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MOTT�HUBBARD TRANSITION AND ANDERSONLOCALIZATION: A GENERALIZED DYNAMICAL MEAN-FIELDTHEORY APPROACHE. Z. Ku
hinskii, I. A. Nekrasov, M. V. Sadovskii *Institute for Ele
trophysi
s, Russian A
ademy of S
ien
es620016, Ekaterinburg, RussiaRe
eived O
tober 4, 2007The density of states, the dynami
 (opti
al) 
ondu
tivity, and the phase diagram of a strongly 
orrelatedand strongly disordered paramagneti
 Anderson�Hubbard model are analyzed within the generalized dynami
almean-�eld theory (DMFT+� approximation). Strong 
orrelations are taken into a

ount by the DMFT, anddisorder is taken into a

ount via an appropriate generalization of the self-
onsistent theory of lo
alization.The DMFT e�e
tive single-impurity problem is solved by the numeri
al renormalization group (NRG); we 
on-sider the three-dimensional system with a semi-ellipti
 density of states. The 
orrelated metal, Mott insulator,and 
orrelated Anderson insulator phases are identi�ed via the evolution of the density of states and dynami

ondu
tivity, demonstrating both the Mott�Hubbard and Anderson metal�insulator transition and allowing the
onstru
tion of the 
omplete zero-temperature phase diagram of the Anderson�Hubbard model. Rather unusualis the possibility of a disorder-indu
ed Mott insulator-to-metal transition.PACS: 71.10.Fd, 71.27.+a, 71.30.+h1. INTRODUCTIONThe importan
e of the ele
tron intera
tion and ran-domness for the properties of 
ondensed matter is wellknown [1℄. Both Coulomb 
orrelations and disorder aredriving for
es of metal�insulator transitions (MITs) re-lated to the lo
alization and delo
alization of parti
les.In parti
ular, the Mott�Hubbard MIT is 
aused by theele
tron repulsion [2℄, while the Anderson MIT is due torandom s
attering of nonintera
ting parti
les [3℄. A
tu-ally, disorder and intera
tion e�e
ts are known to 
om-pete in many subtle ways [1, 4℄; this problem be
omesmu
h more 
ompli
ated in the 
ase of strong ele
tron
orrelations and strong disorder, determining the phys-i
al me
hanisms of the Mott�Anderson MIT [1℄.The 
ornerstone of the modern theory of strongly
orrelated systems is the dynami
 mean-�eld theory(DMFT) [5�8℄, 
onstituting a nonperturbative theo-reti
al framework for the investigation of 
orrelatedlatti
e ele
trons with lo
al intera
tion. In this ap-proa
h, the e�e
t of lo
al disorder 
an be taken intoa

ount through the standard average density of states(DOS) [9℄ in the absen
e of intera
tions, leading to*E-mail: sadovski�iep.uran.ru

the well-known 
oherent potential approximation [10℄,whi
h does not des
ribe the physi
s of Anderson lo-
alization. To over
ome this de�
ien
y, Dobrosavlje-vi¢ and Kotliar [11℄ formulated a variant of the DMFTwhere the geometri
ally averaged lo
al DOS was 
om-puted from solutions of the self-
onsistent sto
hasti
DMFT equations. Subsequently, Dobrosavljevi¢ etal. [12℄ in
orporated the geometri
ally averaged lo
alDOS into the self-
onsisten
y 
y
le and derived a mean-�eld theory of Anderson lo
alization that reprodu
edmany of the expe
ted features of the disorder�drivenMIT for nonintera
ting ele
trons. This approa
h wasextended in [13℄ to in
lude Hubbard 
orrelations via theDMFT, whi
h led to a highly nontrivial phase diagramof the Anderson�Hubbard model with the 
orrelatedmetal, Mott insulator, and 
orrelated Anderson insu-lator phases. The main de�
ien
y of these approa
hes,however, is the inability to dire
tly 
al
ulate measur-able physi
al properties, su
h as 
ondu
tivity, whi
h isof major importan
e and de�nes the MIT itself.At the same time, the well-developed approa
hof the self-
onsistent theory of Anderson lo
alization,based on solving the equations for the generalized di�u-sion 
oe�
ient, demonstrated its e�
ien
y in the non-670
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ting 
ase a long time ago [14�19℄; several at-tempts to in
lude intera
tion e�e
ts into this approa
hwere made with some promising results [17, 20℄. Ho-wever, until re
ently, there have been no attempts toin
orporate this approa
h into the modern theory ofstrongly 
orrelated ele
tron systems. Here, we under-take su
h a resear
h, studying the Mott�Hubbard andAnderson MITs via dire
t 
al
ulations of both the av-erage DOS and the dynami
 (opti
al) 
ondu
tivity.Our approa
h is based on the re
ently proposedgeneralized DMFT+� approximation [21�24℄, whi
hon the one hand retains the single-impurity des
rip-tion of the DMFT, with a proper a

ount for lo
alHubbard-like 
orrelations and the possibility to use im-purity solvers like the numeri
al renormalization group(NRG) [25�27℄, and on the other hand, allows in
ludingadditional (either lo
al or nonlo
al) intera
tions (�u
-tuations) on a nonperturbative model basis.Within this approa
h, we have already studiedboth single- and two-parti
le properties of the two-dimensional Hubbard model, 
on
entrating mainly onthe problem of pseudogap formation in the density ofstates of the quasiparti
le band in both 
orrelated met-als and doped Mott insulators, with an appli
ation tosuper
ondu
ting 
uprates. We analyzed the evolutionof non-Fermi-liquid-like spe
tral density and ARPESspe
tra [22℄, �destru
tion� of Fermi surfa
es and forma-tion of Fermi �ar
s� [21℄, as well as pseudogap anomaliesof opti
al 
ondu
tivity [24℄. Brie�y, we also 
onsideredimpurity s
attering e�e
ts [23℄.In this paper, we apply our DMFT+� approa
hfor 
al
ulations of the density of states, dynami
 
on-du
tivity, and phase diagram of the strongly 
orre-lated and strongly disordered three-dimensional para-magneti
 Anderson�Hubbard model. Strong 
orrela-tions are again taken into a

ount by the DMFT, whiledisorder is taken into a

ount via the appropriate gen-eralization of the self-
onsistent theory of lo
alization.This paper is organized as follows. In Se
. 2, webrie�y des
ribe our generalized DMFT+� approxima-tion with appli
ation to the disordered Hubbard model.In Se
. 3, we present basi
 DMFT+� expressions forthe dynami
 (opti
al) 
ondu
tivity and formulate theappropriate self-
onsistent equations for the general-ized di�usion 
oe�
ient. Computational details and re-sults for the density of states and dynami
 
ondu
tivityare given in Se
. 4, where we also analyze the phase dia-gram of the strongly disordered Hubbard model withinour approa
h. The paper ends with a short summaryin Se
. 5 and a dis
ussion of some related problems.

2. BASICS OF THE DMFT+� APPROACHOur aim is to 
onsider the nonmagneti
 disor-dered Anderson�Hubbard model (mainly) at half-�llingfor arbitrary intera
tion and disorder strengths. TheMott�Hubbard and Anderson MITs are investigated onan equal footing. The Hamiltonian of the model is writ-ten asH = �tXhiji� ayi�aj� +Xi� �ini� + UXi ni"ni#; (1)where t > 0 is the amplitude for hopping between near-est neighbors, U is the on-site repulsion, ni� = ayi�ai� isthe lo
al ele
tron number operator, ai� (ayi�) is the an-nihilation (
reation) operator of an ele
tron with spin�, and the lo
al ioni
 energies �i at di�erent latti
esites are 
onsidered independent random variables. Tosimplify diagrammati
s in what follows, we assume theGaussian probability distribution for �i:P(�i) = 1p2�� exp�� �2i2�2� ; (2)where the parameter � is a measure of the disorderstrength, and a Gaussian (�white� noise) random �eldof energy level �i at latti
e sites produ
es �impurity�s
attering, leading to the standard diagram te
hniquefor 
al
ulation on the averaged Green's fun
tions [19℄.The DMDF+� approa
h was initially proposedin [21�23℄ as a simple method to in
lude nonlo
al�u
tuations, of essentially arbitrary nature, into thestandard DMFT. In fa
t, it 
an be used to in
ludeany additional intera
tion into the DMFT as fol-lows. Working at �nite temperatures T , we write theMatsubara-�time� Fourier-transformed single-parti
leGreen's fun
tion of the Hubbard model asG(i";p) = 1i"+ �� �(p)��(i")��p(i") ;" = �T (2n+ 1); (3)where �(p) is the single-parti
le spe
trum 
orrespond-ing to the free part of (1), � is the 
hemi
al potential�xed by the ele
tron 
on
entration, �(i") is the lo
al
ontribution to self-energy due to the Hubbard inter-a
tion, of the DMFT type (surviving in the limit ofspatial dimensionality d!1), and �p(i") is some ad-ditional (in general, momentum-dependent) self-energypart. This last 
ontribution 
an be 
aused, e.g., byele
tron intera
tions with some �additional� 
olle
tivemodes or order-parameter �u
tuations within the Hub-bard model itself. But it 
an a
tually be due to anyother intera
tions (�u
tuations) outside the standard671
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Σ(iω) Σp(iω)Fig. 1. Typi
al �skeleton� diagrams for the self-energyin the DMFT+� approa
h. The �rst two terms are ex-amples of DMFT self-energy diagrams; the middle twodiagrams show 
ontributions due to random impuritys
attering represented by dashed lines. The last dia-gram (b) is an example of a negle
ted diagram leadingto interferen
e between the lo
al Hubbard intera
tionand impurity s
atteringHubbard model, e.g., due to phonons or random im-purity s
attering, when it is in fa
t lo
al (momentumindependent). The last intera
tion is the subje
t of ourmain interest in the present paper. The basi
 assump-tion here is the negle
t of all interferen
e pro
esses ofthe lo
al Hubbard intera
tion and �external� 
ontribu-tions due to these additional s
atterings (non
rossingapproximation for appropriate diagrams) [22℄, as illus-trated by diagrams in Fig. 1.The self-
onsisten
y equations of the generalizedDMFT+� approa
h are formulated as follows [21, 22℄.1. Start with some initial guess for the lo
al self-energy �(i"), e.g., �(i") = 0.2. Constru
t �p(i") within some (approximate)s
heme, a

ounting for intera
tions with an �external�intera
tion (impurity s
attering in our 
ase), whi
h 
anin general depend on �(i!) and �.3. Cal
ulate the lo
al Green's fun
tionGii(i") = 1N Xp 1i"+ �� �(p)��(i")��p(i") : (4)4. De�ne the �Weiss �eld�G�10 (i") = �(i") +G�1ii (i"): (5)5. Using some �impurity solver�, 
al
ulate thesingle-parti
le Green's fun
tion Gd(i") for the e�e
tiveAnderson impurity problem, pla
ed at a latti
e site iand de�ned by the e�e
tive a
tion that in the obviousnotation is written as

Seff = � �Z0 d�1 �Z0 d�2 
i�(�1)G�10 (�1��2)
+i�(�2)++ �Z0 d� Uni"(�)ni#(�): (6)In what follows, we use the NRG [25�27℄ for the �im-purity solver�, whi
h allows us to deal also with realfrequen
ies, thus avoiding the 
ompli
ated problem ofanalyti
 
ontinuation from Matsubara frequen
ies.6. De�ne the new lo
al self-energy�(i!) = G�10 (i!)�G�1d (i!): (7)7. Using this self-energy as the �initial� one in step1, 
ontinue the pro
edure until (and if) 
onvergen
e isrea
hed, to obtain Gii(i") = Gd(i"): (8)Eventually, we obtain the desired Green's fun
tion inform (3), with �(i") and �p(i") appearing at the endof our iterative pro
edure.For �p(i") in the random impurity problem, we usethe simplest possible one-loop 
ontribution, given bythe third diagram in Fig. 1a, negle
ting �
rossing� di-agrams like the fourth in Fig. 1a, i.e., just the self-
onsistent Born approximation [19℄, whi
h in the 
aseof Gaussian disorder (2) leads to the usual expression�p(i") = �2Xp G(i";p) � �imp(i") (9)whi
h is a
tually p-independent (lo
al).3. DYNAMIC CONDUCTIVITY IN THEDMFT+� APPROACHA. Basi
 expressions for opti
al 
ondu
tivityPhysi
ally, it is 
lear that 
al
ulations of the dy-nami
 
ondu
tivity are the most dire
t way to studyMITs, be
ause its frequen
y dependen
e along with thestati
 value at zero frequen
y of an external �eld allows
learly distinguishing between metalli
 and insulatingphases (at zero temperature T = 0).To 
al
ulate the dynami
 
ondu
tivity, we use thegeneral expression relating it to the retarded density�density 
orrelation fun
tion �R(!;q) [14, 19℄:�(!) = � limq!0 ie2!q2 �R(!;q); (10)where e is the ele
tron 
harge.672
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Fig. 2. Full polarization loop with the vertex part de-s
ribing all intera
tions and impurity s
atterings in theparti
le�hole 
hannel. The loop without vertex 
orre
-tions is in
luded impli
itly. Here, p� = p � q=2 and"� = "� !=2We next outline the derivation presented in detailin Ref. [24℄ for the pseudogap problem, with ne
essarymodi�
ations for the present 
ase. We 
onsider the fullpolarization-loop graph in the Matsubara representa-tion shown in Fig. 2, whi
h is 
onveniently (with ex-pli
it frequen
y summation) written as�(i!;q) =X""0 �i"i"0 (i!;q) �X" �i"(i!;q) (11)and 
ontains all possible intera
tions of our model, de-s
ribed by the full shaded vertex part. A
tually, we im-pli
itly assume here that the simple-loop 
ontributionwithout vertex 
orre
tions is also in
luded in Fig. 2,whi
h shortens further diagrammati
 expressions [24℄.The retarded density�density 
orrelation fun
tion is de-termined by an appropriate analyti
 
ontinuation ofthis loop and 
an be written as [14℄�R(!;q) = 1Z�1 d"2�i �[f("+)� f("�)℄ �RA" (q; !) ++ f("�)�RR" (q; !)� f("+)�AA" (q; !)	 ; (12)where f(") is the Fermi distribution, "� = " � !2 ,and two-parti
le loops �RA" (q; !), �RR" (q; !), and�AA" (q; !) are determined by the appropriate analyti

ontinuations (i" + i! ! " + ! + iÆ, i" ! " � iÆ, andÆ ! +0) in (11). Then we 
an write the dynami
 (op-ti
al) 
ondu
tivity as

�(!) = limq!0�� e2!2�q2� 1Z�1 d" f[f("+)� f("�)℄ �� ��RA" (q; !)��RA" (0; !)�++ f("�) ��RR" (q; !)��RR" (0; !)�� f("+)�� ��AA" (q; !)��AA" (0; !)�	 ; (13)where the total 
ontribution of additional terms withzero q 
an be shown (with the use of general Wardidentities) to be zero.In the DMFT+� approximation, whi
h negle
ts in-terferen
e between the lo
al Hubbard intera
tion andimpurity s
attering, we 
al
ulate �i"i"0 (i!;q) enteringthe sum over Matsubara frequen
ies in (11) by writingthe Bethe�Salpeter equation, shown diagrammati
allyin Fig. 3, where we introdu
e the irredu
ible (lo
al)DMFT vertex Ui"i"0 (i!) and the �re
tangular� vertex
ontaining all intera
tions with impurities. Analyti-
ally, this equation 
an be written as�i"i"0 (i!;q) = �0i"(i!;q)Æ""0 ++�0i"(i!;q)X"00 Ui"i"00(i!)�i"00i"0(i!;q); (14)where �0i"(i!;q) is the sought fun
tion 
al
ulated ne-gle
ting vertex 
orre
tions due to the Hubbard intera
-tion (but taking all intera
tions due to impurity s
at-tering into a

ount). We note that all the q-dependen
eis here determined by �0i"(i!;q) be
ause the vertexUi"i"0 (i!) is lo
al and q-independent.As we noted in Ref. [24℄, it is 
lear from (13) that
al
ulation of the 
ondu
tivity requires only the knowl-edge of the q2-
ontribution to �(i!;q). This 
an beeasily found as follows. First, we note that all the loopsin (14) 
ontain a q-dependen
e starting from terms ofthe order of q2. Then we 
an take an arbitrary loop(
ross se
tion) in the expansion of (14) (see Fig. 3),
al
ulate it up to terms of the order of q2, and makeresummation of all 
ontributions to the right and tothe left of this 
ross se
tion, setting q = 0 in all thesegraphs. This is equivalent to simple q2-di�erentiationof the expanded version of Eq. (14). This pro
edureimmediately leads to the following relation for the q2-
ontribution to (11):�(i!) � limq!0 �(i!;q)��(i!; 0)q2 ==X" 
2i"(i!;q = 0)�0i"(i!) (15)with �0i"(i!) � limq!0 �0i"(i!;q)��0i"(i!; 0)q2 ; (16)13 ÆÝÒÔ, âûï. 3 673
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+=Fig. 3. Bethe�Salpeter equation for the polarization loop in the DMFT+� approa
h. A 
ir
le represents the irredu
ible ver-tex part in the parti
le�hole 
hannel of the DMFT approa
h, whi
h 
ontains only lo
al Hubbard intera
tions. An unshadedre
tangular vertex represents 
orre
tions from impurity s
attering only, impli
itly in
luding the 
ase of free parti
le�holepropagationU
i"(i!;q = 0) = 1+ +U UU"0+"0� "00� "+"�"00+ + � � � == 1++

Fig. 4. E�e
tive vertex 
i"(i!;q = 0) used in 
al
ula-tions of 
ondu
tivitywhere �0i"(i!;q) 
ontains vertex 
orre
tions only dueto impurity s
attering, while the one-parti
le Green'sfun
tions entering it are taken with self-energies dueto both impurity s
attering and the lo
al DMFT-likeintera
tion, as in Eq. (3). The vertex 
i"(i!;q = 0)

is determined diagrammati
ally as shown in Fig. 4, oranalyti
ally as
i"(i!;q = 0) == 1 +X"0"00 Ui"i"00(i!)�i"00i"0 (i!;q = 0): (17)Next, using Bethe�Salpeter equation (14), we 
an ex-pli
itly write
i"(i!;q = 0) == 1 +X"0 �i"i"0 (i!;q = 0)��0i"(i!;q = 0)�0i"(i!;q = 0) == X"0 �i"i"0 (i!;q = 0)�0i"(i!;q = 0) : (18)At q = 0, we have the following Ward identity, whi
h
an be obtained by dire
t generalization of the proofgiven in [14, 28℄ (see the details in the Appendix ofRef. [24℄):674
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alization : : :(�i!)�i"(i!;q = 0) = (�i!)X"0 �i"i"0 (i!;q = 0) ==Xp G(i"+ i!;p)�Xp G(i";p): (19)The denominator in (18) 
ontains vertex 
orre
tionsonly from impurity s
attering, while the Green's fun
-tions here are �dressed� by both impurities and the lo
al(DMFT) Hubbard intera
tion. We 
an therefore regardthe loop entering the denominator as dressed by impu-rities only, but with the �bare� Green's fun
tions:~G0(i";p) = 1i"+ �� �(p)��(i") ; (20)where �(i") is the lo
al 
ontribution to self-energy fromthe DMFT. For this problem, we have a Ward identitysimilar to (19) (see the Appendix in Ref. [24℄),Xp G(i"+ i!;p)�Xp G(i";p) == �0i"(i!;q = 0) [�(i"+ i!)��(i")� i!℄ �� �0i"(i!;q = 0) [��(i!)� i!℄ ; (21)where we set��(i!) = �(i"+ i!)��(i"): (22)Thus, using (19) and (21) in (18), we obtain the �nalexpression for 
i"(i!;q = 0) as
i"(i!;q = 0) = 1� ��(i!)i! : (23)Then (15) redu
es to�(i!) =X" �0i"(i!) �1� ��(i!)i! �2 : (24)Analyti
 
ontinuation to real frequen
ies is obvious; us-ing (15) and (24) in (13), we 
an write the �nal expres-sion for the real part of dynami
 (opti
al) 
ondu
tivityas Re�(!) = e2!2� 1Z�1 d" [f("�)� f("+)℄��Re(�0RA" (!) �1� �R("+)��A("�)! �2 �� �0RR" (!) �1� �R("+)��R("�)! �2) : (25)Thus, we have greatly simpli�ed our problem. To
al
ulate the dynami
 
ondu
tivity in the DMFT+�

approximation, we only have to solve a single-parti
leproblem as des
ribed by the DMFT+� pro
edureabove, this determining self-
onsistent values of lo-
al self-energies �("�); while the nontrivial 
ontribu-tion of impurity s
attering are to be in
luded via (16),whi
h is to be 
al
ulated in some approximation, tak-ing only intera
tion with impurities (random s
atter-ing) into a

ount, but using the �bare� Green's fun
-tions of form (20), whi
h in
lude lo
al self-energies al-ready determined via the general DMFT+� pro
edure.A
tually, (25) also provides an e�e
tive algorithm to
al
ulate dynami
 
ondu
tivity in the standard DMFT(negle
ting impurity s
attering), be
ause (16) is theneasily 
al
ulated from a simple loop diagram, deter-mined by two Green's fun
tions and free s
alar ver-ti
es. As usual, there is no need to 
al
ulate vertex
orre
tions within the DMFT itself, as was �rst proved
onsidering the loop with ve
tor verti
es [7, 8℄. Obvi-ously, Eq. (25) e�e
tively interpolates between the 
aseof strong 
orrelations without disorder and the 
ase ofpure disorder, without Hubbard 
orrelations, whi
h isof major interest to us. In what follows, we see that
al
ulations based on Eq. (25) give a reasonable overallpi
ture of MIT in the Anderson�Hubbard model.B. Self-
onsistent equations for the generalizeddi�usion 
oe�
ient and 
ondu
tivityTo 
al
ulate the opti
al 
ondu
tivity, we need toknow the basi
 blo
k �0i"(i!;q) entering (16) or, morepre
isely, the relevant fun
tions analyti
ally 
ontinuedto real frequen
ies: �0RA" (!;q) and �0RR" (!;q), whi
hin turn de�ne �0RA" (!) and �0RR" (!) entering (25), andare de�ned by obvious relations similar to (16):�0RA" (!) = limq!0 �0RA" (!;q)��0RA" (!; 0)q2 ; (26)�0RR" (!) = limq!0 �0RR" (!;q)��0RR" (!; 0)q2 : (27)By de�nition, we have (with p� = p� q=2)�0RA" (!;q) =Xp GR("+;p+)GA("�;p�)���RA("�;p�; "+;p+);�0RR" (!;q) =Xp GR("+;p+)GR("�;p�)���RR("�;p�; "+;p+); (28)whi
h are shown diagrammati
ally in Fig. 5. Here,the Green's fun
tions GR("+;p+) and GA("�;p�)675 13*



E. Z. Ku
hinskii, I. A. Nekrasov, M. V. Sadovskii ÆÝÒÔ, òîì 133, âûï. 3, 2008
ε+p+

ε−p−

R

A

R

R

ε−p−

ΓRA

ΓRR

Φ0RA
ε (q, ω) =

Φ0RR
ε (q, ω) =

ε+p+

Fig. 5. Diagram representation of �0RA" (!;q) and�0RR" (!;q)are de�ned by analyti
 
ontinuation (i" ! " � iÆ)of Matsubara Green's fun
tions (3) determined viaour DMFT+� algorithm (4)�(9), while the verti
es�RA("�;p�; "+;p+) and �RR("�;p�; "+;p+) 
ontainall vertex 
orre
tions due to the impurity s
attering.The most important blo
k �0RA" (!;q) 
an be 
al
u-lated using the basi
 approa
h of the self-
onsistent the-ory of lo
alization [14�19℄ with appropriate extensions,taking the role of the lo
al Hubbard intera
tion intoa

ount using the DMFT+� approa
h. The only im-portant di�eren
e from the standard approa
h is thatthe self-
onsistent theory equations are derived usingthe fun
tionsGR;A(";p) = 1"+���(p)��R;A(")��R;Aimp(") ; (29)whi
h 
ontain DMFT 
ontributions �R;A(") in addi-tion to the impurity s
attering 
ontained in�R;Aimp(") = �2Xp GR;A(";p) == Re�imp(")� i
("); (30)here, 
(") = ��2N(") and N(") is the density of statesrenormalized by the Hubbard intera
tion, given in theDMFT+� approa
h by the usual expressionN(") = � 1�Xp ImGR(";p): (31)Following all the usual steps of the standard deriva-tion [14�19℄, we obtain the di�usion-like (at small !and q) 
ontribution to �0RA" (!;q) as�0RA" (q; ~!) = 2�iN(")~! + iD(!)q2 ; (32)

where an important di�eren
e from the single-parti
le
ase is 
ontained in~! = "+ � "� ��R("+) + �A("�) == ! ��R("+) + �A("�) � ! ���RA(!) (33)whi
h repla
es the usual ! term in the denominatorof the standard expression for �0RA" (!;q). On generalgrounds, it is 
lear that in the metalli
 phase as ! ! 0,we have��RA(! = 0) = 2i Im�(") � maxfT 2; "2g, re-�e
ting Fermi�liquid behavior of DMFT (
onserved byelasti
 impurity s
attering). At �nite T , this leads tothe usual phase de
oheren
e due to ele
tron�ele
trons
attering [1, 4℄. The generalized di�usion 
oe�
ientD(!) is to be determined by solving the basi
 self-
onsisten
y equation introdu
ed below.Using (32) in (26), we easily obtain�0RA" (!) = 2�N(")D(!)!2�1� ��RA(!)! �2 : (34)Then using (34) in (25) with ! ! 0 and T = 0, weobtain just the usual Einstein relation for the stati

ondu
tivity: �(0) = e2N(0)D(0): (35)All 
ontributions form the Hubbard intera
tion are re-du
ed to a renormalization of the density of states atthe Fermi level and of the di�usion 
oe�
ient D(0).It follows that (25) redu
es toRe�(!) = e2!2� 1Z�1 d" [f("�)� f("+)℄��Re(2�N(")D(!)!2 �� �0RR" (!) �1� ��RR(!)! �2) ; (36)where the se
ond term 
an a
tually be negle
ted atsmall !, or just 
al
ulated from (27) with �0RR" (!;q)given by the usual �ladder� approximation (A.10).We now formulate our basi
 self-
onsistent equa-tion determining the generalized di�usion 
oe�
ientD(!). We again follow all the usual steps of the self-
onsistent theory of lo
alization (see the details in theAppendix A), taking the form of our single�parti
leGreen's fun
tion (29) into a

ount and not restri
tingthe analysis to the small-! limit. We 
an then writethe generalized di�usion 
oe�
ient asD(!) = hvi2d i~! +M(!) ; (37)676
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alization : : :where d is the spatial dimensionality and the averagevelo
ity hvi is de�ned in (A.6) (to a good approxima-tion, it is just the Fermi velo
ity). The relaxation ker-nel M(!) satis�es the self-
onsisten
y equation, simi-lar to that derived in Refs. [14�19℄ using �maximally
rossed� diagrams for the irredu
ible impurity s
atter-ing vertex (built with Green's fun
tions (29)):M(!) = ���RAimp(!) ++�4Xp (�Gp)2Xq 1~! + iD(!)q2 (38)with �Gp = GR("+;p)�GA("�;p); (39)and ��RAimp(!) = �Rimp("+) � �Aimp("�) is due to im-purity s
attering. It is important to stress on
e againthat there are no 
ontributions to this equation due tovertex 
orre
tions determined by the lo
al Hubbard in-tera
tion. Using de�nition (37), we 
an rewrite Eq. (38)as a self-
onsistent equation for the generalized di�u-sion 
oe�
ient itself:D(!) = i hvi2d (~! ���RAimp(!) ++ �4Xp (�Gp)2Xq 1~! + iD(!)q2)�1 (40)whi
h is to be solved in 
onjun
tion with our DMFT+�loop (3)�(9). Due to the limitations of the di�usionapproximation, summation over q in (40) is to be re-stri
ted to q < k0 = minfl�1; pF g; (41)where l = hvi=2
(0) is the elasti
 mean-free path andpF is the Fermi momentum [17, 19℄.Solving (40) for di�erent sets of parameters of ourmodel and using it in (36) with regular 
ontribu-tions from (A.10), we 
an 
al
ulate the dynami
 (opti-
al) 
ondu
tivity in di�erent phases of the Anderson�Hubbard model.4. RESULTS AND DISCUSSIONWe performed extensive numeri
al 
al
ulations fora simpli�ed version of the three-dimensional Anderson�Hubbard model on a 
ubi
 latti
e with the semi-ellipti
DOS of the �bare� band of width W = 2D:N0(") = 2�D2pD2 � "2: (42)

�=2D = 00:250:370:430:50
�1 10 "=2D0

1:41:21:00:80:60:40:2 U=2D = 1:251234 5
N="

Fig. 6. Density of states of the half-�lled Anderson�Hubbard model for di�erent degrees of disorder �, andU = 2:5D, typi
al for a 
orrelated metalThe DOS is always given in units of the number ofstates per energy interval, per latti
e 
ell volume a3 (ais latti
e spa
ing), and per spin. Some related te
hni
aldetails are given in Appendix B.We mostly 
on
entrate on the half-�lled 
ase, al-though some results for �nite dopings are also pre-sented. The Fermi level is always pla
ed at zero energy.As the �impurity solver� of DMFT, we used the re-liable numeri
ally exa
t NRG method [25�27℄. Cal
u-lations were done for temperatures T � 0:001D, whi
he�e
tively makes temperature e�e
ts in the DOS and
ondu
tivity negligible. The dis
retization parameterof NRG was always � = 2, the number of low-energystates after trun
ation 1000, the 
ut-o� near Fermi en-ergy [1�6℄, the broadening parameter b = 0:6.We present only a fra
tion of most typi
al resultsin what follows.A. Evolution of the density of statesWithin the standard DMFT approa
h, the densityof states of the half-�lled Hubbard model has a typi
althree-peak stru
ture: a narrow quasiparti
le band (
en-tral peak) develops at the Fermi level, with wider upperand lower Hubbard bands forming at " � �U=2. Thequasiparti
le band narrows further with an in
rease inU in the metalli
 phase, vanishing at the 
riti
al valueU
2 � 1:5W , signifying the Mott�Hubbard MIT with agap opening at the Fermi level [7, 8, 27℄.In Fig. 6, we present our DMFT+� results for thedensity of states, obtained for U = 2:5D = 1:25W typi-
al for a 
orrelated metal without disorder, for di�erent677
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Fig. 7. Density of states of the half-�lled Anderson�Hubbard model for di�erent degrees of disorder � andU = 4:5D, typi
al for a Mott insulatordegrees of disorder �, in
luding large enough values,a
tually transforming the 
orrelated metal to the 
or-related Anderson insulator (see subse
tion 4B). As maybe expe
ted, we observe typi
al widening and dampingof the DOS by disorder.More unexpe
ted are the results obtained for thevalues of U typi
al for a Mott insulator without disor-der, as shown in Fig. 7 for U = 4:5D = 2:25W . Wesee the restoration of the 
entral peak (quasiparti
leband) in the DOS as disorder in
reases, transformingthe Mott insulator to either a 
orrelated metal or a
orrelated Anderson insulator. Similar behavior of theDOS was re
ently obtained in Ref. [13℄. But in our
al
ulations, the presen
e of distin
t Hubbard bandswas already observed for rather large values of disorder,with no signs of vanishing of the Hubbard stru
ture ofthe DOS, whi
h was observed in Ref. [13℄. This is prob-ably due to the very simple nature of our approxima-tion for the DOS under disordering, although we muststress that this di�eren
e may be also due to anothermodel of disorder used in Ref. [13℄ (a �at distributionof �i in (1) instead of our Gaussian 
ase (2)). Althoughunimportant, in general, to the physi
s of Andersontransition, the type of disorder may be signi�
ant forthe DOS behavior.It is well known that hysteresis behavior of the DOSis obtained for the Mott�Hubbard transition if DMFT
al
ulations are performed with U de
reasing from theinsulating phase [8, 27℄. The Mott insulator phase sur-vives for the values of U well inside the 
orrelated metalphase, obtained with an in
rease in U . The metalli
phase is restored at U
1 � 1:0W . The values of U in

�1 0 1 "=2D
123 4

U=2D = 1:25 �=2D = 00:110:160:18
00:20:4

0:60:8
N="1:0

Fig. 8. Restoration of the quasiparti
le band by disor-der in the 
oexisten
e (hysteresis) region for U = 2:5D,obtained from a Mott insulator with de
reasing Uthe interval U
1 < U < U
2 are usually regarded asbelonging to the 
oexisten
e region of the metalli
 and(Mott) insulating phases, with the metalli
 phase beingthermodynami
ally more stable [8, 27, 29℄.In Fig. 8, we present our typi
al data for theDOS with di�erent disorder for the same value ofU = 2:5D = 1:25W as in Fig. 6, but for the hysteresisregion, obtained by de
reasing U from the Mott in-sulator phase. We again observe the restoration of the
entral peak (quasiparti
le band) in the DOS under dis-ordering. We also note the pe
uliar form of the DOSaround the Fermi level during this transition: a narrowenergy gap is 
onserved until it is 
losed by disorder,and a 
entral peak is formed from two symmetri
 max-ima in the DOS merging into the quasiparti
le band.This resembles similar behavior observed in the peri-odi
 Anderson model [8℄. This e�e
t was apparentlyunnoti
ed in previous 
al
ulations of the DOS in the
oexisten
e region [27℄ (in the absen
e of disorder); inour 
ase, it was obtained mainly due to our use of avery �ne mesh of values of the disorder parameter �.The physi
al reason for the rather unexpe
tedrestoration of the 
entral (quasiparti
le) peak in theDOS is in fa
t 
lear. The 
ontrolling parameter forits appearan
e or disappearan
e in DMFT is a
tuallythe ratio of the Hubbard intera
tion U and the barebandwidth W = 2D. Under disordering, we obtain thenew e�e
tive bandwidth Weff (in the absen
e of theHubbard intera
tion), whi
h in
reases with disorder,while the semi-ellipti
 form of the DOS, with well-de-�ned band edges, is preserved in self-
onsistent Bornapproximation (9). This leads to a de
rease in theratio U=Weff , whi
h indu
es the reappearan
e of the678
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Fig. 9. Real part of dynami
 
ondu
tivity for thehalf-�lled Anderson�Hubbard model for di�erent de-grees of disorder �, and U = 2:5D, typi
al for a 
orre-lated metal. Lines 1 and 2 are for the metalli
 phase,line 3 
orresponds to the mobility edge (Anderson tran-sition), and lines 4 and 5 
orrespond to a 
orrelatedAnderson insulatorquasiparti
le band in our model. This is illustrated inmore detail in subse
tion 4C, where our DOS 
al
ula-tions within the DMFT+� approa
h for a wide rangeof parameters are used to study the phase diagram ofthe Anderson�Hubbard model.B. Dynami
 
ondu
tivity: Mott�Hubbard andAnderson transitionsThe real part of dynami
 (opti
al) 
ondu
tivity was
al
ulated for di�erent 
ombinations of the parametersof our model dire
tly from Eqs. (36), (A.9), (A.10),and (40) using the results of DMFT+� loop (3)�(9) asan input. The 
ondu
tivity values are given below innatural units of e2=~a (a is the latti
e spa
ing).In the absen
e of disorder, evidently, we reprodu
ethe results of the standard DMFT approa
h [7, 8℄ withthe dynami
 
ondu
tivity 
hara
terized in general bythe usual (metalli
) Drude-like peak at zero frequen
yand a wide absorption maximum at ! � U , 
orrespond-ing to transitions to the upper Hubbard band. With anin
rease in U , the Drude peak de
reases and vanishesat the Mott transition, when only transitions throughthe Mott�Hubbard gap 
ontribute. Introdu
tion of dis-order leads to qualitative 
hanges in the frequen
y de-penden
e of 
ondu
tivity. In what follows, we mainlyshow the results obtained for the same values of U and� that were used above to illustrate the DOS behavior.In Fig. 9, we present the real part of dynami


(opti
al) 
ondu
tivity for the half-�lled Anderson�Hubbard model for di�erent degrees of disorder �,and U = 2:5D, typi
al for a 
orrelated metal. Tran-sitions to the upper Hubbard band at ! � U are pra
-ti
ally unobservable in these data. But it 
an be 
learlyseen that the metalli
 Drude peak at zero frequen
y iswidened and suppressed, being gradually transformedinto a peak at �nite frequen
ies due to e�e
ts of An-derson lo
alization. The Anderson transition o

urs at�
 � 0:74D = 0:37W (whi
h 
orresponds to 
urve 3in all our graphs, in
luding those for DOS). We notethat this value is a
tually dependent on the value of
uto� (41), whi
h is de�ned up to a 
onstant of the or-der of unity [17, 19℄. Naive expe
tations might lead tothe 
on
lusion that a narrow quasiparti
le band at theFermi level, whi
h forms in the general 
ase of a highly
orrelated metal, may be lo
alized mu
h more easilythan the typi
al 
ondu
tion band. We see, however,that these expe
tations are wrong and that this bandis lo
alized only at strong enough disorder�
 � D, justas for the whole 
ondu
tion band of the width � W .This is in a

ordan
e with the previous analysis of lo-
alization in a two-band model [30℄.More important is the fa
t that in the DMFT+�approximation, the value of �
 is independent of Ube
ause all intera
tion e�e
ts enter Eq. (40) only via��RA(!)! 0 as ! ! 0 (at T = 0), and hen
e the in-tera
tion drops out at ! = 0. This is a
tually the mainde�
ien
y of our approximation, o

urring be
ause wenegle
t interferen
e e�e
ts between the intera
tion anddisorder s
attering. An important role of these inter-feren
e e�e
ts has been known for a long time [1, 4℄.However, despite the negle
t of these e�e
ts, we are ableto produ
e physi
ally sound interpolation between twomain limits of interest, the pure Anderson transitiondue to disorder and the Mott�Hubbard transition dueto strong 
orrelations. We thus 
onsider it a reason-able �rst step to the future 
omplete theory of MIT instrongly 
orrelated disordered systems.In Fig. 10, we present the real part of dynami
 (op-ti
al) 
ondu
tivity for di�erent degrees of disorder �and U = 4:5D, typi
al for a Mott�Hubbard insula-tor. In the inset, we show our data for small frequen-
ies, whi
h allow 
lear distin
tion of di�erent types of
ondu
tivity behavior, espe
ially 
lose to the Ander-son transition or in the Mott insulator phase. In this�gure, we 
learly see the 
ontribution of transitions tothe upper Hubbard band at ! � U . More importantly,we observe that an in
rease in disorder produ
es �nite
ondu
tivity within the frequen
y range of the Mott�Hubbard gap, whi
h 
orrelates with the appearan
e ofthe quasiparti
le band (
entral peak) in the DOS within679
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Fig. 10. Real part of dynami
 
ondu
tivity of thehalf-�lled Anderson�Hubbard model for di�erent de-grees of disorder � and U = 4:5D, typi
al for a Mottinsulator. Lines 1 and 2 
orrespond to a Mott insula-tor, line 3 
orresponds to the mobility edge (Andersontransition), and lines 4 and 5 are for a 
orrelated An-derson insulator. Inset: the region of low frequen
iesmagni�edthis gap, as shown in Fig. 7. In the general 
ase, this
ondu
tivity is metalli
 (�nite in the stati
 limit ! = 0)for � < �
; for � > �
, at small frequen
ies, we ob-tain Re�(!) � !2, whi
h is typi
al of an Andersoninsulator [14�19℄. We note that due to a �nite inter-nal a

ura
y of NRG numeri
s, small but �nite spuri-ous 
ontributions to Im�R;A(" = 0) always appear [27℄and formally in
rease with U . These 
ontributions arepra
ti
ally irrelevant in 
al
ulations of 
ondu
tivity inthe metalli
 state. But in an Anderson insulator, thesespurious terms 
ontribute via ~! in Eq. (40) and lead tounphysi
al �nite dephasing e�e
ts at ! = 0 (or T = 0),whi
h 
an simulate a small �nite stati
 
ondu
tivity.To eliminate these spurious e�e
ts, we had to makeappropriate subtra
tions in our data for Im�R;A(") at" = 0.Rather unusual is the appearan
e of a low-frequen
ypeak in Re�(!) even in the metalli
 phase. It o

ursbe
ause of weak lo
alization e�e
ts, as 
an be 
learlyseen from Fig. 11, where we 
ompare the real partof dynami
 
ondu
tivity for di�erent degrees of disor-der � and U = 1:5D, obtained via our self-
onsistentapproa
h (taking lo
alization e�e
ts into a

ount via�maximally 
rossed� diagrams) with that obtained us-ing the �ladder� approximation for �0RA" (!;q) (similarto (A.10)), whi
h negle
ts all lo
alization e�e
ts. Itis 
learly seen that in this simple approximation, wejust obtain the usual Drude-like peak at ! = 0, while
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Fig. 11. Real part of dynami
 
ondu
tivity of thehalf-�lled Anderson�Hubbard model for di�erent de-grees of disorder � and U = 1:5D, 
omparison of theself-
onsistent theory (thi
k lines) with the �ladder� ap-proximation (thin lines)
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Fig. 12. Real part of dynami
 
ondu
tivity of thehalf-�lled Anderson�Hubbard model for di�erent de-grees of disorder � and U = 2:5D, obtained from aMott insulator with de
reasing Ua

ounting for lo
alization e�e
ts produ
es a peak inRe�(!) at low (�nite) frequen
ies. The metalli
 stateis de�ned [2℄ by the �nite value of zero temperature
ondu
tivity at ! = 0.Up to now, we presented only 
ondu
tivity data ob-tained with an in
rease in U from the metalli
 to the(Mott) insulating phase. As U de
reases from the Mottinsulator phase, a hysteresis of 
ondu
tivity is observedin the 
oexisten
e region, de�ned (in the absen
e of dis-680
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alization : : :order, � = 0) by U
1 < U < U
2. Typi
al data areshown in Fig. 12, where we present the real part of dy-nami
 
ondu
tivity for di�erent degrees of disorder �and U = 2:5D, obtained from the Mott insulator phasewith de
reasing U , whi
h should be 
ompared with thedata in Fig. 9. Transition to the metalli
 state via the
losure of a narrow gap, �inside� a mu
h wider Mott�Hubbard gap, is 
learly seen, whi
h 
orrelates with theDOS data in Fig. 8.C. Phase diagram of the half-�lledAnderson�Hubbard modelThe phase diagram of the half-�lled Anderson�Hubbard model was studied in Ref. [13℄ using the ap-proa
h based on dire
t DMFT 
al
ulations for a set ofrandom realizations of site energies �i in (1) with sub-sequent averaging to obtain both the standard averageDOS and the geometri
ally averaged lo
al DOS, whi
hwas used to determine the transition to the Andersoninsulator phase. Here, we present our results for thezero-temperature phase diagram of the half-�lled para-magneti
 Anderson�Hubbard model, obtained from ex-tensive 
al
ulations of both the average DOS and dy-nami
 (opti
al) 
ondu
tivity in the DMFT+� approxi-mation. We note that 
ondu
tivity 
al
ulations are themost dire
t way to distinguish between metalli
 and in-sulating phases [2℄.Our phase diagram in the disorder�
orrelation(�; U) plane is shown in Fig. 13. The Anderson tran-sition line �
 � 0:37W = 0:74D was determined asthe value of disorder for whi
h the stati
 
ondu
tivitybe
omes zero at T = 0. The Mott�Hubbard transition
an be determined either via the disappearan
e of the
entral peak (quasiparti
le band) in the DOS or fromthe 
ondu
tivity, e.g., from the 
losure of the gap in thedynami
 
ondu
tivity in the insulating phase, or fromvanishing of the stati
 
ondu
tivity in the metalli
 re-gion. All these methods were used and the 
orrespond-ing results are shown for 
omparison in Fig. 13.We already stressed that the DMFT+� approxima-tion gives the universal (U -independent) value of �
.This is due to a negle
t of the interferen
e betweendisorder s
attering and Hubbard intera
tion, and leadsto the main (over)simpli�
ation of our phase diagram,
ompared with that obtained in Ref. [13℄. We notethat dire
t 
omparison of our 
riti
al disorder valuewith those in Ref. [13℄ is 
ompli
ated by di�erent typesof random site�energy distributions used here (Gaus-sian) and in Ref. [13℄ (re
tangular). As a rule of thumb(
f. the se
ond referen
e in [16℄), our Gaussian value of�
 should be multiplied by p12 to obtain the 
riti
al

DOS
ondu
tivity
ondu
tivityDOS 4:03:53:02:52:01:51:00:50
�
 U
1(�)Correlated Anderson Insulator

Correlated Metal Mott InsulatorU
2(�)0:10:20:30:40:50:60:7�=2D

U=2DFig. 13. Zero-temperature phase diagram of the para-magneti
 Anderson�Hubbard model. Boundaries of theMott insulator phase U
1;
2(�) are shown as obtainedfrom Eqs. (45); di�erent symbols show values 
al
u-lated from either the DOS or the 
ondu
tivity behavior.The dotted line de�nes the boundary of the 
oexisten
eregion obtained with de
reasing U from the Mott in-sulator phase. The Anderson transition line is given bythe 
al
ulated value of �
 = 0:37disorder value for the re
tangular distribution. Thisgives �
 � 1:28, in a rather good agreement with the�
(U = 0) � 1:35W value in Ref. [13℄, justifying our
uto� 
hoi
e in (41).The in�uen
e of disorder s
attering on the Mott�Hubbard transition is highly nontrivial and in somerespe
ts is in qualitative agreement with the results inRef. [13℄. The main di�eren
e is that our data indi
atethe survival of Hubbard band stru
tures in the DOSeven in the limit of rather large disorder, while thesewere 
laimed to disappear in Ref. [13℄. Also we ob-tain the 
oexisten
e region smoothly widening with anin
rease in disorder and not disappearing at a �
riti-
al� point, as in Ref. [13℄. The borders of our 
oex-isten
e region, whi
h in fa
t de�ne the boundaries ofthe Mott insulator phase obtained with in
reasing orde
reasing U , are determined by the lines U
1(�) andU
2(�) shown in Fig. 13, whi
h are obtained from thesimple equation U
1;
2(�)Weff = U
1;
2W (43)with Weff = Wr1 + 16 �2W 2 ; (44)whi
h is the e�e
tive bandwidth in the presen
e of dis-order, 
al
ulated for U = 0 in self-
onsistent Born ap-681
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Fig. 14. Disorder dependen
e of stati
 
ondu
tivity,obtained for several values of U and showing a disor-der-indu
ed Mott-insulator-to-metal transition. Inset:the stati
 
ondu
tivity dependen
e on U 
lose to theMott transition, in
luding a typi
al hysteresis behav-ior obtained with U de
reasing from the Mott insulatorphaseproximation (9). Thus, the boundaries of the 
oexis-ten
e region are given byU
1;
2(�) = U
1;
2r1 + 16 �2W 2 ; (45)whi
h are expli
itly shown in Fig. 13 by dotted andsolid lines, de�ning the boundaries of the Mott insu-lator phase. Numeri
al results for the disappearan
eof the quasiparti
le band (
entral peak) in the DOS, aswell as points following from a qualitative 
hange in the
ondu
tivity behavior, are shown in Fig. 13 by di�er-ent symbols demonstrating very good agreement withthese lines, 
on�rming the ratio in (43) as the 
ontrol-ling parameter of the Mott transition in the presen
eof disorder.The most striking result of our analysis (also qual-itatively demonstrated in Ref. [13℄) is the possibilityof the metalli
 state being restored from the Mott�Hubbard insulator with an in
rease in disorder. Thisis 
lear from the phase diagram and is ni
ely demon-strated by our data for (stati
) 
ondu
tivity shown inFig. 14 for several values of U > U
2 and disorder val-ues � < �
. In the inset to Fig. 14, we also illustratethe stati
 
ondu
tivity hysteresis observed in the 
oex-isten
e region of the phase diagram, obtained with Ude
reasing from the Mott insulator phase.
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Fig. 15. Density of states of the Anderson�Hubbardmodel with the ele
tron 
on
entration n = 0:8 for dif-ferent degrees of disorder � and U = 6:0D, represent-ing the doped Mott insulator
U=2D = 3n = 0:80:5 1:0 1:5!=2D00:050:100:15
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Fig. 16. Real part of dynami
 
ondu
tivity of theAnderson�Hubbard model with the ele
tron 
on
entra-tion n = 0:8 for di�erent degrees of disorder � andU = 6:0D, representing the doped Mott insulator. In-set: high-frequen
y behavior with signs of transition tothe upper Hubbard bandD. Doped Mott insulatorAll results presented above were obtained in thehalf-�lled 
ase. Here, we brie�y 
onsider deviationsfrom half-�lling. In the metalli
 phase, doping fromhalf-�lling does not produ
e any qualitative 
hanges inthe 
ondu
tivity behavior, whi
h only demonstrates theAnderson transition with an in
rease in disorder. Wetherefore 
on
entrate on the 
ase of a doped Mott insu-lator. Stri
tly speaking, in the non-half-�lled 
ase, we682
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alization : : :never obtain a Mott�Hubbard insulator in the DMFTmethod at all. In Fig. 15, we show the density of statesof the Anderson�Hubbard model with the ele
tron 
on-
entration n = 0:8 for di�erent degrees of disorder �and U = 6:0D, representing a typi
al 
ase of the dopedMott insulator. The quasiparti
le band overlaps withthe lower Hubbard band and is smeared by disorder,whi
h is just the expe
ted behavior in the metalli
state. Nothing spe
ta
ular happens to 
ondu
tivity,either, as is shown for the same set of parameters inFig. 16. It shows a typi
al behavior asso
iated with thedisorder-indu
ed Anderson MIT. Small signs of transi-tions to the upper Hubbard band 
an be seen for ! � U(see the inset to Fig. 16). Therefore, a doped Mott in-sulator with disorder is qualitatively quite similar tothe disordered 
orrelated metal dis
ussed above.5. CONCLUSIONWe used the generalized DMFT+� approa
h to
al
ulate basi
 properties of the disordered Hubbardmodel. The main advantage of our method is its abil-ity to provide a relatively simple interpolation s
hemebetween rather well-understood 
ases of a strongly 
or-related system (DMFT and Mott�Hubbard MIT) andof a strongly disordered metal without Hubbard 
orre-lations, undergoing an Anderson MIT. Apparently, thisinterpolation s
heme 
aptures the main qualitative fea-tures of the Anderson�Hubbard model, su
h as the gen-eral behavior of the DOS and dynami
 (opti
al) 
on-du
tivity. The overall pi
ture of the zero-temperaturephase diagram is also quite reasonable and is in sat-isfa
tory agreement with the results of more elaboratenumeri
al work [13℄. A
tually, our DMFT+� approa
his mu
h less time-
onsuming than more dire
t numer-i
al approa
hes, su
h as that in Ref. [13℄, and in fa
tallows 
al
ulating all basi
 (measurable) physi
al 
har-a
teristi
s of the Anderson�Hubbard model.The main short
oming of our approa
h is its ne-gle
t of interferen
e e�e
ts of disorder s
attering andHubbard intera
tion, whi
h leads to the independen
eof the Anderson MIT 
riti
al disorder �
 from the in-tera
tion U . The importan
e of interferen
e e�e
ts isknown for a long time [1, 4℄, but its a

ount was onlypartially su

essful in the 
ase of weak 
orrelations. Atthe same time, the negle
t of these interferen
e e�e
tsis the major approximation of the DMFT+� method,allowing the derivation of a rather simple and physi
alinterpolation s
heme and the analysis of the strong-
orrelation limit. Attempts to in
lude interferen
e ef-fe
ts in our s
heme are postponed for future work.

Another simpli�
ation is, of 
ourse, our assumptionof a nonmagneti
 (paramagneti
) ground state of theAnderson�Hubbard model. The importan
e of mag-neti
 (spin) e�e
ts in strongly 
orrelated systems iswell known, as is the problem of 
ompetition of groundstates with di�erent types of magneti
 ordering [8℄.The importan
e of disorder in studying the interplayof these possible ground states is also quite evident.These may also be the subje
t of our future work.Despite these short
omings, our results seem verypromising, espe
ially 
on
erning the in�uen
e ofstrong disorder on the Mott�Hubbard MIT and theoverall form of the phase diagram at zero temper-ature. The 
hanges in the phase diagram at �nitetemperatures will be the subje
t of further studies.Nontrivial predi
tions of our approa
h, su
h as thegeneral behavior of dynami
 (opti
al) 
ondu
tivityand, espe
ially, the predi
tion of a disorder-indu
edMott-insulator-to-metal transition 
an be the subje
tof dire
t experimental veri�
ation.We are grateful to Th. Prus
hke for providing uswith his e�e
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ademy of S
ien
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h of the self-
on-sistent theory of lo
alization [14�19℄, taking the DMFT
ontributions �R;A(") into a

ount in single-parti
leGreen's fun
tions (29) and not restri
ting ourselves tothe usual limit of small !.We 
onsider the Bethe�Salpeter equation relatingthe full two-parti
le Green's fun
tion �0RApp0 (!;q) to theirredu
ible vertex U0RApp0 (!;q), a

ounting only for im-purity s
attering in verti
es, but built upon Green's683
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hinskii, I. A. Nekrasov, M. V. Sadovskii ÆÝÒÔ, òîì 133, âûï. 3, 2008fun
tions given by (29). This equation 
an be writtenas a generalized kineti
 equation in the form [14�19℄�~! � �(p)���RAimp(!)��0RApp0 (!;q) = ��Gp �� Æpp0 +Xp1 U0RApp1 (!;q)�0RAp1p0(!;q)! ; (A.1)where �Gp = GR("+;p+) � GA("�;p�). The maindi�eren
e from a similar equation in Refs. [14�19℄ isthe repla
ement ! ! ~!.We sum both sides of (A.1) and of the sameequation multiplied by p̂ � q̂ (where p̂ = p=jpj andq̂ = q=jqj are appropriate unit ve
tors) over p andp0, with the exa
t Ward identity [14℄��RAimp(!) =Xp0 U0RApp0 (!;q)�Gp0 (A.2)taken into a

ount and with the approximate represen-tation (
f. Ref. [14℄)Xp0 �0RApp0 (!;q) � �GpPp�Gp�0RA" (!;q) ++ �Gp(p̂ � q̂)Pp�Gp(p̂ � q̂)2�0RA1" (!;q); (A.3)where �0RA" (!;q) =Ppp0 �0RApp0 (!;q) is our loop (28)and �0RA1" (!;q) = Ppp0(p̂ � q̂)�0RApp0 (!;q). An im-portant di�eren
e from a similar representation inRefs. [14�19℄ is that (A.3) is not limited to small !.Now (as q ! 0), we obtain the 
losed system ofequations for both �0RA" (!;q) and �0RA1" (!;q),~!�0RA" (!;q)� hviq�0RA1" (!;q) = �Xp �Gp;(~! +M(!))�0RA1" (!;q)� hvid q�0RA1" (!;q) = 0; (A.4)where the relaxation kernel is given byM(!) = ���RAimp(!) ++ dPpp0(p̂ � q̂)�GpU0RApp0 (!;q)�Gp0(p̂0 � q̂)Pp�Gp ; (A.5)with the average velo
ity hvi de�ned ashvi = Pp jvpj�GpPp�Gp ; vp = ��(p)�p : (A.6)From (A.4), we immediately obtain that�0RA" (q; ~!) = �Xp �Gp~! + iD(!)q2 (A.7)

whi
h for small ! redu
es to (32) with the generalizeddi�usion 
oe�
ient given by (37).Using an approximation of �maximally 
rossed� di-agrams for the irredu
ible vertex U0RApp0 (!;q) and in-trodu
ing the standard self-
onsisten
y pro
edure inRefs. [14�19℄ (i.e., repla
ing the Drude di�usion 
oef-�
ient in the Cooperon 
ontribution to the irredu
iblevertex with the generalized one de�ned by (37)), weobtain our expression (38) for the relaxation kernelin (A.5).Our equation (40) for the generalized di�usion 
o-e�
ient (whi
h is 
omplex in general) redu
es just tothe usual trans
endental equation. It was solved by it-erations for ea
h value of ~!, taking into a

ount thatfor d = 3 and the 
uto� given by (41), the sum enter-ing (40) redu
es toXq 1~! + iD(!)q2 = 12�2 k30iD(!)k20 �� 1Z0 y2dyy2 + ~!iD(!)k20 = 12�2 k30iD(!)k20 ��(1�� ~!iD(!)k20�1=2 �� ar
tg � iD(!)k20~! �1=2!) : (A.8)For �nite frequen
ies !, we use �0RA" (q; ~!) givenby (A.7), and hen
e expression (25) for the dynami

ondu
tivity is to be rewritten asRe�(!) = e2!2� 1Z�1 d" [f("�)� f("+)℄��Re( iPp�GpD(!)!2 �� �0RR" (!) �1� ��RR(!)! �2) : (A.9)The se
ond term was here taken in the �ladder� approx-imation:�0RR" (!;q) == Xp GR("+;p+)GR("�;p�)1��2PpGR("+;p+)GR("�;p�) : (A.10)This 
ontribution (nonsingular at small !) is irrelevantfor the 
ondu
tivity as ! ! 0, but leads to �nite 
or-re
tions with in
reasing !. Equation (A.9) is our �nalresult, whi
h was analyzed numeri
ally in a wide rangeof frequen
ies (for small !, it redu
es to (36)).684



ÆÝÒÔ, òîì 133, âûï. 3, 2008 Mott�Hubbard transition and Anderson lo
alization : : :APPENDIX B�Bare� ele
tron dispersion and velo
ityWe 
onsider the �bare� energy band with semi-ellipti
 DOS (42). Assuming an isotropi
 ele
tron spe
-trum �(p) = �(jpj) � �(p) and equating the number ofstates in a spheri
al layer of momentum spa
e to thenumber of states in the energy interval [�; � + d�℄, weobtain a di�erential equation determining the energydispersion �(p): 4�p2dp(2�)3 = N0(�) d�: (B.1)For a quadrati
 energy dispersion �(p) 
lose to the lowerband edge, we obtain the initial 
ondition for Eq. (B.1)as p! 0 and �! �D. Then we obtainp = �6��� � '+ 12 sin(2')��1=3 (B.2)with ' = ar

os(�=D) and the momentum in units ofthe inverse latti
e spa
ing. Equation (B.2) impli
itlyde�nes a �bare� energy dispersion �(p) for the ele
troni
part of the spe
trum � 2 [�D; 0℄.For a half-�lled band, we easily determine the Fermimomentum aspF = p(� = 0) = �3�2�1=3: (B.3)We also need the ele
tron velo
ity jvpj = j��(p)=�pj == ��(p)=�p, whi
h enters expression (A.6) for the av-erage velo
ity. From (B.1), we obtainjvpj = d�dp = p22�2 1N0(�) ; (B.4)where p is given by Eq. (B.2).To obtain a quadrati
 dispersion for the hole part ofthe spe
trum (� 2 [0; D℄) 
lose to the upper band edge(�! D), we introdu
e the hole momentum ~p = 2pF �pand write 4�~p2d~p(2�)3 = �N0(�)d� (B.5)similarly to (B.1). Letting ~p ! 0 at the upper bandedge �! 0, we obtain~p = �6��'� 12 sin(2')��1=3: (B.6)We then obtain the velo
ity at the hole part of thespe
trum asjvpj = d�dp = � d�d~p = ~p22�2 1N0(�) : (B.7)

Equations (B.4) and (B.7) determine the energy depen-den
e of jvpj. It is easily seen that the velo
ity is evenin energy and be
omes zero at the band edges. Theseexpressions allow passing from momentum summation(e.g., in Eq. (A.6)) to energy integration.REFERENCES1. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys.57, 287 (1985); D. Belitz and T. R. Kirkpatri
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