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The density of states, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated
and strongly disordered paramagnetic Anderson—-Hubbard model are analyzed within the generalized dynamical
mean-field theory (DMFT+3 approximation). Strong correlations are taken into account by the DMFT, and
disorder is taken into account via an appropriate generalization of the self-consistent theory of localization.
The DMFT effective single-impurity problem is solved by the numerical renormalization group (NRG); we con-
sider the three-dimensional system with a semi-elliptic density of states. The correlated metal, Mott insulator,
and correlated Anderson insulator phases are identified via the evolution of the density of states and dynamic
conductivity, demonstrating both the Mott—Hubbard and Anderson metal-insulator transition and allowing the
construction of the complete zero-temperature phase diagram of the Anderson—-Hubbard model. Rather unusual
is the possibility of a disorder-induced Mott insulator-to-metal transition.

PACS: 71.10.Fd, 71.27.+a, 71.30.4+h

1. INTRODUCTION

The importance of the electron interaction and ran-
domness for the properties of condensed matter is well
known [1]. Both Coulomb correlations and disorder are
driving forces of metal-insulator transitions (MITs) re-
lated to the localization and delocalization of particles.
In particular, the Mott—Hubbard MIT is caused by the
electron repulsion [2], while the Anderson MIT is due to
random scattering of noninteracting particles [3]. Actu-
ally, disorder and interaction effects are known to com-
pete in many subtle ways [1, 4]; this problem becomes
much more complicated in the case of strong electron
correlations and strong disorder, determining the phys-
ical mechanisms of the Mott—Anderson MIT [1].

The cornerstone of the modern theory of strongly
correlated systems is the dynamic mean-field theory
(DMFT) [5-8], constituting a nonperturbative theo-
retical framework for the investigation of correlated
lattice electrons with local interaction. In this ap-
proach, the effect of local disorder can be taken into
account through the standard average density of states
(DOS) [9] in the absence of interactions, leading to
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the well-known coherent potential approximation [10],
which does not describe the physics of Anderson lo-
calization. To overcome this deficiency, Dobrosavlje-
vi¢ and Kotliar [11] formulated a variant of the DMFT
where the geometrically averaged local DOS was com-
puted from solutions of the self-consistent stochastic
DMFT equations. Subsequently, Dobrosavljevi¢ et
al. [12] incorporated the geometrically averaged local
DOS into the self-consistency cycle and derived a mean-
field theory of Anderson localization that reproduced
many of the expected features of the disorder—driven
MIT for noninteracting electrons. This approach was
extended in [13] to include Hubbard correlations via the
DMFT, which led to a highly nontrivial phase diagram
of the Anderson-Hubbard model with the correlated
metal, Mott insulator, and correlated Anderson insu-
lator phases. The main deficiency of these approaches,
however, is the inability to directly calculate measur-
able physical properties, such as conductivity, which is
of major importance and defines the MIT itself.

At the same time, the well-developed approach
of the self-consistent theory of Anderson localization,
based on solving the equations for the generalized diffu-
sion coefficient, demonstrated its efficiency in the non-
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interacting case a long time ago [14-19]; several at-
tempts to include interaction effects into this approach
were made with some promising results [17, 20]. Ho-
wever, until recently, there have been no attempts to
incorporate this approach into the modern theory of
strongly correlated electron systems. Here, we under-
take such a research, studying the Mott-Hubbard and
Anderson MITs via direct calculations of both the av-
erage DOS and the dynamic (optical) conductivity.

Our approach is based on the recently proposed
generalized DMFT+X approximation [21-24], which
on the one hand retains the single-impurity descrip-
tion of the DMFT, with a proper account for local
Hubbard-like correlations and the possibility to use im-
purity solvers like the numerical renormalization group
(NRG) [25-27], and on the other hand, allows including
additional (either local or nonlocal) interactions (fluc-
tuations) on a nonperturbative model basis.

Within this approach, we have already studied
both single- and two-particle properties of the two-
dimensional Hubbard model, concentrating mainly on
the problem of pseudogap formation in the density of
states of the quasiparticle band in both correlated met-
als and doped Mott insulators, with an application to
superconducting cuprates. We analyzed the evolution
of non-Fermi-liquid-like spectral density and ARPES
spectra [22], “destruction” of Fermi surfaces and forma-
tion of Fermi “arcs” [21], as well as pseudogap anomalies
of optical conductivity [24]. Briefly, we also considered
impurity scattering effects [23].

In this paper, we apply our DMFT+X approach
for calculations of the density of states, dynamic con-
ductivity, and phase diagram of the strongly corre-
lated and strongly disordered three-dimensional para-
magnetic Anderson-Hubbard model. Strong correla-
tions are again taken into account by the DMFT, while
disorder is taken into account via the appropriate gen-
eralization of the self-consistent theory of localization.

This paper is organized as follows. In Sec. 2, we
briefly describe our generalized DMFT+Y approxima-
tion with application to the disordered Hubbard model.
In Sec. 3, we present basic DMFT+Y expressions for
the dynamic (optical) conductivity and formulate the
appropriate self-consistent equations for the general-
ized diffusion coefficient. Computational details and re-
sults for the density of states and dynamic conductivity
are given in Sec. 4, where we also analyze the phase dia-
gram of the strongly disordered Hubbard model within
our approach. The paper ends with a short summary
in Sec. 5 and a discussion of some related problems.
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2. BASICS OF THE DMFT+3 APPROACH

Our aim is to consider the nonmagnetic disor-
dered Anderson-Hubbard model (mainly) at half-filling
for arbitrary interaction and disorder strengths. The
Mott—Hubbard and Anderson MITs are investigated on
an equal footing. The Hamiltonian of the model is writ-
ten as

H=—t Z a:fgaja + Zemw + Uznnnu’ (1)
(ij)o io i

where ¢ > 0 is the amplitude for hopping between near-
est neighbors, U is the on-site repulsion, n;, = a:[an is
the local electron number operator, a;, (a;ra) is the an-
nihilation (creation) operator of an electron with spin
o, and the local ionic energies ¢; at different lattice
sites are considered independent random variables. To
simplify diagrammatics in what follows, we assume the

Gaussian probability distribution for €;:
2

€
V2T A P <_ ) ’

2A2

where the parameter A is a measure of the disorder
strength, and a Gaussian (“white” noise) random field
of energy level ¢; at lattice sites produces “impurity”
scattering, leading to the standard diagram technique
for calculation on the averaged Green’s functions [19].

The DMDF+X. approach was initially proposed
in [21-23] as a simple method to include nonlocal
fluctuations, of essentially arbitrary nature, into the
standard DMFT. In fact, it can be used to include
any additional interaction into the DMFT as fol-
lows. Working at finite temperatures T, we write the
Matsubara-“time” Fourier-transformed single-particle
Green’s function of the Hubbard model as

1
ic + p—e(p) — X(ic) — p(ic)
e=7T(2n+ 1),

1

P(e) (2)

G(ie,p) =

(3)

where ¢(p) is the single-particle spectrum correspond-
ing to the free part of (1), u is the chemical potential
fixed by the electron concentration, X(ie) is the local
contribution to self-energy due to the Hubbard inter-
action, of the DMFT type (surviving in the limit of
spatial dimensionality d — o0), and ¥ (i¢) is some ad-
ditional (in general, momentum-dependent) self-energy
part. This last contribution can be caused, e.g., by
electron interactions with some “additional” collective
modes or order-parameter fluctuations within the Hub-
bard model itself. But it can actually be due to any
other interactions (fluctuations) outside the standard
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Fig. 1. Typical “skeleton” diagrams for the self-energy
in the DMFT+X approach. The first two terms are ex-
amples of DMFT self-energy diagrams; the middle two
diagrams show contributions due to random impurity
scattering represented by dashed lines. The last dia-
gram (b) is an example of a neglected diagram leading
to interference between the local Hubbard interaction
and impurity scattering

Hubbard model, e.g., due to phonons or random im-
purity scattering, when it is in fact local (momentum
independent). The last interaction is the subject of our
main interest in the present paper. The basic assump-
tion here is the neglect of all interference processes of
the local Hubbard interaction and “external” contribu-
tions due to these additional scatterings (noncrossing
approximation for appropriate diagrams) [22], as illus-
trated by diagrams in Fig. 1.

The self-consistency equations of the generalized
DMFT+X approach are formulated as follows [21, 22].

1. Start with some initial guess for the local self-
energy X(ic), e.g., X(ic) = 0.

2. Construct Yp(ic) within some (approximate)
scheme, accounting for interactions with an “external”
interaction (impurity scattering in our case), which can
in general depend on X (iw) and u.

3. Calculate the local Green’s function

1

N

1

Gii(ie) = — S(ie) — Sp(ie)’

Zp:i6+u—6(p)

4. Define the “Weiss field”

Gy ' (ie) = S(ie) + G;' (ie). (5)

5. Using some “impurity solver”, calculate the
single-particle Green’s function Gg4(ic) for the effective
Anderson impurity problem, placed at a lattice site 4
and defined by the effective action that in the obvious
notation is written as
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B B
Seff = —/dTl/dT2 Cia(Tl)g(;l(Tl_T2)C;(T2)+
0 0

7
0
In what follows, we use the NRG [25-27] for the “im-
purity solver”, which allows us to deal also with real
frequencies, thus avoiding the complicated problem of

analytic continuation from Matsubara frequencies.
6. Define the new local self-energy

(iw). (7)

7. Using this self-energy as the “initial” one in step
1, continue the procedure until (and if) convergence is
reached, to obtain

+ [ dr UTLZ'T (T)nij,(7)~ (6)

-1

Y(iw) = Gy ' (iw) — Gy

Gi; (Zé‘) = Gd(iﬁ). (8)
Eventually, we obtain the desired Green’s function in
form (3), with X(i¢) and X (ic) appearing at the end
of our iterative procedure.

For ¥ (i) in the random impurity problem, we use
the simplest possible one-loop contribution, given by
the third diagram in Fig. la, neglecting “crossing” di-
agrams like the fourth in Fig. 1la, i.e., just the self-
consistent Born approximation [19], which in the case
of Gaussian disorder (2) leads to the usual expression

Splie) = A* Y Glie,p) = Simplic) (9)

which is actually p-independent (local).

3. DYNAMIC CONDUCTIVITY IN THE
DMFT+3 APPROACH

A. Basic expressions for optical conductivity

Physically, it is clear that calculations of the dy-
namic conductivity are the most direct way to study
MITs, because its frequency dependence along with the
static value at zero frequency of an external field allows
clearly distinguishing between metallic and insulating
phases (at zero temperature T = 0).

To calculate the dynamic conductivity, we use the
general expression relating it to the retarded density—
density correlation function y®(w, q) [14, 19]:

o(w) =

where e is the electron charge.
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Fig.2. Full polarization loop with the vertex part de-

scribing all interactions and impurity scatterings in the

particle—hole channel. The loop without vertex correc-

tions is included implicitly. Here, p+ = p + q/2 and
e+ =ectw/2

We next outline the derivation presented in detail
in Ref. [24] for the pseudogap problem, with necessary
modifications for the present case. We consider the full
polarization-loop graph in the Matsubara representa-
tion shown in Fig. 2, which is conveniently (with ex-
plicit frequency summation) written as

B(iw,q) = Y Pieier (iw, q

ee!

)= @i(iw,q)  (11)

and contains all possible interactions of our model, de-
scribed by the full shaded vertex part. Actually, we im-
plicitly assume here that the simple-loop contribution
without vertex corrections is also included in Fig. 2,
which shortens further diagrammatic expressions [24].
The retarded density—density correlation function is de-
termined by an appropriate analytic continuation of
this loop and can be written as [14]

i de
Fwa = [ 52 {Ife) - e oM aw) +
+ fle-)®f (q,w) — fler) @ (q,w)},  (12)
where f(g) is the Fermi distribution, 1 = & + ¥,
and two-particle loops ®F4(q,w), ®FF(q,w), and

@?A(q.,w) are determined by the appropriate analytic
continuations (i + iw — ¢ + w + 10, ie — € £ 14, and
d = 4+0) in (11). Then we can write the dynamic (op-
tical) conductivity as
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) [ dettren - e

(5) ]

x [@84(q,w) — @74 (0,w)] +
+ f(Ef) [(b?R(qvw) - (b?R(O/w)] - f(6+) X
x [@24(q,w) — ®24(0,w)]},

27 q?

(13)

where the total contribution of additional terms with
zero ¢ can be shown (with the use of general Ward
identities) to be zero.

In the DMFT+X approximation, which neglects in-
terference between the local Hubbard interaction and
impurity scattering, we calculate ®;.;. (iw, q) entering
the sum over Matsubara frequencies in (11) by writing
the Bethe—Salpeter equation, shown diagrammatically
in Fig. 3, where we introduce the irreducible (local)
DMFT vertex U (iw) and the “rectangular” vertex
containing all interactions with impurities. Analyti-
cally, this equation can be written as

(bisis’ (iwa q) = (P?E (iw‘/ q)(sss’ +
+ (I>(z]5 (iwa q) Z Uisis” (iw)(bis”is’ (iw‘, q)a (14)

o
where ®Y_(iw, q) is the sought function calculated ne-
glecting vertex corrections due to the Hubbard interac-
tion (but taking all interactions due to impurity scat-
tering into account). We note that all the ¢g-dependence
is here determined by ®Y (iw,q) because the vertex
Useier (iw) is local and ¢-independent.

As we noted in Ref. [24], it is clear from (13) that
calculation of the conductivity requires only the knowl-
edge of the ¢?-contribution to ®(iw,q). This can be
easily found as follows. First, we note that all the loops
in (14) contain a ¢g-dependence starting from terms of
the order of ¢>. Then we can take an arbitrary loop
(cross section) in the expansion of (14) (see Fig. 3),
calculate it up to terms of the order of ¢, and make
resummation of all contributions to the right and to
the left of this cross section, setting ¢ = 0 in all these
graphs. This is equivalent to simple ¢2-differentiation
of the expanded version of Eq. (14). This procedure
immediately leads to the following relation for the ¢2-
contribution to (11):

P (iw, q) — ®(iw,0)

o(iw) = ;1_% " =
= 97 (iw, q = 0)¢). (iw)  (15)
€
with
Y (iw, q) — Y. (iw,
?S (zw) = lim zs(zw/q) zs(zw/o)-/ (16)

q—0 q2
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Fig.3. Bethe-Salpeter equation for the polarization loop in the DMFT+X approach. A circle represents the irreducible ver-

tex part in the particle-hole channel of the DMFT approach, which contains only local Hubbard interactions. An unshaded

rectangular vertex represents corrections from impurity scattering only, implicitly including the case of free particle-hole
propagation
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Fig.4. Effective vertex 7;:(iw,q = 0) used in calcula-
tions of conductivity

where ®Y.(iw, q) contains vertex corrections only due
to impurity scattering, while the one-particle Green’s
functions entering it are taken with self-energies due
to both impurity scattering and the local DMFT-like
interaction, as in Eq. (3). The vertex v;.(iw,q = 0)
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is determined diagrammatically as shown in Fig. 4, or
analytically as

Vie (iwa q= O) =
=14 Ui (iw)®ienicr (iw, q = 0). (17)

elell

Next, using Bethe—Salpeter equation (14), we can ex-
plicitly write

Yie (iwa q= O) =

®;cic (iw,q = 0) — DY (iw, q
= ]_ . 1€ )
+; ®Y (iw,q =0)

Z (Pisis’ (iw‘, q= O)
_ ¢

0 (iw.q = 0)

0)

(18)

At q = 0, we have the following Ward identity, which
can be obtained by direct generalization of the proof
given in [14, 28] (see the details in the Appendix of
Ref. [24]):
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(_iw)q)is(iwv q= 0) = (_iw) Z Dicier (iw, q= 0) =

= Y Glie +iw,p) - Y Gliep). (19)

The denominator in (18) contains vertex corrections
only from impurity scattering, while the Green’s func-
tions here are “dressed” by both impurities and the local
(DMFT) Hubbard interaction. We can therefore regard
the loop entering the denominator as dressed by impu-
rities only, but with the “bare” Green’s functions:

. 1

Gl e s

where X(i¢) is the local contribution to self-energy from
the DMFT. For this problem, we have a Ward identity
similar to (19) (see the Appendix in Ref. [24]),

ZG(is +iw,p) — ZG(is,p) =

= Y (iw,q = 0) [(ic + iw) — (ie) — iw] =
= 0 (iw,q = 0) [AS(iw) —iw], (21)

where we set

AX(iw) = X(ie + iw) — X(ie). (22)
Thus, using (19) and (21) in (18), we obtain the final
expression for ;- (iw,q = 0) as

Yie (iw,q = 0) =1—%. (23)

Then (15) reduces to

o) = 3 o i) -2 e

1w

Analytic continuation to real frequencies is obvious; us-
ing (15) and (24) in (13), we can write the final expres-
sion for the real part of dynamic (optical) conductivity
as

Reo(w) = 52 [ delfe-) = f(en)] %

SR (ey) —mmr

xR%ﬁ“wﬂh

TR (eq) —ER(s)r}. (25)

w

—ﬁ“w@—

Thus, we have greatly simplified our problem. To
calculate the dynamic conductivity in the DMFT+X
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approximation, we only have to solve a single-particle
problem as described by the DMFT-+X procedure
above, this determining self-consistent values of lo-
cal self-energies (e ); while the nontrivial contribu-
tion of impurity scattering are to be included via (16),
which is to be calculated in some approximation, tak-
ing only interaction with impurities (random scatter-
ing) into account, but using the “bare” Green’s func-
tions of form (20), which include local self-energies al-
ready determined via the general DMFT+X procedure.
Actually, (25) also provides an effective algorithm to
calculate dynamic conductivity in the standard DMFT
(neglecting impurity scattering), because (16) is then
easily calculated from a simple loop diagram, deter-
mined by two Green’s functions and free scalar ver-
tices. As usual, there is no need to calculate vertex
corrections within the DMFT itself, as was first proved
considering the loop with vector vertices [7, 8]. Obvi-
ously, Eq. (25) effectively interpolates between the case
of strong correlations without disorder and the case of
pure disorder, without Hubbard correlations, which is
of major interest to us. In what follows, we see that
calculations based on Eq. (25) give a reasonable overall
picture of MIT in the Anderson—Hubbard model.

B. Self-consistent equations for the generalized
diffusion coefficient and conductivity

To calculate the optical conductivity, we need to
know the basic block ®?_(iw,q) entering (16) or, more
precisely, the relevant functions analytically continued
to real frequencies: ®2F4(w, q) and ®°%F(w, q), which
in turn define ¢2f4(w) and ¢27% (w) entering (25), and
are defined by obvious relations similar to (16):

B2 (w, q) — 3 (w,0)

ORA o
e (w) = lim 2 . (26)
HORR _ §ORR
PORR () = T T2 (&2 @) . @0 (ony
q—0 q
By definition, we have (with p+ = p +q/2)
8 (w,q) = GR(e4, p1)G (e, po)
P
XFRA(5*7P*;5+7P+)7 (28)
OV (w,q) = > GR(ey,py)Gl (e, po) X
P
X FRR(‘C:*? P-ie4, p+)7
which are shown diagrammatically in Fig. 5. Here,

the Green’s functions Gf(s,,p;) and GA(c_,p_)

13%*
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Fig.5. Diagram representation of ®°%4(w,q) and

2" (w,q)

are defined by analytic continuation (ie — & £ id)
of Matsubara Green’s functions (3) determined via
our DMFT+X algorithm (4)-(9), while the vertices
IBA(c_ p_:ey,py) and TRR(c_ p_:c. . p,) contain
all vertex corrections due to the impurity scattering.

The most important block ®°%4(w, q) can be calcu-
lated using the basic approach of the self-consistent the-
ory of localization [14-19] with appropriate extensions,
taking the role of the local Hubbard interaction into
account using the DMFT+X approach. The only im-
portant difference from the standard approach is that
the self-consistent theory equations are derived using
the functions

1
G Ae,p) =

e+p—e(p)—ZRA(e)

A (29)

imp

(&)

which contain DMFT contributions £#4(¢) in addi-
tion to the impurity scattering contained in

Sfp(©) =A%) G e p) =
P

imp

=ReXinp(e) £iv(e); (30)

here, v(¢) = nA%2N(e) and N(e) is the density of states
renormalized by the Hubbard interaction, given in the
DMFT+X approach by the usual expression

N(e) —% Zlm GR(e,p).

(31)

Following all the usual steps of the standard deriva-
tion [14-19], we obtain the diffusion-like (at small w
and ¢) contribution to ®°%4(w, q) as

5 2miN (e
2074 (g 5) = =2V )

DH D) o
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where an important difference from the single-particle
case is contained in

O=¢e;—e —SRE)+32% ) =

=w—X(ey) + ()

=w - ADRY(W) (33)

which replaces the usual w term in the denominator
of the standard expression for 274 (w, q). On general
grounds, it is clear that in the metallic phase as w — 0,
we have ALFA(w = 0) = 2i Im X(¢) ~ max{T?,<?}, re-
flecting Fermi-liquid behavior of DMFT (conserved by
elastic impurity scattering). At finite 7', this leads to
the usual phase decoherence due to electron—electron
scattering [1, 4]. The generalized diffusion coefficient
D(w) is to be determined by solving the basic self-
consistency equation introduced below.

Using (32) in (26), we easily obtain

ORA(, ) — 27N () D(w)
R (w) ; (1_MRA

(w))”

w

(34

Then using (34) in (25) with w — 0 and T = 0, we
obtain just the usual Einstein relation for the static
conductivity:

o(0) = e>N(0)D(0). (35)

All contributions form the Hubbard interaction are re-

duced to a renormalization of the density of states at

the Fermi level and of the diffusion coefficient D(0).
It follows that (25) reduces to

Reo(w) = 52 [ delfe-) = f(en)] %

xRe{

— ¢ (w) {1

27N (e)D(w)

B AXFRR ()
w

H (36)

where the second term can actually be neglected at
small w, or just calculated from (27) with ®2%R(w, q)
given by the usual “ladder” approximation (A.10).

We now formulate our basic self-consistent equa-
tion determining the generalized diffusion coefficient
D(w). We again follow all the usual steps of the self-
consistent theory of localization (see the details in the
Appendix A), taking the form of our single—particle
Green’s function (29) into account and not restricting
the analysis to the small-w limit. We can then write
the generalized diffusion coefficient as
w?

D) = sy (87)
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where d is the spatial dimensionality and the average
velocity (v) is defined in (A.6) (to a good approxima-
tion, it is just the Fermi velocity). The relaxation ker-
nel M (w) satisfies the self-consistency equation, simi-
lar to that derived in Refs. [14-19] using “maximally
crossed” diagrams for the irreducible impurity scatter-
ing vertex (built with Green’s functions (29)):

M(w) = —ASEA (w) +
+AYY (AGR)? Y m (38)
with
AGp = G"(es,p) — G (e, p), (39)

and AXES (w) = SR (e1) — ¥4, () is due to im-
purity scattering. It is important to stress once again
that there are no contributions to this equation due to
vertex corrections determined by the local Hubbard in-
teraction. Using definition (37), we can rewrite Eq. (38)
as a self-consistent equation for the generalized diffu-

sion coefficient itself:

{@_Az

+ AN (AGR) Y

P a

RA

imp

(W) +

—1
1
_— 40
@+ iD(w)q? } (40)
which is to be solved in conjunction with our DMFT+X.
loop (3)-(9). Due to the limitations of the diffusion
approximation, summation over ¢ in (40) is to be re-
stricted to

q < ko =min{l™" pr}, (41)

where | = (v)/2v(0) is the elastic mean-free path and
pr is the Fermi momentum [17, 19].

Solving (40) for different sets of parameters of our
model and using it in (36) with regular contribu-
tions from (A.10), we can calculate the dynamic (opti-
cal) conductivity in different phases of the Anderson—
Hubbard model.

4. RESULTS AND DISCUSSION

We performed extensive numerical calculations for
a simplified version of the three-dimensional Anderson—
Hubbard model on a cubic lattice with the semi-elliptic
DOS of the “bare” band of width W = 2D:

2 VD2 — g2,

No(e) = wD?2

(42)
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Fig.6. Density of states of the half-filled Anderson—
Hubbard model for different degrees of disorder A, and
U = 2.5D, typical for a correlated metal

The DOS is always given in units of the number of
states per energy interval, per lattice cell volume a® (a
is lattice spacing), and per spin. Some related technical
details are given in Appendix B.

We mostly concentrate on the half-filled case, al-
though some results for finite dopings are also pre-
sented. The Fermi level is always placed at zero energy.

As the “impurity solver” of DMFT, we used the re-
liable numerically exact NRG method [25-27]. Calcu-
lations were done for temperatures T' ~ 0.001D, which
effectively makes temperature effects in the DOS and
conductivity negligible. The discretization parameter
of NRG was always A = 2, the number of low-energy
states after truncation 1000, the cut-off near Fermi en-
ergy [1-6], the broadening parameter b = 0.6.

We present only a fraction of most typical results
in what follows.

A. Evolution of the density of states

Within the standard DMFT approach, the density
of states of the half-filled Hubbard model has a typical
three-peak structure: a narrow quasiparticle band (cen-
tral peak) develops at the Fermi level, with wider upper
and lower Hubbard bands forming at ¢ ~ £U/2. The
quasiparticle band narrows further with an increase in
U in the metallic phase, vanishing at the critical value
Ues = 1.5W, signifying the Mott—Hubbard MIT with a
gap opening at the Fermi level |7, 8, 27].

In Fig. 6, we present our DMFT+X results for the
density of states, obtained for U = 2.5D = 1.25W typi-
cal for a correlated metal without disorder, for different
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Fig. 7. Density of states of the half-filled Anderson—
Hubbard model for different degrees of disorder A and
U = 4.5D, typical for a Mott insulator

degrees of disorder A, including large enough values,
actually transforming the correlated metal to the cor-
related Anderson insulator (see subsection 4B). As may
be expected, we observe typical widening and damping
of the DOS by disorder.

More unexpected are the results obtained for the
values of U typical for a Mott insulator without disor-
der, as shown in Fig. 7 for U = 4.5D = 2.25WW. We
see the restoration of the central peak (quasiparticle
band) in the DOS as disorder increases, transforming
the Mott insulator to either a correlated metal or a
correlated Anderson insulator. Similar behavior of the
DOS was recently obtained in Ref. [13]. But in our
calculations, the presence of distinct Hubbard bands
was already observed for rather large values of disorder,
with no signs of vanishing of the Hubbard structure of
the DOS, which was observed in Ref. [13]. This is prob-
ably due to the very simple nature of our approxima-
tion for the DOS under disordering, although we must
stress that this difference may be also due to another
model of disorder used in Ref. [13] (a flat distribution
of ¢; in (1) instead of our Gaussian case (2)). Although
unimportant, in general, to the physics of Anderson
transition, the type of disorder may be significant for
the DOS behavior.

It is well known that hysteresis behavior of the DOS
is obtained for the Mott—Hubbard transition if DMFT
calculations are performed with U decreasing from the
insulating phase [8, 27]. The Mott insulator phase sur-
vives for the values of U well inside the correlated metal
phase, obtained with an increase in U. The metallic
phase is restored at U, ~ 1.0W. The values of U in
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Fig.8. Restoration of the quasiparticle band by disor-
der in the coexistence (hysteresis) region for U = 2.5D,
obtained from a Mott insulator with decreasing U

the interval U,y < U < U, are usually regarded as
belonging to the coexistence region of the metallic and
(Mott) insulating phases, with the metallic phase being
thermodynamically more stable [8, 27, 29].

In Fig. 8 we present our typical data for the
DOS with different disorder for the same value of
U =25D = 125W as in Fig. 6, but for the hysteresis
region, obtained by decreasing U from the Mott in-
sulator phase. We again observe the restoration of the
central peak (quasiparticle band) in the DOS under dis-
ordering. We also note the peculiar form of the DOS
around the Fermi level during this transition: a narrow
energy gap is conserved until it is closed by disorder,
and a central peak is formed from two symmetric max-
ima in the DOS merging into the quasiparticle band.
This resembles similar behavior observed in the peri-
odic Anderson model [8]. This effect was apparently
unnoticed in previous calculations of the DOS in the
coexistence region [27] (in the absence of disorder); in
our case, it was obtained mainly due to our use of a
very fine mesh of values of the disorder parameter A.

The physical reason for the rather unexpected
restoration of the central (quasiparticle) peak in the
DOS is in fact clear. The controlling parameter for
its appearance or disappearance in DMFT is actually
the ratio of the Hubbard interaction U and the bare
bandwidth W = 2D. Under disordering, we obtain the
new effective bandwidth W,y (in the absence of the
Hubbard interaction), which increases with disorder,
while the semi-elliptic form of the DOS, with well-de-
fined band edges, is preserved in self-consistent Born
approximation (9). This leads to a decrease in the
ratio U/W,ss, which induces the reappearance of the
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Fig.9. Real part of dynamic conductivity for the

half-filled Anderson—-Hubbard model for different de-

grees of disorder A, and U = 2.5D, typical for a corre-

lated metal. Lines 1 and 2 are for the metallic phase,

line 3 corresponds to the mobility edge (Anderson tran-

sition), and lines 4 and 5 correspond to a correlated
Anderson insulator

quasiparticle band in our model. This is illustrated in
more detail in subsection 4C, where our DOS calcula-
tions within the DMFT+X approach for a wide range
of parameters are used to study the phase diagram of
the Anderson—Hubbard model.

B. Dynamic conductivity: Mott—Hubbard and
Anderson transitions

The real part of dynamic (optical) conductivity was
calculated for different combinations of the parameters
of our model directly from Eqs. (36), (A.9), (A.10)
and (40) using the results of DMFT+X loop (3)—(9) as
an input. The conductivity values are given below in
natural units of e>/hia (a is the lattice spacing).

In the absence of disorder, evidently, we reproduce
the results of the standard DMFT approach [7, 8] with
the dynamic conductivity characterized in general by
the usual (metallic) Drude-like peak at zero frequency
and a wide absorption maximum at w ~ U, correspond-
ing to transitions to the upper Hubbard band. With an
increase in U, the Drude peak decreases and vanishes
at the Mott transition, when only transitions through
the Mott—Hubbard gap contribute. Introduction of dis-
order leads to qualitative changes in the frequency de-
pendence of conductivity. In what follows, we mainly
show the results obtained for the same values of U and
A that were used above to illustrate the DOS behavior.

In Fig. 9, we present the real part of dynamic

3
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(optical) conductivity for the half-filled Anderson—
Hubbard model for different degrees of disorder A,
and U = 2.5D, typical for a correlated metal. Tran-
sitions to the upper Hubbard band at w ~ U are prac-
tically unobservable in these data. But it can be clearly
seen that the metallic Drude peak at zero frequency is
widened and suppressed, being gradually transformed
into a peak at finite frequencies due to effects of An-
derson localization. The Anderson transition occurs at
A, = 0.74D = 0.37W (which corresponds to curve 3
in all our graphs, including those for DOS). We note
that this value is actually dependent on the value of
cutoff (41), which is defined up to a constant of the or-
der of unity [17, 19]. Naive expectations might lead to
the conclusion that a narrow quasiparticle band at the
Fermi level, which forms in the general case of a highly
correlated metal, may be localized much more easily
than the typical conduction band. We see, however,
that these expectations are wrong and that this band
is localized only at strong enough disorder A, ~ D, just
as for the whole conduction band of the width ~ W.
This is in accordance with the previous analysis of lo-
calization in a two-band model [30].

More important is the fact that in the DMFT+X
approximation, the value of A, is independent of U
because all interaction effects enter Eq. (40) only via
AYRA(W) - 0as w — 0 (at T = 0), and hence the in-
teraction drops out at w = 0. This is actually the main
deficiency of our approximation, occurring because we
neglect interference effects between the interaction and
disorder scattering. An important role of these inter-
ference effects has been known for a long time [1, 4].
However, despite the neglect of these effects, we are able
to produce physically sound interpolation between two
main limits of interest, the pure Anderson transition
due to disorder and the Mott—Hubbard transition due
to strong correlations. We thus consider it a reason-
able first step to the future complete theory of MIT in
strongly correlated disordered systems.

In Fig. 10, we present the real part of dynamic (op-
tical) conductivity for different degrees of disorder A
and U = 4.5D, typical for a Mott—Hubbard insula-
tor. In the inset, we show our data for small frequen-
cies, which allow clear distinction of different types of
conductivity behavior, especially close to the Ander-
son transition or in the Mott insulator phase. In this
figure, we clearly see the contribution of transitions to
the upper Hubbard band at w ~ U. More importantly,
we observe that an increase in disorder produces finite
conductivity within the frequency range of the Mott—
Hubbard gap, which correlates with the appearance of
the quasiparticle band (central peak) in the DOS within
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Fig.10. Real part of dynamic conductivity of the

half-filled Anderson—-Hubbard model for different de-

grees of disorder A and U = 4.5D, typical for a Mott

insulator. Lines 1 and 2 correspond to a Mott insula-

tor, line 3 corresponds to the mobility edge (Anderson

transition), and lines 4 and 5 are for a correlated An-

derson insulator. Inset: the region of low frequencies
magnified

this gap, as shown in Fig. 7. In the general case, this
conductivity is metallic (finite in the static limit w = 0)
for A < Ag; for A > A, at small frequencies, we ob-
tain Reo(w) ~ w?, which is typical of an Anderson
insulator [14-19]. We note that due to a finite inter-
nal accuracy of NRG numerics, small but finite spuri-
ous contributions to Tm ©#:4 (¢ = 0) always appear [27]
and formally increase with U. These contributions are
practically irrelevant in calculations of conductivity in
the metallic state. But in an Anderson insulator, these
spurious terms contribute via @ in Eq. (40) and lead to
unphysical finite dephasing effects at w =0 (or T' = 0),
which can simulate a small finite static conductivity.
To eliminate these spurious effects, we had to make
appropriate subtractions in our data for Tm ©%:4(¢) at
e =0.

Rather unusual is the appearance of a low-frequency
peak in Reo(w) even in the metallic phase. It occurs
because of weak localization effects, as can be clearly
seen from Fig. 11, where we compare the real part
of dynamic conductivity for different degrees of disor-
der A and U = 1.5D, obtained via our self-consistent
approach (taking localization effects into account via
“maximally crossed” diagrams) with that obtained us-
ing the “ladder” approximation for %4 (w, q) (similar
to (A.10)), which neglects all localization effects. Tt
is clearly seen that in this simple approximation, we
just obtain the usual Drude-like peak at w = 0, while
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Fig.11. Real part of dynamic conductivity of the

half-filled Anderson—-Hubbard model for different de-

grees of disorder A and U = 1.5D, comparison of the

self-consistent theory (thick lines) with the “ladder” ap-
proximation (thin lines)
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Fig.12. Real part of dynamic conductivity of the

half-filled Anderson—-Hubbard model for different de-

grees of disorder A and U = 2.5D, obtained from a
Mott insulator with decreasing U

accounting for localization effects produces a peak in
Reo(w) at low (finite) frequencies. The metallic state
is defined [2] by the finite value of zero temperature
conductivity at w = 0.

Up to now, we presented only conductivity data ob-
tained with an increase in U from the metallic to the
(Mott) insulating phase. As U decreases from the Mott
insulator phase, a hysteresis of conductivity is observed
in the coexistence region, defined (in the absence of dis-
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order, A = 0) by Usy < U < Upgy. Typical data are
shown in Fig. 12, where we present the real part of dy-
namic conductivity for different degrees of disorder A
and U = 2.5D, obtained from the Mott insulator phase
with decreasing U, which should be compared with the
data in Fig. 9. Transition to the metallic state via the
closure of a narrow gap, “inside” a much wider Mott—
Hubbard gap, is clearly seen, which correlates with the
DOS data in Fig. 8.

C. Phase diagram of the half-filled
Anderson—Hubbard model

The phase diagram of the half-filled Anderson—
Hubbard model was studied in Ref. [13] using the ap-
proach based on direct DMFT calculations for a set of
random realizations of site energies ¢; in (1) with sub-
sequent averaging to obtain both the standard average
DOS and the geometrically averaged local DOS, which
was used to determine the transition to the Anderson
insulator phase. Here, we present our results for the
zero-temperature phase diagram of the half-filled para-
magnetic Anderson—-Hubbard model, obtained from ex-
tensive calculations of both the average DOS and dy-
namic (optical) conductivity in the DMFT+X approxi-
mation. We note that conductivity calculations are the
most direct way to distinguish between metallic and in-
sulating phases [2].

Our phase diagram in the disorder—correlation
(A,U) plane is shown in Fig. 13. The Anderson tran-
sition line A, ~ 0.37W = 0.74D was determined as
the value of disorder for which the static conductivity
becomes zero at T'= 0. The Mott—Hubbard transition
can be determined either via the disappearance of the
central peak (quasiparticle band) in the DOS or from
the conductivity, e.g., from the closure of the gap in the
dynamic conductivity in the insulating phase, or from
vanishing of the static conductivity in the metallic re-
gion. All these methods were used and the correspond-
ing results are shown for comparison in Fig. 13.

We already stressed that the DMFT+Y. approxima-
tion gives the universal (U-independent) value of A..
This is due to a neglect of the interference between
disorder scattering and Hubbard interaction, and leads
to the main (over)simplification of our phase diagram,
compared with that obtained in Ref. [13]. We note
that direct comparison of our critical disorder value
with those in Ref. [13] is complicated by different types
of random site—energy distributions used here (Gaus-
sian) and in Ref. [13] (rectangular). As a rule of thumb
(cf. the second reference in [16]), our Gaussian value of
A, should be multiplied by v/12 to obtain the critical
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Fig.13. Zero-temperature phase diagram of the para-
magnetic Anderson-Hubbard model. Boundaries of the
Mott insulator phase Uey,c2(A) are shown as obtained
from Eqs. (45); different symbols show values calcu-
lated from either the DOS or the conductivity behavior.
The dotted line defines the boundary of the coexistence
region obtained with decreasing U from the Mott in-
sulator phase. The Anderson transition line is given by
the calculated value of A, = 0.37

disorder value for the rectangular distribution. This
gives A, ~ 1.28, in a rather good agreement with the
A (U = 0) ~ 1.35W value in Ref. [13], justifying our
cutoff choice in (41).

The influence of disorder scattering on the Mott—
Hubbard transition is highly nontrivial and in some
respects is in qualitative agreement with the results in
Ref. [13]. The main difference is that our data indicate
the survival of Hubbard band structures in the DOS
even in the limit of rather large disorder, while these
were claimed to disappear in Ref. [13]. Also we ob-
tain the coexistence region smoothly widening with an
increase in disorder and not disappearing at a “criti-
cal” point, as in Ref. [13]. The borders of our coex-
istence region, which in fact define the boundaries of
the Mott insulator phase obtained with increasing or
decreasing U, are determined by the lines U (A) and
Uea(A) shown in Fig. 13, which are obtained from the
simple equation

Ucl,cQ(A) _ Ucl,c2 (43)
Wer W
with
A2
Wegp = W/ 1+ 165 (44)

which is the effective bandwidth in the presence of dis-
order, calculated for U = 0 in self-consistent Born ap-
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Fig.14. Disorder dependence of static conductivity,

obtained for several values of U and showing a disor-

der-induced Mott-insulator-to-metal transition. Inset:

the static conductivity dependence on U close to the

Mott transition, including a typical hysteresis behav-

ior obtained with U decreasing from the Mott insulator
phase

proximation (9). Thus, the boundaries of the coexis-
tence region are given by

A2
UCLC?(A) = Ucl,cQ 1+ IGW’

which are explicitly shown in Fig. 13 by dotted and
solid lines, defining the boundaries of the Mott insu-
lator phase. Numerical results for the disappearance
of the quasiparticle band (central peak) in the DOS, as
well as points following from a qualitative change in the
conductivity behavior, are shown in Fig. 13 by differ-
ent symbols demonstrating very good agreement with
these lines, confirming the ratio in (43) as the control-
ling parameter of the Mott transition in the presence
of disorder.

(45)

The most striking result of our analysis (also qual-
itatively demonstrated in Ref. [13]) is the possibility
of the metallic state being restored from the Mott—
Hubbard insulator with an increase in disorder. This
is clear from the phase diagram and is nicely demon-
strated by our data for (static) conductivity shown in
Fig. 14 for several values of U > U,y and disorder val-
ues A < A,. In the inset to Fig. 14, we also illustrate
the static conductivity hysteresis observed in the coex-
istence region of the phase diagram, obtained with U
decreasing from the Mott insulator phase.
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model with the electron concentration n = 0.8 for dif-

ferent degrees of disorder A and U = 6.0D, represent-
ing the doped Mott insulator
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Fig.16. Real part of dynamic conductivity of the

Anderson—Hubbard model with the electron concentra-

tion n = 0.8 for different degrees of disorder A and

U = 6.0D, representing the doped Mott insulator. In-

set: high-frequency behavior with signs of transition to
the upper Hubbard band

D. Doped Mott insulator

All results presented above were obtained in the
half-filled case. Here, we briefly consider deviations
from half-filling. In the metallic phase, doping from
half-filling does not produce any qualitative changes in
the conductivity behavior, which only demonstrates the
Anderson transition with an increase in disorder. We
therefore concentrate on the case of a doped Mott insu-
lator. Strictly speaking, in the non-half-filled case, we
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never obtain a Mott-Hubbard insulator in the DMFT
method at all. In Fig. 15, we show the density of states
of the Anderson-Hubbard model with the electron con-
centration n = 0.8 for different degrees of disorder A
and U = 6.0D, representing a typical case of the doped
Mott insulator. The quasiparticle band overlaps with
the lower Hubbard band and is smeared by disorder,
which is just the expected behavior in the metallic
state. Nothing spectacular happens to conductivity,
either, as is shown for the same set of parameters in
Fig. 16. It shows a typical behavior associated with the
disorder-induced Anderson MIT. Small signs of transi-
tions to the upper Hubbard band can be seen for w ~ U
(see the inset to Fig. 16). Therefore, a doped Mott in-
sulator with disorder is qualitatively quite similar to
the disordered correlated metal discussed above.

5. CONCLUSION

We used the generalized DMFT+X approach to
calculate basic properties of the disordered Hubbard
model. The main advantage of our method is its abil-
ity to provide a relatively simple interpolation scheme
between rather well-understood cases of a strongly cor-
related system (DMFT and Mott—Hubbard MIT) and
of a strongly disordered metal without Hubbard corre-
lations, undergoing an Anderson MIT. Apparently, this
interpolation scheme captures the main qualitative fea-
tures of the Anderson-Hubbard model, such as the gen-
eral behavior of the DOS and dynamic (optical) con-
ductivity. The overall picture of the zero-temperature
phase diagram is also quite reasonable and is in sat-
isfactory agreement with the results of more elaborate
numerical work [13]. Actually, our DMFT+Y approach
is much less time-consuming than more direct numer-
ical approaches, such as that in Ref. [13], and in fact
allows calculating all basic (measurable) physical char-
acteristics of the Anderson-Hubbard model.

The main shortcoming of our approach is its ne-
glect of interference effects of disorder scattering and
Hubbard interaction, which leads to the independence
of the Anderson MIT critical disorder A, from the in-
teraction U. The importance of interference effects is
known for a long time [1, 4], but its account was only
partially successful in the case of weak correlations. At
the same time, the neglect of these interference effects
is the major approximation of the DMFT+X method,
allowing the derivation of a rather simple and physical
interpolation scheme and the analysis of the strong-
correlation limit. Attempts to include interference ef-
fects in our scheme are postponed for future work.

Another simplification is, of course, our assumption
of a nonmagnetic (paramagnetic) ground state of the
Anderson—-Hubbard model. The importance of mag-
netic (spin) effects in strongly correlated systems is
well known, as is the problem of competition of ground
states with different types of magnetic ordering [8].
The importance of disorder in studying the interplay
of these possible ground states is also quite evident.
These may also be the subject of our future work.

Despite these shortcomings, our results seem very
promising, especially concerning the influence of
strong disorder on the Mott-Hubbard MIT and the
overall form of the phase diagram at zero temper-
ature. The changes in the phase diagram at finite
temperatures will be the subject of further studies.
Nontrivial predictions of our approach, such as the
general behavior of dynamic (optical) conductivity
and, especially, the prediction of a disorder-induced
Mott-insulator-to-metal transition can be the subject
of direct experimental verification.
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APPENDIX A

Equation for relaxation kernel

We follow the standard approach of the self-con-
sistent theory of localization [14-19], taking the DMFT
contributions 4 (2) into account in single-particle
Green’s functions (29) and not restricting ourselves to
the usual limit of small w.

We consider the Bethe—Salpeter equation relating
the full two-particle Green’s function 284 (w, q) to the
irreducible vertex Ugg,A(w, q), accounting only for im-
purity scattering in vertices, but built upon Green’s
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functions given by (29). This equation can be written
as a generalized kinetic equation in the form [14-19]

(@ = e(p) = AT (W) Py (w, @) = —AGp x
( oo’ + ZUORA q) 9% (w-,q)> (A1)
where AG, = G¥(ey,py) — GA(c_,p_). The main

difference from a similar equation in Refs. [14-19] is
the replacement w — @.

We sum both sides of (A.1) and of the same
equation multiplied by p-q (where p p/|p| and
4 = q/|d| are appropriate unit vectors) over p and
p’, with the exact Ward identity [14]

ZUORA w,q)AGp

AERA

zmp

(A.2)

taken into account and with the approximate represen-
tation (cf. Ref. [14])

AGp

Z@ORA W, q E AG QORA( 7q)+
AGp
ﬁ‘wm‘( .a), (A.3)
where @274 (w, q) = 3, ®974(w, q) is our loop (28)
and (P??A(w,q) = pr’ (IA)(A])(bop}g’A(w,q) An im-

portant difference from a similar representation in

Refs. [14-19] is that (A.3) is not limited to small w.
Now (as ¢ — 0), we obtain the closed system of

equations for both ®°%4(w, q) and ®¢F4(w, q),

Z AGp,
(v) (©)  gora

¥ (w,

where the relaxation kernel is given by

$®2 N (w, q) — (v) @I (W

(A.4)

(& + M (@) (w,a) - q) =0,

M(w) = —AZL (W) +
+ dep’ (15 ' q)AGPUgIIj’A (UJ, q)AGPI (f), '
>pAGp 7

with the average velocity (v) defined as

2p|Ve|AGp. O¢(p)
>, AG, ap

(v) =

Vp =

From (A.4), we immediately obtain that

- AG
P

@+ iD(w)q?

24 (q, ) (A.7)
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which for small w reduces to (32) with the generalized
diffusion coefficient given by (37).

Using an approximation of “maximally crossed” di-
agrams for the irreducible vertex Ugg,A (w,q) and in-
troducing the standard self-consistency procedure in
Refs. [14-19] (i.e., replacing the Drude diffusion coef-
ficient in the Cooperon contribution to the irreducible
vertex with the generalized one defined by (37)), we
obtain our expression (38) for the relaxation kernel
n (A.5).

Our equation (40) for the generalized diffusion co-
efficient (which is complex in general) reduces just to
the usual transcendental equation. It was solved by it-
erations for each value of @, taking into account that
for d = 3 and the cutoff given by (41), the sum enter-
ing (40) reduces to

Z 1 1 k3

a

& +iD(w)@  2r2 iD(w )k2

I

1R
T iD(wk
iD(w)k2

" {1 (zD(CD)k?)l/Q "
x arctg ((ZD(W)'“2> 8 )} (A.8)

For finite frequencies w, we use ®°F4(q, @) given
y (A.7), and hence expression (25) for the dynamic
conductivity is to be rewritten as

y2dy

w

X

y? +

Reo(w) = /d [f(e2) = fleq)] x
x Re {—Z 2y chipD(w) _
- ¢ (w) {1— —AZT(”)} } (A.9)

The second term was here taken in the “ladder” approx-
imation:

PR (w, q) =

> Geypy)G

_ P
1A Zp GR(et,p+)GR(e,p-)

This contribution (nonsingular at small w) is irrelevant
for the conductivity as w — 0, but leads to finite cor-
rections with increasing w. Equation (A.9) is our final
result, which was analyzed numerically in a wide range
of frequencies (for small w, it reduces to (36)).

Rle_,p-)

(A.10)
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APPENDIX B

“Bare” electron dispersion and velocity

We consider the “bare” energy band with semi-
elliptic DOS (42). Assuming an isotropic electron spec-
trum €(p) = €(|p|) = €(p) and equating the number of
states in a spherical layer of momentum space to the
number of states in the energy interval [e, e + de], we
obtain a differential equation determining the energy
dispersion €(p):

4mp?dp
(2m)?

= No(e) de. (B.1)
For a quadratic energy dispersion €(p) close to the lower
band edge, we obtain the initial condition for Eq. (B.1)
as p — 0 and € - —D. Then we obtain

I e T

with ¢ = arccos(e/D) and the momentum in units of
the inverse lattice spacing. Equation (B.2) implicitly
defines a “bare” energy dispersion €(p) for the electronic
part of the spectrum € € [- D, 0].

For a half-filled band, we easily determine the Fermi
momentum as

0) = (3x2)"%. (B.3)

pr = ple

We also need the electron velocity |vp| = [0e(p)/Ip| =
= 0¢e(p)/dp, which enters expression (A.6) for the av-
erage velocity. From (B.1), we obtain

de p> 1
= — = — , B.4
Vel dp 272 Ny(e)’ (B.4)

where p is given by Eq. (B.2).

To obtain a quadratic dispersion for the hole part of
the spectrum (e € [0, D]) close to the upper band edge
(e = D), we introduce the hole momentum p = 2pp —p
and write

4mp2dp _
(2m)3

—No(e€)de (B.5)

similarly to (B.1). Letting p — 0 at the upper band
edge € — 0, we obtain

o= [ox (- Stz

We then obtain the velocity at the hole part of the
spectrum as

(B.6)

de de P> 1
=—=—-——=— . B.
Vel dp dp 272 Ngle) (B.7)
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Equations (B.4) and (B.7) determine the energy depen-
dence of |vp|. It is easily seen that the velocity is even
in energy and becomes zero at the band edges. These
expressions allow passing from momentum summation
(e.g., in Eq. (A.6)) to energy integration.
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Note added in proff (27 December 2007). Further

numerical work has shown that the tendency of U.s(A)
data points in Fig. 13 to deviate upwards from the “uni-

versal” curve given by Eq.

(45) increases for larger

values of U, with these data points approaching the
U (A) curve. However, up to U/2D ~ 10, we do not
observe the “critical point” discovered in Ref. [13].
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