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MOTT�HUBBARD TRANSITION AND ANDERSONLOCALIZATION: A GENERALIZED DYNAMICAL MEAN-FIELDTHEORY APPROACHE. Z. Kuhinskii, I. A. Nekrasov, M. V. Sadovskii *Institute for Eletrophysis, Russian Aademy of Sienes620016, Ekaterinburg, RussiaReeived Otober 4, 2007The density of states, the dynami (optial) ondutivity, and the phase diagram of a strongly orrelatedand strongly disordered paramagneti Anderson�Hubbard model are analyzed within the generalized dynamialmean-�eld theory (DMFT+� approximation). Strong orrelations are taken into aount by the DMFT, anddisorder is taken into aount via an appropriate generalization of the self-onsistent theory of loalization.The DMFT e�etive single-impurity problem is solved by the numerial renormalization group (NRG); we on-sider the three-dimensional system with a semi-ellipti density of states. The orrelated metal, Mott insulator,and orrelated Anderson insulator phases are identi�ed via the evolution of the density of states and dynamiondutivity, demonstrating both the Mott�Hubbard and Anderson metal�insulator transition and allowing theonstrution of the omplete zero-temperature phase diagram of the Anderson�Hubbard model. Rather unusualis the possibility of a disorder-indued Mott insulator-to-metal transition.PACS: 71.10.Fd, 71.27.+a, 71.30.+h1. INTRODUCTIONThe importane of the eletron interation and ran-domness for the properties of ondensed matter is wellknown [1℄. Both Coulomb orrelations and disorder aredriving fores of metal�insulator transitions (MITs) re-lated to the loalization and deloalization of partiles.In partiular, the Mott�Hubbard MIT is aused by theeletron repulsion [2℄, while the Anderson MIT is due torandom sattering of noninterating partiles [3℄. Atu-ally, disorder and interation e�ets are known to om-pete in many subtle ways [1, 4℄; this problem beomesmuh more ompliated in the ase of strong eletronorrelations and strong disorder, determining the phys-ial mehanisms of the Mott�Anderson MIT [1℄.The ornerstone of the modern theory of stronglyorrelated systems is the dynami mean-�eld theory(DMFT) [5�8℄, onstituting a nonperturbative theo-retial framework for the investigation of orrelatedlattie eletrons with loal interation. In this ap-proah, the e�et of loal disorder an be taken intoaount through the standard average density of states(DOS) [9℄ in the absene of interations, leading to*E-mail: sadovski�iep.uran.ru

the well-known oherent potential approximation [10℄,whih does not desribe the physis of Anderson lo-alization. To overome this de�ieny, Dobrosavlje-vi¢ and Kotliar [11℄ formulated a variant of the DMFTwhere the geometrially averaged loal DOS was om-puted from solutions of the self-onsistent stohastiDMFT equations. Subsequently, Dobrosavljevi¢ etal. [12℄ inorporated the geometrially averaged loalDOS into the self-onsisteny yle and derived a mean-�eld theory of Anderson loalization that reproduedmany of the expeted features of the disorder�drivenMIT for noninterating eletrons. This approah wasextended in [13℄ to inlude Hubbard orrelations via theDMFT, whih led to a highly nontrivial phase diagramof the Anderson�Hubbard model with the orrelatedmetal, Mott insulator, and orrelated Anderson insu-lator phases. The main de�ieny of these approahes,however, is the inability to diretly alulate measur-able physial properties, suh as ondutivity, whih isof major importane and de�nes the MIT itself.At the same time, the well-developed approahof the self-onsistent theory of Anderson loalization,based on solving the equations for the generalized di�u-sion oe�ient, demonstrated its e�ieny in the non-670



ÆÝÒÔ, òîì 133, âûï. 3, 2008 Mott�Hubbard transition and Anderson loalization : : :interating ase a long time ago [14�19℄; several at-tempts to inlude interation e�ets into this approahwere made with some promising results [17, 20℄. Ho-wever, until reently, there have been no attempts toinorporate this approah into the modern theory ofstrongly orrelated eletron systems. Here, we under-take suh a researh, studying the Mott�Hubbard andAnderson MITs via diret alulations of both the av-erage DOS and the dynami (optial) ondutivity.Our approah is based on the reently proposedgeneralized DMFT+� approximation [21�24℄, whihon the one hand retains the single-impurity desrip-tion of the DMFT, with a proper aount for loalHubbard-like orrelations and the possibility to use im-purity solvers like the numerial renormalization group(NRG) [25�27℄, and on the other hand, allows inludingadditional (either loal or nonloal) interations (�u-tuations) on a nonperturbative model basis.Within this approah, we have already studiedboth single- and two-partile properties of the two-dimensional Hubbard model, onentrating mainly onthe problem of pseudogap formation in the density ofstates of the quasipartile band in both orrelated met-als and doped Mott insulators, with an appliation tosuperonduting uprates. We analyzed the evolutionof non-Fermi-liquid-like spetral density and ARPESspetra [22℄, �destrution� of Fermi surfaes and forma-tion of Fermi �ars� [21℄, as well as pseudogap anomaliesof optial ondutivity [24℄. Brie�y, we also onsideredimpurity sattering e�ets [23℄.In this paper, we apply our DMFT+� approahfor alulations of the density of states, dynami on-dutivity, and phase diagram of the strongly orre-lated and strongly disordered three-dimensional para-magneti Anderson�Hubbard model. Strong orrela-tions are again taken into aount by the DMFT, whiledisorder is taken into aount via the appropriate gen-eralization of the self-onsistent theory of loalization.This paper is organized as follows. In Se. 2, webrie�y desribe our generalized DMFT+� approxima-tion with appliation to the disordered Hubbard model.In Se. 3, we present basi DMFT+� expressions forthe dynami (optial) ondutivity and formulate theappropriate self-onsistent equations for the general-ized di�usion oe�ient. Computational details and re-sults for the density of states and dynami ondutivityare given in Se. 4, where we also analyze the phase dia-gram of the strongly disordered Hubbard model withinour approah. The paper ends with a short summaryin Se. 5 and a disussion of some related problems.

2. BASICS OF THE DMFT+� APPROACHOur aim is to onsider the nonmagneti disor-dered Anderson�Hubbard model (mainly) at half-�llingfor arbitrary interation and disorder strengths. TheMott�Hubbard and Anderson MITs are investigated onan equal footing. The Hamiltonian of the model is writ-ten asH = �tXhiji� ayi�aj� +Xi� �ini� + UXi ni"ni#; (1)where t > 0 is the amplitude for hopping between near-est neighbors, U is the on-site repulsion, ni� = ayi�ai� isthe loal eletron number operator, ai� (ayi�) is the an-nihilation (reation) operator of an eletron with spin�, and the loal ioni energies �i at di�erent lattiesites are onsidered independent random variables. Tosimplify diagrammatis in what follows, we assume theGaussian probability distribution for �i:P(�i) = 1p2�� exp�� �2i2�2� ; (2)where the parameter � is a measure of the disorderstrength, and a Gaussian (�white� noise) random �eldof energy level �i at lattie sites produes �impurity�sattering, leading to the standard diagram tehniquefor alulation on the averaged Green's funtions [19℄.The DMDF+� approah was initially proposedin [21�23℄ as a simple method to inlude nonloal�utuations, of essentially arbitrary nature, into thestandard DMFT. In fat, it an be used to inludeany additional interation into the DMFT as fol-lows. Working at �nite temperatures T , we write theMatsubara-�time� Fourier-transformed single-partileGreen's funtion of the Hubbard model asG(i";p) = 1i"+ �� �(p)��(i")��p(i") ;" = �T (2n+ 1); (3)where �(p) is the single-partile spetrum orrespond-ing to the free part of (1), � is the hemial potential�xed by the eletron onentration, �(i") is the loalontribution to self-energy due to the Hubbard inter-ation, of the DMFT type (surviving in the limit ofspatial dimensionality d!1), and �p(i") is some ad-ditional (in general, momentum-dependent) self-energypart. This last ontribution an be aused, e.g., byeletron interations with some �additional� olletivemodes or order-parameter �utuations within the Hub-bard model itself. But it an atually be due to anyother interations (�utuations) outside the standard671
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Σ(iω) Σp(iω)Fig. 1. Typial �skeleton� diagrams for the self-energyin the DMFT+� approah. The �rst two terms are ex-amples of DMFT self-energy diagrams; the middle twodiagrams show ontributions due to random impuritysattering represented by dashed lines. The last dia-gram (b) is an example of a negleted diagram leadingto interferene between the loal Hubbard interationand impurity satteringHubbard model, e.g., due to phonons or random im-purity sattering, when it is in fat loal (momentumindependent). The last interation is the subjet of ourmain interest in the present paper. The basi assump-tion here is the neglet of all interferene proesses ofthe loal Hubbard interation and �external� ontribu-tions due to these additional satterings (nonrossingapproximation for appropriate diagrams) [22℄, as illus-trated by diagrams in Fig. 1.The self-onsisteny equations of the generalizedDMFT+� approah are formulated as follows [21, 22℄.1. Start with some initial guess for the loal self-energy �(i"), e.g., �(i") = 0.2. Construt �p(i") within some (approximate)sheme, aounting for interations with an �external�interation (impurity sattering in our ase), whih anin general depend on �(i!) and �.3. Calulate the loal Green's funtionGii(i") = 1N Xp 1i"+ �� �(p)��(i")��p(i") : (4)4. De�ne the �Weiss �eld�G�10 (i") = �(i") +G�1ii (i"): (5)5. Using some �impurity solver�, alulate thesingle-partile Green's funtion Gd(i") for the e�etiveAnderson impurity problem, plaed at a lattie site iand de�ned by the e�etive ation that in the obviousnotation is written as

Seff = � �Z0 d�1 �Z0 d�2 i�(�1)G�10 (�1��2)+i�(�2)++ �Z0 d� Uni"(�)ni#(�): (6)In what follows, we use the NRG [25�27℄ for the �im-purity solver�, whih allows us to deal also with realfrequenies, thus avoiding the ompliated problem ofanalyti ontinuation from Matsubara frequenies.6. De�ne the new loal self-energy�(i!) = G�10 (i!)�G�1d (i!): (7)7. Using this self-energy as the �initial� one in step1, ontinue the proedure until (and if) onvergene isreahed, to obtain Gii(i") = Gd(i"): (8)Eventually, we obtain the desired Green's funtion inform (3), with �(i") and �p(i") appearing at the endof our iterative proedure.For �p(i") in the random impurity problem, we usethe simplest possible one-loop ontribution, given bythe third diagram in Fig. 1a, negleting �rossing� di-agrams like the fourth in Fig. 1a, i.e., just the self-onsistent Born approximation [19℄, whih in the aseof Gaussian disorder (2) leads to the usual expression�p(i") = �2Xp G(i";p) � �imp(i") (9)whih is atually p-independent (loal).3. DYNAMIC CONDUCTIVITY IN THEDMFT+� APPROACHA. Basi expressions for optial ondutivityPhysially, it is lear that alulations of the dy-nami ondutivity are the most diret way to studyMITs, beause its frequeny dependene along with thestati value at zero frequeny of an external �eld allowslearly distinguishing between metalli and insulatingphases (at zero temperature T = 0).To alulate the dynami ondutivity, we use thegeneral expression relating it to the retarded density�density orrelation funtion �R(!;q) [14, 19℄:�(!) = � limq!0 ie2!q2 �R(!;q); (10)where e is the eletron harge.672
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Fig. 2. Full polarization loop with the vertex part de-sribing all interations and impurity satterings in thepartile�hole hannel. The loop without vertex orre-tions is inluded impliitly. Here, p� = p � q=2 and"� = "� !=2We next outline the derivation presented in detailin Ref. [24℄ for the pseudogap problem, with neessarymodi�ations for the present ase. We onsider the fullpolarization-loop graph in the Matsubara representa-tion shown in Fig. 2, whih is onveniently (with ex-pliit frequeny summation) written as�(i!;q) =X""0 �i"i"0 (i!;q) �X" �i"(i!;q) (11)and ontains all possible interations of our model, de-sribed by the full shaded vertex part. Atually, we im-pliitly assume here that the simple-loop ontributionwithout vertex orretions is also inluded in Fig. 2,whih shortens further diagrammati expressions [24℄.The retarded density�density orrelation funtion is de-termined by an appropriate analyti ontinuation ofthis loop and an be written as [14℄�R(!;q) = 1Z�1 d"2�i �[f("+)� f("�)℄ �RA" (q; !) ++ f("�)�RR" (q; !)� f("+)�AA" (q; !)	 ; (12)where f(") is the Fermi distribution, "� = " � !2 ,and two-partile loops �RA" (q; !), �RR" (q; !), and�AA" (q; !) are determined by the appropriate analytiontinuations (i" + i! ! " + ! + iÆ, i" ! " � iÆ, andÆ ! +0) in (11). Then we an write the dynami (op-tial) ondutivity as

�(!) = limq!0�� e2!2�q2� 1Z�1 d" f[f("+)� f("�)℄ �� ��RA" (q; !)��RA" (0; !)�++ f("�) ��RR" (q; !)��RR" (0; !)�� f("+)�� ��AA" (q; !)��AA" (0; !)�	 ; (13)where the total ontribution of additional terms withzero q an be shown (with the use of general Wardidentities) to be zero.In the DMFT+� approximation, whih neglets in-terferene between the loal Hubbard interation andimpurity sattering, we alulate �i"i"0 (i!;q) enteringthe sum over Matsubara frequenies in (11) by writingthe Bethe�Salpeter equation, shown diagrammatiallyin Fig. 3, where we introdue the irreduible (loal)DMFT vertex Ui"i"0 (i!) and the �retangular� vertexontaining all interations with impurities. Analyti-ally, this equation an be written as�i"i"0 (i!;q) = �0i"(i!;q)Æ""0 ++�0i"(i!;q)X"00 Ui"i"00(i!)�i"00i"0(i!;q); (14)where �0i"(i!;q) is the sought funtion alulated ne-gleting vertex orretions due to the Hubbard intera-tion (but taking all interations due to impurity sat-tering into aount). We note that all the q-dependeneis here determined by �0i"(i!;q) beause the vertexUi"i"0 (i!) is loal and q-independent.As we noted in Ref. [24℄, it is lear from (13) thatalulation of the ondutivity requires only the knowl-edge of the q2-ontribution to �(i!;q). This an beeasily found as follows. First, we note that all the loopsin (14) ontain a q-dependene starting from terms ofthe order of q2. Then we an take an arbitrary loop(ross setion) in the expansion of (14) (see Fig. 3),alulate it up to terms of the order of q2, and makeresummation of all ontributions to the right and tothe left of this ross setion, setting q = 0 in all thesegraphs. This is equivalent to simple q2-di�erentiationof the expanded version of Eq. (14). This proedureimmediately leads to the following relation for the q2-ontribution to (11):�(i!) � limq!0 �(i!;q)��(i!; 0)q2 ==X" 2i"(i!;q = 0)�0i"(i!) (15)with �0i"(i!) � limq!0 �0i"(i!;q)��0i"(i!; 0)q2 ; (16)13 ÆÝÒÔ, âûï. 3 673
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+=Fig. 3. Bethe�Salpeter equation for the polarization loop in the DMFT+� approah. A irle represents the irreduible ver-tex part in the partile�hole hannel of the DMFT approah, whih ontains only loal Hubbard interations. An unshadedretangular vertex represents orretions from impurity sattering only, impliitly inluding the ase of free partile�holepropagationUi"(i!;q = 0) = 1+ +U UU"0+"0� "00� "+"�"00+ + � � � == 1++

Fig. 4. E�etive vertex i"(i!;q = 0) used in alula-tions of ondutivitywhere �0i"(i!;q) ontains vertex orretions only dueto impurity sattering, while the one-partile Green'sfuntions entering it are taken with self-energies dueto both impurity sattering and the loal DMFT-likeinteration, as in Eq. (3). The vertex i"(i!;q = 0)

is determined diagrammatially as shown in Fig. 4, oranalytially asi"(i!;q = 0) == 1 +X"0"00 Ui"i"00(i!)�i"00i"0 (i!;q = 0): (17)Next, using Bethe�Salpeter equation (14), we an ex-pliitly writei"(i!;q = 0) == 1 +X"0 �i"i"0 (i!;q = 0)��0i"(i!;q = 0)�0i"(i!;q = 0) == X"0 �i"i"0 (i!;q = 0)�0i"(i!;q = 0) : (18)At q = 0, we have the following Ward identity, whihan be obtained by diret generalization of the proofgiven in [14, 28℄ (see the details in the Appendix ofRef. [24℄):674



ÆÝÒÔ, òîì 133, âûï. 3, 2008 Mott�Hubbard transition and Anderson loalization : : :(�i!)�i"(i!;q = 0) = (�i!)X"0 �i"i"0 (i!;q = 0) ==Xp G(i"+ i!;p)�Xp G(i";p): (19)The denominator in (18) ontains vertex orretionsonly from impurity sattering, while the Green's fun-tions here are �dressed� by both impurities and the loal(DMFT) Hubbard interation. We an therefore regardthe loop entering the denominator as dressed by impu-rities only, but with the �bare� Green's funtions:~G0(i";p) = 1i"+ �� �(p)��(i") ; (20)where �(i") is the loal ontribution to self-energy fromthe DMFT. For this problem, we have a Ward identitysimilar to (19) (see the Appendix in Ref. [24℄),Xp G(i"+ i!;p)�Xp G(i";p) == �0i"(i!;q = 0) [�(i"+ i!)��(i")� i!℄ �� �0i"(i!;q = 0) [��(i!)� i!℄ ; (21)where we set��(i!) = �(i"+ i!)��(i"): (22)Thus, using (19) and (21) in (18), we obtain the �nalexpression for i"(i!;q = 0) asi"(i!;q = 0) = 1� ��(i!)i! : (23)Then (15) redues to�(i!) =X" �0i"(i!) �1� ��(i!)i! �2 : (24)Analyti ontinuation to real frequenies is obvious; us-ing (15) and (24) in (13), we an write the �nal expres-sion for the real part of dynami (optial) ondutivityas Re�(!) = e2!2� 1Z�1 d" [f("�)� f("+)℄��Re(�0RA" (!) �1� �R("+)��A("�)! �2 �� �0RR" (!) �1� �R("+)��R("�)! �2) : (25)Thus, we have greatly simpli�ed our problem. Toalulate the dynami ondutivity in the DMFT+�

approximation, we only have to solve a single-partileproblem as desribed by the DMFT+� proedureabove, this determining self-onsistent values of lo-al self-energies �("�); while the nontrivial ontribu-tion of impurity sattering are to be inluded via (16),whih is to be alulated in some approximation, tak-ing only interation with impurities (random satter-ing) into aount, but using the �bare� Green's fun-tions of form (20), whih inlude loal self-energies al-ready determined via the general DMFT+� proedure.Atually, (25) also provides an e�etive algorithm toalulate dynami ondutivity in the standard DMFT(negleting impurity sattering), beause (16) is theneasily alulated from a simple loop diagram, deter-mined by two Green's funtions and free salar ver-ties. As usual, there is no need to alulate vertexorretions within the DMFT itself, as was �rst provedonsidering the loop with vetor verties [7, 8℄. Obvi-ously, Eq. (25) e�etively interpolates between the aseof strong orrelations without disorder and the ase ofpure disorder, without Hubbard orrelations, whih isof major interest to us. In what follows, we see thatalulations based on Eq. (25) give a reasonable overallpiture of MIT in the Anderson�Hubbard model.B. Self-onsistent equations for the generalizeddi�usion oe�ient and ondutivityTo alulate the optial ondutivity, we need toknow the basi blok �0i"(i!;q) entering (16) or, morepreisely, the relevant funtions analytially ontinuedto real frequenies: �0RA" (!;q) and �0RR" (!;q), whihin turn de�ne �0RA" (!) and �0RR" (!) entering (25), andare de�ned by obvious relations similar to (16):�0RA" (!) = limq!0 �0RA" (!;q)��0RA" (!; 0)q2 ; (26)�0RR" (!) = limq!0 �0RR" (!;q)��0RR" (!; 0)q2 : (27)By de�nition, we have (with p� = p� q=2)�0RA" (!;q) =Xp GR("+;p+)GA("�;p�)���RA("�;p�; "+;p+);�0RR" (!;q) =Xp GR("+;p+)GR("�;p�)���RR("�;p�; "+;p+); (28)whih are shown diagrammatially in Fig. 5. Here,the Green's funtions GR("+;p+) and GA("�;p�)675 13*
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Fig. 5. Diagram representation of �0RA" (!;q) and�0RR" (!;q)are de�ned by analyti ontinuation (i" ! " � iÆ)of Matsubara Green's funtions (3) determined viaour DMFT+� algorithm (4)�(9), while the verties�RA("�;p�; "+;p+) and �RR("�;p�; "+;p+) ontainall vertex orretions due to the impurity sattering.The most important blok �0RA" (!;q) an be alu-lated using the basi approah of the self-onsistent the-ory of loalization [14�19℄ with appropriate extensions,taking the role of the loal Hubbard interation intoaount using the DMFT+� approah. The only im-portant di�erene from the standard approah is thatthe self-onsistent theory equations are derived usingthe funtionsGR;A(";p) = 1"+���(p)��R;A(")��R;Aimp(") ; (29)whih ontain DMFT ontributions �R;A(") in addi-tion to the impurity sattering ontained in�R;Aimp(") = �2Xp GR;A(";p) == Re�imp(")� i("); (30)here, (") = ��2N(") and N(") is the density of statesrenormalized by the Hubbard interation, given in theDMFT+� approah by the usual expressionN(") = � 1�Xp ImGR(";p): (31)Following all the usual steps of the standard deriva-tion [14�19℄, we obtain the di�usion-like (at small !and q) ontribution to �0RA" (!;q) as�0RA" (q; ~!) = 2�iN(")~! + iD(!)q2 ; (32)

where an important di�erene from the single-partilease is ontained in~! = "+ � "� ��R("+) + �A("�) == ! ��R("+) + �A("�) � ! ���RA(!) (33)whih replaes the usual ! term in the denominatorof the standard expression for �0RA" (!;q). On generalgrounds, it is lear that in the metalli phase as ! ! 0,we have��RA(! = 0) = 2i Im�(") � maxfT 2; "2g, re-�eting Fermi�liquid behavior of DMFT (onserved byelasti impurity sattering). At �nite T , this leads tothe usual phase deoherene due to eletron�eletronsattering [1, 4℄. The generalized di�usion oe�ientD(!) is to be determined by solving the basi self-onsisteny equation introdued below.Using (32) in (26), we easily obtain�0RA" (!) = 2�N(")D(!)!2�1� ��RA(!)! �2 : (34)Then using (34) in (25) with ! ! 0 and T = 0, weobtain just the usual Einstein relation for the stationdutivity: �(0) = e2N(0)D(0): (35)All ontributions form the Hubbard interation are re-dued to a renormalization of the density of states atthe Fermi level and of the di�usion oe�ient D(0).It follows that (25) redues toRe�(!) = e2!2� 1Z�1 d" [f("�)� f("+)℄��Re(2�N(")D(!)!2 �� �0RR" (!) �1� ��RR(!)! �2) ; (36)where the seond term an atually be negleted atsmall !, or just alulated from (27) with �0RR" (!;q)given by the usual �ladder� approximation (A.10).We now formulate our basi self-onsistent equa-tion determining the generalized di�usion oe�ientD(!). We again follow all the usual steps of the self-onsistent theory of loalization (see the details in theAppendix A), taking the form of our single�partileGreen's funtion (29) into aount and not restritingthe analysis to the small-! limit. We an then writethe generalized di�usion oe�ient asD(!) = hvi2d i~! +M(!) ; (37)676



ÆÝÒÔ, òîì 133, âûï. 3, 2008 Mott�Hubbard transition and Anderson loalization : : :where d is the spatial dimensionality and the averageveloity hvi is de�ned in (A.6) (to a good approxima-tion, it is just the Fermi veloity). The relaxation ker-nel M(!) satis�es the self-onsisteny equation, simi-lar to that derived in Refs. [14�19℄ using �maximallyrossed� diagrams for the irreduible impurity satter-ing vertex (built with Green's funtions (29)):M(!) = ���RAimp(!) ++�4Xp (�Gp)2Xq 1~! + iD(!)q2 (38)with �Gp = GR("+;p)�GA("�;p); (39)and ��RAimp(!) = �Rimp("+) � �Aimp("�) is due to im-purity sattering. It is important to stress one againthat there are no ontributions to this equation due tovertex orretions determined by the loal Hubbard in-teration. Using de�nition (37), we an rewrite Eq. (38)as a self-onsistent equation for the generalized di�u-sion oe�ient itself:D(!) = i hvi2d (~! ���RAimp(!) ++ �4Xp (�Gp)2Xq 1~! + iD(!)q2)�1 (40)whih is to be solved in onjuntion with our DMFT+�loop (3)�(9). Due to the limitations of the di�usionapproximation, summation over q in (40) is to be re-strited to q < k0 = minfl�1; pF g; (41)where l = hvi=2(0) is the elasti mean-free path andpF is the Fermi momentum [17, 19℄.Solving (40) for di�erent sets of parameters of ourmodel and using it in (36) with regular ontribu-tions from (A.10), we an alulate the dynami (opti-al) ondutivity in di�erent phases of the Anderson�Hubbard model.4. RESULTS AND DISCUSSIONWe performed extensive numerial alulations fora simpli�ed version of the three-dimensional Anderson�Hubbard model on a ubi lattie with the semi-elliptiDOS of the �bare� band of width W = 2D:N0(") = 2�D2pD2 � "2: (42)
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Fig. 6. Density of states of the half-�lled Anderson�Hubbard model for di�erent degrees of disorder �, andU = 2:5D, typial for a orrelated metalThe DOS is always given in units of the number ofstates per energy interval, per lattie ell volume a3 (ais lattie spaing), and per spin. Some related tehnialdetails are given in Appendix B.We mostly onentrate on the half-�lled ase, al-though some results for �nite dopings are also pre-sented. The Fermi level is always plaed at zero energy.As the �impurity solver� of DMFT, we used the re-liable numerially exat NRG method [25�27℄. Calu-lations were done for temperatures T � 0:001D, whihe�etively makes temperature e�ets in the DOS andondutivity negligible. The disretization parameterof NRG was always � = 2, the number of low-energystates after trunation 1000, the ut-o� near Fermi en-ergy [1�6℄, the broadening parameter b = 0:6.We present only a fration of most typial resultsin what follows.A. Evolution of the density of statesWithin the standard DMFT approah, the densityof states of the half-�lled Hubbard model has a typialthree-peak struture: a narrow quasipartile band (en-tral peak) develops at the Fermi level, with wider upperand lower Hubbard bands forming at " � �U=2. Thequasipartile band narrows further with an inrease inU in the metalli phase, vanishing at the ritial valueU2 � 1:5W , signifying the Mott�Hubbard MIT with agap opening at the Fermi level [7, 8, 27℄.In Fig. 6, we present our DMFT+� results for thedensity of states, obtained for U = 2:5D = 1:25W typi-al for a orrelated metal without disorder, for di�erent677
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Fig. 7. Density of states of the half-�lled Anderson�Hubbard model for di�erent degrees of disorder � andU = 4:5D, typial for a Mott insulatordegrees of disorder �, inluding large enough values,atually transforming the orrelated metal to the or-related Anderson insulator (see subsetion 4B). As maybe expeted, we observe typial widening and dampingof the DOS by disorder.More unexpeted are the results obtained for thevalues of U typial for a Mott insulator without disor-der, as shown in Fig. 7 for U = 4:5D = 2:25W . Wesee the restoration of the entral peak (quasipartileband) in the DOS as disorder inreases, transformingthe Mott insulator to either a orrelated metal or aorrelated Anderson insulator. Similar behavior of theDOS was reently obtained in Ref. [13℄. But in ouralulations, the presene of distint Hubbard bandswas already observed for rather large values of disorder,with no signs of vanishing of the Hubbard struture ofthe DOS, whih was observed in Ref. [13℄. This is prob-ably due to the very simple nature of our approxima-tion for the DOS under disordering, although we muststress that this di�erene may be also due to anothermodel of disorder used in Ref. [13℄ (a �at distributionof �i in (1) instead of our Gaussian ase (2)). Althoughunimportant, in general, to the physis of Andersontransition, the type of disorder may be signi�ant forthe DOS behavior.It is well known that hysteresis behavior of the DOSis obtained for the Mott�Hubbard transition if DMFTalulations are performed with U dereasing from theinsulating phase [8, 27℄. The Mott insulator phase sur-vives for the values of U well inside the orrelated metalphase, obtained with an inrease in U . The metalliphase is restored at U1 � 1:0W . The values of U in
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Fig. 8. Restoration of the quasipartile band by disor-der in the oexistene (hysteresis) region for U = 2:5D,obtained from a Mott insulator with dereasing Uthe interval U1 < U < U2 are usually regarded asbelonging to the oexistene region of the metalli and(Mott) insulating phases, with the metalli phase beingthermodynamially more stable [8, 27, 29℄.In Fig. 8, we present our typial data for theDOS with di�erent disorder for the same value ofU = 2:5D = 1:25W as in Fig. 6, but for the hysteresisregion, obtained by dereasing U from the Mott in-sulator phase. We again observe the restoration of theentral peak (quasipartile band) in the DOS under dis-ordering. We also note the peuliar form of the DOSaround the Fermi level during this transition: a narrowenergy gap is onserved until it is losed by disorder,and a entral peak is formed from two symmetri max-ima in the DOS merging into the quasipartile band.This resembles similar behavior observed in the peri-odi Anderson model [8℄. This e�et was apparentlyunnotied in previous alulations of the DOS in theoexistene region [27℄ (in the absene of disorder); inour ase, it was obtained mainly due to our use of avery �ne mesh of values of the disorder parameter �.The physial reason for the rather unexpetedrestoration of the entral (quasipartile) peak in theDOS is in fat lear. The ontrolling parameter forits appearane or disappearane in DMFT is atuallythe ratio of the Hubbard interation U and the barebandwidth W = 2D. Under disordering, we obtain thenew e�etive bandwidth Weff (in the absene of theHubbard interation), whih inreases with disorder,while the semi-ellipti form of the DOS, with well-de-�ned band edges, is preserved in self-onsistent Bornapproximation (9). This leads to a derease in theratio U=Weff , whih indues the reappearane of the678
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Fig. 9. Real part of dynami ondutivity for thehalf-�lled Anderson�Hubbard model for di�erent de-grees of disorder �, and U = 2:5D, typial for a orre-lated metal. Lines 1 and 2 are for the metalli phase,line 3 orresponds to the mobility edge (Anderson tran-sition), and lines 4 and 5 orrespond to a orrelatedAnderson insulatorquasipartile band in our model. This is illustrated inmore detail in subsetion 4C, where our DOS alula-tions within the DMFT+� approah for a wide rangeof parameters are used to study the phase diagram ofthe Anderson�Hubbard model.B. Dynami ondutivity: Mott�Hubbard andAnderson transitionsThe real part of dynami (optial) ondutivity wasalulated for di�erent ombinations of the parametersof our model diretly from Eqs. (36), (A.9), (A.10),and (40) using the results of DMFT+� loop (3)�(9) asan input. The ondutivity values are given below innatural units of e2=~a (a is the lattie spaing).In the absene of disorder, evidently, we reproduethe results of the standard DMFT approah [7, 8℄ withthe dynami ondutivity haraterized in general bythe usual (metalli) Drude-like peak at zero frequenyand a wide absorption maximum at ! � U , orrespond-ing to transitions to the upper Hubbard band. With aninrease in U , the Drude peak dereases and vanishesat the Mott transition, when only transitions throughthe Mott�Hubbard gap ontribute. Introdution of dis-order leads to qualitative hanges in the frequeny de-pendene of ondutivity. In what follows, we mainlyshow the results obtained for the same values of U and� that were used above to illustrate the DOS behavior.In Fig. 9, we present the real part of dynami

(optial) ondutivity for the half-�lled Anderson�Hubbard model for di�erent degrees of disorder �,and U = 2:5D, typial for a orrelated metal. Tran-sitions to the upper Hubbard band at ! � U are pra-tially unobservable in these data. But it an be learlyseen that the metalli Drude peak at zero frequeny iswidened and suppressed, being gradually transformedinto a peak at �nite frequenies due to e�ets of An-derson loalization. The Anderson transition ours at� � 0:74D = 0:37W (whih orresponds to urve 3in all our graphs, inluding those for DOS). We notethat this value is atually dependent on the value ofuto� (41), whih is de�ned up to a onstant of the or-der of unity [17, 19℄. Naive expetations might lead tothe onlusion that a narrow quasipartile band at theFermi level, whih forms in the general ase of a highlyorrelated metal, may be loalized muh more easilythan the typial ondution band. We see, however,that these expetations are wrong and that this bandis loalized only at strong enough disorder� � D, justas for the whole ondution band of the width � W .This is in aordane with the previous analysis of lo-alization in a two-band model [30℄.More important is the fat that in the DMFT+�approximation, the value of � is independent of Ubeause all interation e�ets enter Eq. (40) only via��RA(!)! 0 as ! ! 0 (at T = 0), and hene the in-teration drops out at ! = 0. This is atually the mainde�ieny of our approximation, ourring beause weneglet interferene e�ets between the interation anddisorder sattering. An important role of these inter-ferene e�ets has been known for a long time [1, 4℄.However, despite the neglet of these e�ets, we are ableto produe physially sound interpolation between twomain limits of interest, the pure Anderson transitiondue to disorder and the Mott�Hubbard transition dueto strong orrelations. We thus onsider it a reason-able �rst step to the future omplete theory of MIT instrongly orrelated disordered systems.In Fig. 10, we present the real part of dynami (op-tial) ondutivity for di�erent degrees of disorder �and U = 4:5D, typial for a Mott�Hubbard insula-tor. In the inset, we show our data for small frequen-ies, whih allow lear distintion of di�erent types ofondutivity behavior, espeially lose to the Ander-son transition or in the Mott insulator phase. In this�gure, we learly see the ontribution of transitions tothe upper Hubbard band at ! � U . More importantly,we observe that an inrease in disorder produes �niteondutivity within the frequeny range of the Mott�Hubbard gap, whih orrelates with the appearane ofthe quasipartile band (entral peak) in the DOS within679
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Fig. 10. Real part of dynami ondutivity of thehalf-�lled Anderson�Hubbard model for di�erent de-grees of disorder � and U = 4:5D, typial for a Mottinsulator. Lines 1 and 2 orrespond to a Mott insula-tor, line 3 orresponds to the mobility edge (Andersontransition), and lines 4 and 5 are for a orrelated An-derson insulator. Inset: the region of low frequeniesmagni�edthis gap, as shown in Fig. 7. In the general ase, thisondutivity is metalli (�nite in the stati limit ! = 0)for � < �; for � > �, at small frequenies, we ob-tain Re�(!) � !2, whih is typial of an Andersoninsulator [14�19℄. We note that due to a �nite inter-nal auray of NRG numeris, small but �nite spuri-ous ontributions to Im�R;A(" = 0) always appear [27℄and formally inrease with U . These ontributions arepratially irrelevant in alulations of ondutivity inthe metalli state. But in an Anderson insulator, thesespurious terms ontribute via ~! in Eq. (40) and lead tounphysial �nite dephasing e�ets at ! = 0 (or T = 0),whih an simulate a small �nite stati ondutivity.To eliminate these spurious e�ets, we had to makeappropriate subtrations in our data for Im�R;A(") at" = 0.Rather unusual is the appearane of a low-frequenypeak in Re�(!) even in the metalli phase. It oursbeause of weak loalization e�ets, as an be learlyseen from Fig. 11, where we ompare the real partof dynami ondutivity for di�erent degrees of disor-der � and U = 1:5D, obtained via our self-onsistentapproah (taking loalization e�ets into aount via�maximally rossed� diagrams) with that obtained us-ing the �ladder� approximation for �0RA" (!;q) (similarto (A.10)), whih neglets all loalization e�ets. Itis learly seen that in this simple approximation, wejust obtain the usual Drude-like peak at ! = 0, while
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Fig. 11. Real part of dynami ondutivity of thehalf-�lled Anderson�Hubbard model for di�erent de-grees of disorder � and U = 1:5D, omparison of theself-onsistent theory (thik lines) with the �ladder� ap-proximation (thin lines)
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Fig. 12. Real part of dynami ondutivity of thehalf-�lled Anderson�Hubbard model for di�erent de-grees of disorder � and U = 2:5D, obtained from aMott insulator with dereasing Uaounting for loalization e�ets produes a peak inRe�(!) at low (�nite) frequenies. The metalli stateis de�ned [2℄ by the �nite value of zero temperatureondutivity at ! = 0.Up to now, we presented only ondutivity data ob-tained with an inrease in U from the metalli to the(Mott) insulating phase. As U dereases from the Mottinsulator phase, a hysteresis of ondutivity is observedin the oexistene region, de�ned (in the absene of dis-680



ÆÝÒÔ, òîì 133, âûï. 3, 2008 Mott�Hubbard transition and Anderson loalization : : :order, � = 0) by U1 < U < U2. Typial data areshown in Fig. 12, where we present the real part of dy-nami ondutivity for di�erent degrees of disorder �and U = 2:5D, obtained from the Mott insulator phasewith dereasing U , whih should be ompared with thedata in Fig. 9. Transition to the metalli state via thelosure of a narrow gap, �inside� a muh wider Mott�Hubbard gap, is learly seen, whih orrelates with theDOS data in Fig. 8.C. Phase diagram of the half-�lledAnderson�Hubbard modelThe phase diagram of the half-�lled Anderson�Hubbard model was studied in Ref. [13℄ using the ap-proah based on diret DMFT alulations for a set ofrandom realizations of site energies �i in (1) with sub-sequent averaging to obtain both the standard averageDOS and the geometrially averaged loal DOS, whihwas used to determine the transition to the Andersoninsulator phase. Here, we present our results for thezero-temperature phase diagram of the half-�lled para-magneti Anderson�Hubbard model, obtained from ex-tensive alulations of both the average DOS and dy-nami (optial) ondutivity in the DMFT+� approxi-mation. We note that ondutivity alulations are themost diret way to distinguish between metalli and in-sulating phases [2℄.Our phase diagram in the disorder�orrelation(�; U) plane is shown in Fig. 13. The Anderson tran-sition line � � 0:37W = 0:74D was determined asthe value of disorder for whih the stati ondutivitybeomes zero at T = 0. The Mott�Hubbard transitionan be determined either via the disappearane of theentral peak (quasipartile band) in the DOS or fromthe ondutivity, e.g., from the losure of the gap in thedynami ondutivity in the insulating phase, or fromvanishing of the stati ondutivity in the metalli re-gion. All these methods were used and the orrespond-ing results are shown for omparison in Fig. 13.We already stressed that the DMFT+� approxima-tion gives the universal (U -independent) value of �.This is due to a neglet of the interferene betweendisorder sattering and Hubbard interation, and leadsto the main (over)simpli�ation of our phase diagram,ompared with that obtained in Ref. [13℄. We notethat diret omparison of our ritial disorder valuewith those in Ref. [13℄ is ompliated by di�erent typesof random site�energy distributions used here (Gaus-sian) and in Ref. [13℄ (retangular). As a rule of thumb(f. the seond referene in [16℄), our Gaussian value of� should be multiplied by p12 to obtain the ritial
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U=2DFig. 13. Zero-temperature phase diagram of the para-magneti Anderson�Hubbard model. Boundaries of theMott insulator phase U1;2(�) are shown as obtainedfrom Eqs. (45); di�erent symbols show values alu-lated from either the DOS or the ondutivity behavior.The dotted line de�nes the boundary of the oexisteneregion obtained with dereasing U from the Mott in-sulator phase. The Anderson transition line is given bythe alulated value of � = 0:37disorder value for the retangular distribution. Thisgives � � 1:28, in a rather good agreement with the�(U = 0) � 1:35W value in Ref. [13℄, justifying ouruto� hoie in (41).The in�uene of disorder sattering on the Mott�Hubbard transition is highly nontrivial and in somerespets is in qualitative agreement with the results inRef. [13℄. The main di�erene is that our data indiatethe survival of Hubbard band strutures in the DOSeven in the limit of rather large disorder, while thesewere laimed to disappear in Ref. [13℄. Also we ob-tain the oexistene region smoothly widening with aninrease in disorder and not disappearing at a �riti-al� point, as in Ref. [13℄. The borders of our oex-istene region, whih in fat de�ne the boundaries ofthe Mott insulator phase obtained with inreasing ordereasing U , are determined by the lines U1(�) andU2(�) shown in Fig. 13, whih are obtained from thesimple equation U1;2(�)Weff = U1;2W (43)with Weff = Wr1 + 16 �2W 2 ; (44)whih is the e�etive bandwidth in the presene of dis-order, alulated for U = 0 in self-onsistent Born ap-681
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Fig. 14. Disorder dependene of stati ondutivity,obtained for several values of U and showing a disor-der-indued Mott-insulator-to-metal transition. Inset:the stati ondutivity dependene on U lose to theMott transition, inluding a typial hysteresis behav-ior obtained with U dereasing from the Mott insulatorphaseproximation (9). Thus, the boundaries of the oexis-tene region are given byU1;2(�) = U1;2r1 + 16 �2W 2 ; (45)whih are expliitly shown in Fig. 13 by dotted andsolid lines, de�ning the boundaries of the Mott insu-lator phase. Numerial results for the disappearaneof the quasipartile band (entral peak) in the DOS, aswell as points following from a qualitative hange in theondutivity behavior, are shown in Fig. 13 by di�er-ent symbols demonstrating very good agreement withthese lines, on�rming the ratio in (43) as the ontrol-ling parameter of the Mott transition in the preseneof disorder.The most striking result of our analysis (also qual-itatively demonstrated in Ref. [13℄) is the possibilityof the metalli state being restored from the Mott�Hubbard insulator with an inrease in disorder. Thisis lear from the phase diagram and is niely demon-strated by our data for (stati) ondutivity shown inFig. 14 for several values of U > U2 and disorder val-ues � < �. In the inset to Fig. 14, we also illustratethe stati ondutivity hysteresis observed in the oex-istene region of the phase diagram, obtained with Udereasing from the Mott insulator phase.
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Fig. 15. Density of states of the Anderson�Hubbardmodel with the eletron onentration n = 0:8 for dif-ferent degrees of disorder � and U = 6:0D, represent-ing the doped Mott insulator
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Fig. 16. Real part of dynami ondutivity of theAnderson�Hubbard model with the eletron onentra-tion n = 0:8 for di�erent degrees of disorder � andU = 6:0D, representing the doped Mott insulator. In-set: high-frequeny behavior with signs of transition tothe upper Hubbard bandD. Doped Mott insulatorAll results presented above were obtained in thehalf-�lled ase. Here, we brie�y onsider deviationsfrom half-�lling. In the metalli phase, doping fromhalf-�lling does not produe any qualitative hanges inthe ondutivity behavior, whih only demonstrates theAnderson transition with an inrease in disorder. Wetherefore onentrate on the ase of a doped Mott insu-lator. Stritly speaking, in the non-half-�lled ase, we682



ÆÝÒÔ, òîì 133, âûï. 3, 2008 Mott�Hubbard transition and Anderson loalization : : :never obtain a Mott�Hubbard insulator in the DMFTmethod at all. In Fig. 15, we show the density of statesof the Anderson�Hubbard model with the eletron on-entration n = 0:8 for di�erent degrees of disorder �and U = 6:0D, representing a typial ase of the dopedMott insulator. The quasipartile band overlaps withthe lower Hubbard band and is smeared by disorder,whih is just the expeted behavior in the metallistate. Nothing spetaular happens to ondutivity,either, as is shown for the same set of parameters inFig. 16. It shows a typial behavior assoiated with thedisorder-indued Anderson MIT. Small signs of transi-tions to the upper Hubbard band an be seen for ! � U(see the inset to Fig. 16). Therefore, a doped Mott in-sulator with disorder is qualitatively quite similar tothe disordered orrelated metal disussed above.5. CONCLUSIONWe used the generalized DMFT+� approah toalulate basi properties of the disordered Hubbardmodel. The main advantage of our method is its abil-ity to provide a relatively simple interpolation shemebetween rather well-understood ases of a strongly or-related system (DMFT and Mott�Hubbard MIT) andof a strongly disordered metal without Hubbard orre-lations, undergoing an Anderson MIT. Apparently, thisinterpolation sheme aptures the main qualitative fea-tures of the Anderson�Hubbard model, suh as the gen-eral behavior of the DOS and dynami (optial) on-dutivity. The overall piture of the zero-temperaturephase diagram is also quite reasonable and is in sat-isfatory agreement with the results of more elaboratenumerial work [13℄. Atually, our DMFT+� approahis muh less time-onsuming than more diret numer-ial approahes, suh as that in Ref. [13℄, and in fatallows alulating all basi (measurable) physial har-ateristis of the Anderson�Hubbard model.The main shortoming of our approah is its ne-glet of interferene e�ets of disorder sattering andHubbard interation, whih leads to the independeneof the Anderson MIT ritial disorder � from the in-teration U . The importane of interferene e�ets isknown for a long time [1, 4℄, but its aount was onlypartially suessful in the ase of weak orrelations. Atthe same time, the neglet of these interferene e�etsis the major approximation of the DMFT+� method,allowing the derivation of a rather simple and physialinterpolation sheme and the analysis of the strong-orrelation limit. Attempts to inlude interferene ef-fets in our sheme are postponed for future work.

Another simpli�ation is, of ourse, our assumptionof a nonmagneti (paramagneti) ground state of theAnderson�Hubbard model. The importane of mag-neti (spin) e�ets in strongly orrelated systems iswell known, as is the problem of ompetition of groundstates with di�erent types of magneti ordering [8℄.The importane of disorder in studying the interplayof these possible ground states is also quite evident.These may also be the subjet of our future work.Despite these shortomings, our results seem verypromising, espeially onerning the in�uene ofstrong disorder on the Mott�Hubbard MIT and theoverall form of the phase diagram at zero temper-ature. The hanges in the phase diagram at �nitetemperatures will be the subjet of further studies.Nontrivial preditions of our approah, suh as thegeneral behavior of dynami (optial) ondutivityand, espeially, the predition of a disorder-induedMott-insulator-to-metal transition an be the subjetof diret experimental veri�ation.We are grateful to Th. Prushke for providing uswith his e�etive NRG ode. This work was supportedin part by the RFBR grants 05-02-16301 (M. S., E. K.,I. N.), 05-02-17244 (I. N.), 06-02-90537 (I. N.), by thejoint UrO-SO projet (E. K., I. N.), and programsof the Presidium of the Russian Aademy of Sienes(RAS) �Quantum marophysis� and of the Division ofPhysial Sienes of the RAS �Strongly orrelated ele-trons in semiondutors, metals, superondutors andmagneti materials�. I. N. aknowledges support fromthe Dynasty Foundation, International Center for Fun-damental Physis in Mosow program for young sien-tists, and from the grant of the President of RussianFederation for young PhD MK-2118.2005.02.APPENDIX AEquation for relaxation kernelWe follow the standard approah of the self-on-sistent theory of loalization [14�19℄, taking the DMFTontributions �R;A(") into aount in single-partileGreen's funtions (29) and not restriting ourselves tothe usual limit of small !.We onsider the Bethe�Salpeter equation relatingthe full two-partile Green's funtion �0RApp0 (!;q) to theirreduible vertex U0RApp0 (!;q), aounting only for im-purity sattering in verties, but built upon Green's683



E. Z. Kuhinskii, I. A. Nekrasov, M. V. Sadovskii ÆÝÒÔ, òîì 133, âûï. 3, 2008funtions given by (29). This equation an be writtenas a generalized kineti equation in the form [14�19℄�~! � �(p)���RAimp(!)��0RApp0 (!;q) = ��Gp �� Æpp0 +Xp1 U0RApp1 (!;q)�0RAp1p0(!;q)! ; (A.1)where �Gp = GR("+;p+) � GA("�;p�). The maindi�erene from a similar equation in Refs. [14�19℄ isthe replaement ! ! ~!.We sum both sides of (A.1) and of the sameequation multiplied by p̂ � q̂ (where p̂ = p=jpj andq̂ = q=jqj are appropriate unit vetors) over p andp0, with the exat Ward identity [14℄��RAimp(!) =Xp0 U0RApp0 (!;q)�Gp0 (A.2)taken into aount and with the approximate represen-tation (f. Ref. [14℄)Xp0 �0RApp0 (!;q) � �GpPp�Gp�0RA" (!;q) ++ �Gp(p̂ � q̂)Pp�Gp(p̂ � q̂)2�0RA1" (!;q); (A.3)where �0RA" (!;q) =Ppp0 �0RApp0 (!;q) is our loop (28)and �0RA1" (!;q) = Ppp0(p̂ � q̂)�0RApp0 (!;q). An im-portant di�erene from a similar representation inRefs. [14�19℄ is that (A.3) is not limited to small !.Now (as q ! 0), we obtain the losed system ofequations for both �0RA" (!;q) and �0RA1" (!;q),~!�0RA" (!;q)� hviq�0RA1" (!;q) = �Xp �Gp;(~! +M(!))�0RA1" (!;q)� hvid q�0RA1" (!;q) = 0; (A.4)where the relaxation kernel is given byM(!) = ���RAimp(!) ++ dPpp0(p̂ � q̂)�GpU0RApp0 (!;q)�Gp0(p̂0 � q̂)Pp�Gp ; (A.5)with the average veloity hvi de�ned ashvi = Pp jvpj�GpPp�Gp ; vp = ��(p)�p : (A.6)From (A.4), we immediately obtain that�0RA" (q; ~!) = �Xp �Gp~! + iD(!)q2 (A.7)

whih for small ! redues to (32) with the generalizeddi�usion oe�ient given by (37).Using an approximation of �maximally rossed� di-agrams for the irreduible vertex U0RApp0 (!;q) and in-troduing the standard self-onsisteny proedure inRefs. [14�19℄ (i.e., replaing the Drude di�usion oef-�ient in the Cooperon ontribution to the irreduiblevertex with the generalized one de�ned by (37)), weobtain our expression (38) for the relaxation kernelin (A.5).Our equation (40) for the generalized di�usion o-e�ient (whih is omplex in general) redues just tothe usual transendental equation. It was solved by it-erations for eah value of ~!, taking into aount thatfor d = 3 and the uto� given by (41), the sum enter-ing (40) redues toXq 1~! + iD(!)q2 = 12�2 k30iD(!)k20 �� 1Z0 y2dyy2 + ~!iD(!)k20 = 12�2 k30iD(!)k20 ��(1�� ~!iD(!)k20�1=2 �� artg � iD(!)k20~! �1=2!) : (A.8)For �nite frequenies !, we use �0RA" (q; ~!) givenby (A.7), and hene expression (25) for the dynamiondutivity is to be rewritten asRe�(!) = e2!2� 1Z�1 d" [f("�)� f("+)℄��Re( iPp�GpD(!)!2 �� �0RR" (!) �1� ��RR(!)! �2) : (A.9)The seond term was here taken in the �ladder� approx-imation:�0RR" (!;q) == Xp GR("+;p+)GR("�;p�)1��2PpGR("+;p+)GR("�;p�) : (A.10)This ontribution (nonsingular at small !) is irrelevantfor the ondutivity as ! ! 0, but leads to �nite or-retions with inreasing !. Equation (A.9) is our �nalresult, whih was analyzed numerially in a wide rangeof frequenies (for small !, it redues to (36)).684



ÆÝÒÔ, òîì 133, âûï. 3, 2008 Mott�Hubbard transition and Anderson loalization : : :APPENDIX B�Bare� eletron dispersion and veloityWe onsider the �bare� energy band with semi-ellipti DOS (42). Assuming an isotropi eletron spe-trum �(p) = �(jpj) � �(p) and equating the number ofstates in a spherial layer of momentum spae to thenumber of states in the energy interval [�; � + d�℄, weobtain a di�erential equation determining the energydispersion �(p): 4�p2dp(2�)3 = N0(�) d�: (B.1)For a quadrati energy dispersion �(p) lose to the lowerband edge, we obtain the initial ondition for Eq. (B.1)as p! 0 and �! �D. Then we obtainp = �6��� � '+ 12 sin(2')��1=3 (B.2)with ' = aros(�=D) and the momentum in units ofthe inverse lattie spaing. Equation (B.2) impliitlyde�nes a �bare� energy dispersion �(p) for the eletronipart of the spetrum � 2 [�D; 0℄.For a half-�lled band, we easily determine the Fermimomentum aspF = p(� = 0) = �3�2�1=3: (B.3)We also need the eletron veloity jvpj = j��(p)=�pj == ��(p)=�p, whih enters expression (A.6) for the av-erage veloity. From (B.1), we obtainjvpj = d�dp = p22�2 1N0(�) ; (B.4)where p is given by Eq. (B.2).To obtain a quadrati dispersion for the hole part ofthe spetrum (� 2 [0; D℄) lose to the upper band edge(�! D), we introdue the hole momentum ~p = 2pF �pand write 4�~p2d~p(2�)3 = �N0(�)d� (B.5)similarly to (B.1). Letting ~p ! 0 at the upper bandedge �! 0, we obtain~p = �6��'� 12 sin(2')��1=3: (B.6)We then obtain the veloity at the hole part of thespetrum asjvpj = d�dp = � d�d~p = ~p22�2 1N0(�) : (B.7)
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