\bar{n}_{12}(\omega_n - \omega_{21}) - n_N}{n_N \Gamma_{21} \Gamma_{31}} d\omega_n + \frac{n_{23}}{\tilde{\Gamma}_{32}} \right] d\Delta = n_M, \quad (26)$$

Рис. 3. Зависимость пороговой плотности тока накачки J_{th} для начала средней ИК-генерации от n_N при различном числе смежных КЯ q

где

$$n_M = \frac{\hbar \omega_{k_M}^{\prime\prime} \operatorname{Re}\left[\int \epsilon(\omega_M) \bar{\mathbf{e}}_M^2 dz\right]}{\pi q \omega_M |\mathbf{d}_{23} \bar{\mathbf{e}}_M(z_{QW})|^2 N}.$$
 (27)

Интегрирование по частотам мод ω_n в (26) ограничено предельным значением ω_{31} , т. е. считается, что ближняя ИК-генерация происходит лишь в интервале $\omega_{21} < \omega_n < \omega_{31}$, который соответствует

$$0 < p_{\parallel} < p_{\parallel 0} \equiv \sqrt{2m_1m_2\hbar\omega_{32}/(m_1+m_2)}$$

(см. рис. 2). Возбуждение мод с частотами бо́льшими ω_{31} является нежелательным, так как оно приводит к уменьшению населенности верхней подзоны перехода $3 \rightarrow 2$, а также к уменьшению амплитуды или даже к полному срыву генерации ближних ИК-мод с частотами, меньшими ω_{31} [23], что затрудняет или вообще делает невозможным достижение генерации в средней ИК-области. Практически подавление высокочастотных ближних ИК-мод может быть осуществлено введением в систему фильтра, например, изолированного от тока накачки полупроводника с шириной запрещенной зоны, соответствующей ω_{31} , который поглощает излучение с частотой выше ω_{31} .

Рассматривая для определенности стандартную для лазеров на KЯ AlGaAs гетероструктуру, можно связать поверхностную концентрацию электронов в КЯ с плотностью тока накачки с помощью простой формулы

 $n_e \sim a \tau J/e$,

где a — численный коэффициент, приблизительно равный 0.05–0.1 [16]. Оценивая $\operatorname{Re}[\epsilon(\omega_M)] \approx 10$ [24]

(в пренебрежении ее относительно слабыми вариациями вдоль оси z, существенными лишь для удержания ближнего ИК-поля в поперечном направлении), $\int \bar{\mathbf{e}}_n^2 dz \sim \int \bar{\mathbf{e}}_M^2 dz \approx 1.35$ мкм [17, 25], $z_{23} \approx 5 \cdot 10^{-7}$ см и $z_{12} \approx 10^{-7}$ см [26], $m_1 = 0.5m_0$ и $m_2 = 0.07m_0$ (и поэтому $N \approx 0.01$ с/см²) [27], где m_0 — масса свободного электрона, $\eta \approx 0.2$ (используя данные [28] для GaAs), $r \approx \gamma$ [13], $\omega_{k_M}'' \sim 10^{12}$ рад/с за счет поглощения на свободных носителях [29] и поэтому $n_M \approx -5.4/q$ (считая, что КЯ размещены в области максимума средней ИК-моды, где $|\bar{\mathbf{e}}_M(z_{QW})|^2 \approx 1$), можно исследовать уравнение (26) численно.

В результате удается определить зависимость пороговой плотности тока накачки J_{th} для начала средней ИК-генерации от параметра n_N при различном числе смежных КЯ q. Она показана на рис. 3. Из него видно, что J_{th} достигает минимума при $n_N \approx -0.17$. Это объясняется тем, что при меньших n_N интенсивность ближних ИК-мод падает, что приводит к сглаживанию вызываемого ими провала в населенности второй подзоны и, как следствие, снижению инверсии на переходе $3 \rightarrow 2$. При бо́льших n_N ближнее ИК-излучение, наоборот, становится слишком сильным, что вызывает рост величины $\tilde{\Gamma}_{32}$ в знаменателях формулы (26) и, следовательно, падение коэффициента усиления среднего ИК-поля.

Оптимальное значение $n_N \approx -0.17$ оказывается немного меньше реальной величины n_N , вычисленной для указанных параметров структуры. Однако $n_N \approx -0.17$ может быть легко достигнута путем введения дополнительных потерь для ближних ИК-мод, например, с помощью введения в систему вспомогательного слоя, изготовленного из полупроводника с шириной запрещенной зоны меньшей, чем $\hbar\omega_{21}$, и изолированного от токовой накачки. Из рис. З также следует, что J_{th} уменьшается с ростом q. Такое поведение J_{th} является вполне естественным, так как каждая КЯ играет роль дополнительного усилителя среднего ИК-излучения. Однако увеличение числа смежных КЯ сверх пяти оказывается менее эффективным, так как при q > 5 и приведенном выше значении а только части электронного и дырочного токов достигают удаленных КЯ и поэтому снабжают их меньшим числом носителей.

В целом величины J_{th} оказываются значительно ниже оценок из работы [14] и позволяют надеяться на реализацию рассматриваемого лазера при комнатной температуре в непрерывном режиме. Как уже указывалось во Введении, причина этого в том, что вследствие неоднородного уширения перехода $3 \rightarrow 2$ усиление ближнего ИК-поля на нем возможно, когда он инвертирован лишь в спектральной об-

Рис. 4. Зависимость разности населенностей на переходе $3 \rightarrow 2$, n_{23} (сплошная линия), от безразмерной отстройки Δ/γ при $n_N \, pprox \, -0.17$, $a \, pprox \, 0.1$, au pprox 1 нс и $J = 10~{
m \kappa A/cm^2}.$ Для сравнения приведено равновесное значение этой же величины, \bar{n}_{23} (штриховая линия), в отсутствие генерации ближнего ИКполя. При $0 < \Delta/\gamma < \omega_{32}/\gamma$ (область ближней ИКгенерации) величина n_{23} дается выражением (25), где, согласно (17), $n_{12} = n_N$. При бо́льших Δ (где ближняя ИК-генерация отсутствует) n_{23} равна \bar{n}_{23} , так что сплошная и штриховая линии совпадают. Здесь величины $\bar{n}_{ij} \equiv \bar{
ho}_{ii} - \bar{
ho}_{jj}$ находятся с помощью формулы (14), в которой химические потенциалы μ_e , μ_h определяются соответственно из уравнений (15) и (16) с $n_e \sim n_h \sim a \tau J/e$. Скачок n_{23} при $\Delta/\gamma = \omega_{32}/\gamma pprox 19$ объясняется подавлением генерации ближних ИК-мод с частотами выше ω_{31} (см. обсуждение после формулы (27))

ласти, резонансной с этим полем, а инверсия полных населенностей соответствующих подзон отсутствует. Действительно, весь спектральный диапазон перехода $3 \rightarrow 2$ можно разделить на две области: область ближней ИК-генерации, где $0 < p_{\parallel} < p_{\parallel 0}$ (или, что то же, $0 < \Delta < \omega_{32}$), и область, где $p_{\parallel 0} < p_{\parallel}$ (или $\omega_{32} < \Delta$) и ближнее ИК-излучение отсутствует, см. рис. 2. В первой области спектральная разность населенностей между второй и третьей подзонами n_{23} дается формулой (25).

Легко показать, что при определенных выше оптимальных параметрах $J_{th} \sim 10 \text{ кA/cm}^2$ и $n_N \sim -0.17$ она отрицательна (рис. 4), а величина

$$N \int_{0}^{\omega_{32}} n_{23} d\Delta \approx -4.9 \cdot 10^{11} \text{ cm}^{-2}.$$

Таким образом, в диапазоне $0 < \Delta < \omega_{32}$ переход $3 \rightarrow 2$ инвертирован. Взаимодействие среднего ИК-излучения с переходом $3 \rightarrow 2$ в этой области

носит в основном резонансный характер, так как частота последнего при $\Delta = 0$ в точности совпадает с частотой средней ИК-моды, а при $\Delta = \omega_{32}$ (т.е. на его границе) оказывается меньше ее на величину $\eta \omega_{32} \approx 2\gamma$, т.е. на две однородные ширины линии γ . В результате при $0 < \Delta < \omega_{32}$ происходит эффективное усиление среднего ИК-излучения. В области $\omega_{32} < \Delta$ вследствие отсутствия ближней ИК-генерации величина n_{23} равна своему равновесному значению \bar{n}_{23} и потому положительна (рис. 4), а

$$N\int_{\omega_{32}}^{\infty} n_{23} d\Delta \approx 2 \cdot 10^{12} \text{ cm}^{-2}.$$

Таким образом, при $\omega_{32} < \Delta$ инверсии на переходе $3 \rightarrow 2$ нет и происходит не усиление, а поглощение среднего ИК-излучения. Однако взаимодействие последнего с переходом $3 \rightarrow 2$ в области $\omega_{32} < \Delta$ имеет нерезонансный характер, так как во всей этой области частота этого перехода оказывается меньше частоты средней ИК-моды на $\eta\Delta$, т. е., согласно сказанному выше, более чем на две однородные ширины линии γ . В результате поглощение среднего ИК-излучения при $\omega_{32} < \Delta$ оказывается подавленным и поэтому не может компенсировать его резонансное усиление при $0 < \Delta < \omega_{32}$.

В то же время полная инверсия населенностей подзон на переходе $3 \rightarrow 2$ отсутствует, так как величина $N \int_{0}^{\infty} n_{23} d\Delta$ положительна и примерно равна $1.5 \cdot 10^{12}$ см⁻². Таким образом, усиление среднего ИК-излучения на переходе $3 \rightarrow 2$ оказывается достаточно эффективным, когда разность полных населенностей образующих его подзон еще очень далека от инверсного состояния. Следствием этого и является значительное уменьшение пороговой плотности тока накачки для начала средней ИК-генерации по сравнению с оценками в [14], и, как следствие, возможность работы такого лазера при комнатной температуре в непрерывном режиме.

Следует отметить, что в уравнении (26) учитывается усиление среднего ИК-поля не только за счет создания инверсии на переходе $3 \rightarrow 2$ (за что отвечает второе слагаемое в выражении (26)), но и за счет его параметрического взаимодействия с ближними ИК-модами (первое слагаемое в (26), см. также обсуждение после (23)). Однако отношение первого слагаемого ко второму при указанных выше параметрах примерно равно 0.1, т.е. безынверсный механизм усиления среднего ИК-сигнала оказывается значительно слабее инверсионного. Причина этого — малость интеграла по частотам ближних ИК-мод ω_n в выражении (26), являющаяся следствием существенной взаимной компенсации их вкладов в параметрическое возбуждение поляризации на низкочастотном переходе. Для обоснования последнего утверждения достаточно заметить, что если бы в интеграле по ω_n в выражении (26) были существенны лишь частоты в интервале шириной порядка γ в окрестности центральной частоты $\omega_{21} + \Delta$, то можно было бы положить Γ_{21} , $\Gamma_{31} \sim \gamma$ и первый член в (26) был бы (учитывая, что найденная выше оптимальная величина $|n_N| \approx 0.17 \ll 1$) порядка второго.

Найденная минимальная пороговая плотность тока для начала генерации в среднем ИК-диапазоне $J_{th} \approx 10 \text{ кA/см}^2$ значительно превышает характерные значения аналогичной величины для возбуждения ближнего ИК-излучения на переходе $2 \rightarrow 1$ в гетероструктурах длиной порядка 1 мм [30], так что генерация последнего при $J \gtrsim J_{th}$ действительно должна иметь (как и предполагалось выше) многомодовый характер с шириной спектральной полосы порядка частоты перехода $3 \rightarrow 2$ [19].

В заключение необходимо указать, что при рассматриваемых высоких значениях поверхностной концентрации носителей в КЯ порядка $5 \cdot 10^{12}$ см⁻² (впрочем, вполне достижимых [31]) существенную роль начинает играть их взаимодействие друг с другом. Так, оценки, основанные на результатах работы [32], показывают, что при данных параметрах сдвиг частоты перехода 3 \rightarrow 2 вследствие многочастичных эффектов в несколько раз меньше его неоднородного уширения вследствие того, что $m_3 \neq m_2$. Это означает, что использованная выше и пренебрегающая эффектами взаимодействия носителей трехуровневая схема позволяет дать лишь качественно правильное описание генерации ИК-полей в рассмотренной системе. В частности, приведенные на рис. З пороговые значения плотности тока накачки для начала генерации среднего ИК-излучения должны рассматриваться лишь как оценки J_{th} по порядку величины.

4. ВЫВОДЫ

Таким образом, в статье развита теоретическая модель лазера на полупроводниковых гетероструктурах с КЯ, генерирующего излучение среднего ИК-диапазона при одновременной вспомогательной генерации в ближней ИК-области. Показано, что учет особенностей структуры уровней размерного квантования в КЯ приводит к достаточно низким оценкам пороговой плотности тока накачки для начала средней ИК-генерации (порядка 10 кА/см²), что позволяет надеяться на работу такого источника при комнатной температуре в непрерывном режиме. Для практической реализации подобного лазера оказывается важным искусственное ослабление вспомогательной генерации в ближнем ИК-диапазоне и полное ее подавление на достаточно коротких длинах волн.

Работа выполнена при поддержке РФФИ (гранты №№ 05-02-17525, 07-02-00486) и Совета по грантам Президента Российской Федерации для государственной поддержки ведущих научных школ (грант № 4588.2006.2).

ЛИТЕРАТУРА

- D. Zimdars, J. A. Valdmanis, J. S. White et al., AIP Conf. Proc. 760, 570 (2005).
- О. В. Бецкий, А. П. Креницкий, А. В. Майбородин и др., Биомедицинские технологии и радиоэлектроника 12, 3 (2003).
- **3**. А. А. Ковалев, там же **11**, 21 (2006).
- В. Ф. Кирчук, О. Н. Антипова, А. Н. Иванов и др., там же 12, 46 (2006).
- **5**. М. В. Королевич, М. Р. Жбанкова, ЖПС **73**, 721 (2006).
- A. Agrawal, H. Cao, and A. Nahata, New J. Phys. 7, 249 (2005).
- J. N. Heyman, R. Kersting, and K. Unterrainer, Appl. Phys. Lett. 72, 644 (1998).
- 8. B. H. Wu and J. C. Cao, Physica B 349, 322 (2004).
- A. V. Maslov and D. S. Citrin, J. Appl. Phys. 93, 10131 (2003).
- J. Faist, F. Capasso, D. L. Sivco et al., Science 264, 553 (1994).
- S. Dhillon, J. Alton, S. Barbieri et al., Appl. Phys. Lett. 87, 071107 (2005).
- 12. A. A. Belyanin, F. Capasso, V. V. Kocharovsky et al., Phys. Rev. A 63, 053803 (2001).
- A. Belyanin, C. Bentley, F. Capasso et al., Phys. Rev. A 64, 013814 (2001).
- 14. A. Kastalsky, IEEE J. Quant. Electron. 29, 1112 (1993).

- 15. J. Singh, IEEE Photonics Techn. Lett. 8, 488 (1996).
- **16**. Л. Е. Воробьев, Письма в ЖЭТФ **68**, 392 (1998).
- 17. V. Berger and C. Sirtori, Semicond. Sci. Technol 19, 964 (2004).
- Л. А. Вайнштейн, Электромагнитные болны, Радио и связь, Москва (1988).
- Я. И. Ханин, Основы динамики лазеров, Физматлит, Москва (1999).
- 20. S.-C. Lee, I. Galbraith, and C. R. Pidgeon, Phys. Rev. B 52, 1874 (1995).
- M. Hartig, J. D. Ganiere, P. E. Selbmann et al., Phys. Rev. B 60, 1500 (1999).
- 22. О. Звелто, Принципы лазеров, Мир, Москва (1990).
- 23. Y. Tokuda, N. Tsukada, K. Fujiwara et al., Appl. Phys. Lett. 49, 1629 (1986).
- **24**. А. Н. Пихтин, А. Д. Яськов, ФТП **12**, 1047 (1978).

- 25. C. Sirtori, C. Gmachl, F. Capasso et al., Opt. Lett. 23, 1366 (1998).
- 26. Semiconductor Lasers, ed. by E. Kapon, Academic Press, San Diego (1999).
- 27. G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers, Van Nostrand Reinhold Company, New York (1986).
- 28. U. Ekenberg, Phys. Rev. B 40, 7714 (1989).
- 29. B. Jensen, in Handbook of Optical Constants of Solids, ed. by E. D. Palik, Academic, New York (1985).
- 30. L. V. Asryan, N. A. Gun'ko, A. S. Polkovnikov et al., Semicond. Sci. Technol. 15, 1131 (2000).
- 31. M. Hartig, J. D. Ganiere, P. E. Selbmann, and B. Deveaud, Phys. Rev. B 60, 1500 (1999).
- T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).