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We present a set of independent formulas to extract the gluon distribution and the singlet structure function
from its derivatives with respect to In Q? in the next-to-leading order of the perturbation theory at low z based
on a hard Pomeron exchange. In this approach, both singlet quarks and gluons have the same high-energy
behavior at small . This approach requires the QCD input parameterizations for independent DGLAP evolu-
tions, which we calculated numerically and compared with the MRST, GRV, and DL models. The Pomeron has
a hard nature. Its evolution gives a good fit to the experimental data. The obtained values are in the range

1074 <2 <1072 at Q% = 20 GeV2.

PACS: 12.38.-t, 12.39.-x, 11.55.Jy

1. INTRODUCTION

The  Dokshitzer—Gribov-Lipatov—Altarelli-Parisi
(DGLAP) [1] evolution equations are fundamental
tools to study the Q2- and x-evolutions of structure
functions, where z is the Bjorken scaling parameter
and @Q? is the squared four-momentum transferred
in a deep inelastic scattering process [2]. The mea-
surements of the F(x, Q?) structure function by deep
inelastic scattering processes in the small-z region have
opened a new era in parton density measurements
inside hadrons. The structure function reflects the
momentum distributions of the partons in the nucleon.
It is also important to know the gluon distribution
inside a hadron at low = because gluons are expected
to be dominant in this region. The steep increase
of Fy(z,Q?%) towards low x observed at the had-
ron—electron ring accelerator (HERA) also indicates a
similar increase in the gluon distribution towards low
z in perturbative quantum chromodynamics. In the
usual procedure, the deep inelastic scattering data are
analyzed by the next-to-leading order QCD fits based
on the numerical solution of the DGLAP evolution
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equations and it is found that the DGLAP analysis
can well describe the data in the perturbative region
Q? > 1 GeV? [3]. As an alternative to the numer-
ical solution, one can study the behavior of quarks
and gluons via analytic solutions of the evolution
equations. Although exact analytic solutions of the
DGLAP equations cannot be obtained in the entire
range of 2 and Q2, such solutions are possible under
certain conditions [4,5] and are then quite successful
as far as the HERA small-z data are concerned.

Small-z behavior of structure functions for fixed (>
reflects the high-energy behavior of the virtual Comp-
ton scattering total cross section with increasing the
total center-of-mass energy squared W?2 because

W2=Q2<1—1>.
T

The appropriate framework for the theoretical descrip-
tion of this behavior is the Regge-pole exchange pic-
ture [6]. It can be asserted with confidence that the
Regge theory is one of the most successful approaches
to the description of high-energy scattering of hadrons.
This high-energy behavior can be described by two
contributions: an effective Pomeron with its intercept
slightly above unity (~1.08) and the leading meson
Regge trajectories with the intercept ar(0) ~ 0.5 [7].
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The Regge pole model gives the following param-
eterization of the deep inelastic scattering structure
function Fy(z,Q?) at small x:

Zﬁz

Here, the singlet part of F5 is controlled at small z by
a Pomeron exchange and the nonsinglet part

1

a; (

(1)

FY\S =F} - Fy
by the A; Reggeon [3].

At small x, the dominant role is played by gluons,
and the basic dynamic quantity is the unintegrated
gluon distribution f(z,Q?), where x denotes the mo-
mentum fraction of a parent hadron carried by a gluon
and @y is its transverse momentum. The unintegrated
distribution f(z, Q%) is related to the more familiar
scale-dependent gluon distribution zg(z, Q%) as [4]

)= [

In the leading In(1/2) approximation, the unintegrated
distribution f(x,Q?) satisfies the Balitsky—Fadin—Ku-
raev-Lipatov (BFKL) equation [§]
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This equation gives a sum over the ladder diagrams
with a gluon exchange accompanied by virtual correc-
tions that are responsible for the gluon reggeization.
In the fixed-coupling case, this equation can be solved
analytically and the leading behavior of its solution at
small z is given by
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where

/\BFKL = 4ln(2)as, )\” = 6328<(3)

~
~

with the Riemann zeta function ((3) 1.202. The
parameter () is of a nonperturbative origin.

The quantity 1 + Agrir is equal to the intercept
of the so-called BFKL Pomeron. Its potentially large
magnitude (~1.5) should be contrasted with the in-
tercept agorr ~ 1.08 of the effective soft Pomeron,
which has been determined from the phenomenolog-
ical analysis of the high-energy behavior of hadronic
and photoproduction total cross sections. When the
model in [7] is used in deep inelastic scattering (specif-
ically, in studying the proton structure functions), a
second, “hard”, Pomeron (in contrast to the first one
called “soft” because of its intercept near 1) must be
added, with a larger intercept ap, &~ 1.4 [9,10].

The hypothesis of the Pomeron with the data of the
total cross section shows that a better description is
achieved in alternative models with the Pomeron hav-
ing the intercept 1, but with a harder j singularity (a
double pole) [11]. This model has two Pomeron com-
ponents, each of them with the intercept ap = 1; one
is a double pole and the other is a simple pole [12].

It is tempting, however, to explore the possibil-
ity of obtaining approximate analytic solutions of the
DGLAP equations themselves in the restricted domain
of low = at least. Approximate solutions of the DGLAP
equations have been reported [13-15] with consider-
able phenomenological success. In such an approxi-
mate scheme, one uses a Taylor expansion valid at low
z and reframes the DGLAP equations as partial differ-
ential equations in the variables # and @2, which can
be solved by standard methods.

In this paper, we suggest approximate analytic inde-
pendent solutions of the next-to-leading order DGLAP
equations for the gluon distribution and the singlet
structure function. Therefore, we concentrate on the
Pomeron in our calculations, although good fits to the
results clearly show that the gluon distribution and the
singlet structure function need a model with a hard
Pomeron. We compare our results with those from the
Gluk-Reya—Vogt (GRV) model [16], Martin—-Roberts—
Stirling-Thone (MRST) model [17] and Donnachie-
Landshoff (DL) fit [10] of parton distributions.

This paper is organized as follows. In Sec. 2, solu-
tions of the DGLAP equations by the Taylor expansion
are presented. Section 3 is devoted to the results and
discussions.
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2. SOLUTION OF THE DGLAP EQUATIONS
BY THE TAYLOR EXPANSION

The HERA data should determine the small-x be-
havior of gluon and singlet quark distributions. We
specifically consider the singlet contribution to the pro-
ton structure function:

FP(@,Q%) = 2(e,Q%) + -5 NS (r, @),

Ny (6)
Y(z, Q%) = xZ(qi(axQZ) +7; (2. Q%)),

where Ny is the number of active flavors. At small
x, the nonsinglet contribution Fj¥S(x,Q?) is negligi-
ble and can be ignored. At small z and large Q?, the
singlet quark distribution ¥ (z, Q?) is essentially deter-
mined by the generic instability of the gluon distribu-
tion xg(x,Q*). To see how this works, we consider
the singlet Altarelli-Parisi equations [1], which describe
perturbative evolution of zg(z, Q%) and (z, Q?).

The DGLAP evolution equations for the singlet
quark structure function and the gluon distribution
have the forms

dG(z,Q%) _ as
dln@Q?> 2«
11—z
xr
X /dz PngO+NLO(1—Z)G<1_Z Q2> +
0
X
B R S | G

S(x,Q3)  a,
dlnQ?>  2rm
1—x
LO+NLO x
x /dz PLOTNEO(1 — z)% <:,Q2> +
0
LO+NLO z
PN -6 (@) ] @

where the splitting functions are the leading-order (LO)
and next-to-leading order (NLO) Altarelli-Parisi split-
ting kernels [1,18]. In the next-to-leading order, the
running coupling constant a, /27 is given by

%_i 1_,6’11nt
2 ot B2t |’

(9)

where

38

1
fo=5(33—2Ny), fi =102— TNy

The variable ¢ is defined as

Q2
t=1In (F)

and A is the QCD cut-off parameter.
To find an analytic solution, we note that the split-
ting kernels have the following forms as z — 0 [19]:

2C
ppoNio() = 24, an

z 27
. 1205 N/ T — 46CaN; T
9z '
Pquo+NLo(Z) — 2CF + Qs o
z 27 (10)
" 9CrC 4 — 4OOFNfTR
2 3
40CrN¢TR
PpLO+NLO( .y — %s f
aa Gl =0 —9
40CAN+Tg
PLO+NLO(,y _ %5 LR
9 (2) 2m 9z
For the SU(N) gauge group, we have
N2-1 1
Ca=N, Cp= N Tp = NyTg,, TR—§7

where Cr and C4 are the color Casimir operators.
We introduce the standard parameterizations of
gluon and singlet distribution functions as
Y(z, Q%) = Agz™% (1 — x)”s x
% (1+ v/ +752) = S(2, Q2)a~,
G(z,Q%) = Az % (1 —1z)" x
X (1+ €9V + yyz) = Gz, Q*)a 0,

(11)

where the usual assumption is that §;—g 4) = 0. How-
ever, the small-x behavior could well be more singu-
lar. We note that the behavior of Eqs. (11) with a Q-
independent value for §;—g ) obeys the DGLAP equa-
tions when x7%(=5.9) > 1 [4]. According to the Regge
theory, the high-energy (low-z) behavior of both glu-
ons and sea quarks is controlled by the same singularity
factor in the complex angular momentum plane [6], and
we therefore expect ds = §, = 0, where 0 is taken as
a constant factor throughout the calculation. For the
structure functions, we take

fla,Q?) = 2° f(z,Q?)

0 with ¢ satisfying 0 < § <

to be finite at z =
< 1/2[20], i.e.,

G(z) = 2°G(x), X(z)=2°%(x).
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Expanding G(2/1— z) and £(z/1— z) about 2 = 0, we

obtain
#(r)
< ) = %(0) +

The assumptions in these equations are the convergence
and the possibility to neglect O(x?) terms.

Inserting Egs. (10) and (11) in Eqs. (7) and (8), we
obtain the DGLAP equations for the gluon and singlet
evolutions at small x:
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where
B=2C4, ~v=12CpN;Tp —46C4N;Tk,
n=2Cp, 6=9CrCys —40CprN;TR,
( =40CFpNyTr, & =40CaNsTg.

Solving these equations and taking all the above
considerations into account, we find

G
dln@Q?
51 5 1~( &
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and
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The function f(5/|6—1]) (f = G,X) is a small constant
at z = 0. At small z, this constant can be neglected in
Eqs. (15) and (16) due to the singular behavior of the
gluon distribution. We therefore have

dG
o’ — T[UrG(pz) + U E(pz)], (17)
and
dy
nQ® TVi¥(px) + VirG(px)], (18)
where
_ 5671 _ 5
BT TR T Th

These equations are a set of formulas to extract the
gluon distribution function from the singlet structure
function and its derivative d%/dIn @ and also the sin-
glet structure function from the gluon distribution and
its derivative dG@/dInQ? at small z in the next-to-
leading order of the perturbation theory.

A set of formulas to extract the gluon distribution
function from the deep inelastic structure function F3
and its derivative dFy/dIn Q? at small x in the leading
and next-to-leading orders of the perturbation theory
was given in [4]. For the specific value § = 0.5 and the
number of flavors Ny = 4, the authors of [4] extracted
the gluon distribution with the help of this equation:

|

) R @40t a0 L 19

dF2($, Q2)
dln Q2

1051 1
T 92e a 1+ 26.93a

zg(z, Q)
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Fig. 1. Our gluon prediction in Eq. (21) using the struc-

ture function F> and dF>/d1n Q” determined in [21] for

a range of x values at Q? = 20 GeV? (solid circles).

The error bars show total errors to the H1 data. We

compare our results with the KP model [4] (4), the

EKL model [24] (V), and the MRST fit [17, 22] (solid
line)

is the sum of squares of quark charges and

QS(Q2)

A7
A different method for determining the gluon distribu-
tion at small values of z was proposed in [24] based on
the solution of the DGLAP evolution equations in the
momentum space up to the next-next-to-leading order.
In this method, the quark and gluon momentum den-
sities are assumed to behave as x~“°, where wyp is a
parameter whose actual value must be extracted from
the data. Here, the gluon momentum density for four
flavors is

a(Q%) =

18/5 [ dF,

" POy (dmgE T 0 (20

.Q%)

xg(x

where the evolution kernels P¥¢ and PFF¥ calculated
in the M S scheme are expanded up to third order in a.

Using Eq. (18), we can arrive at the gluon distri-
bution function from the F5 proton structure function
and its scaling violation at low z as

18 [1 dF;

2 —_ | =
29(#. Q) = 57 |3 dno?

- ViF, (21)

By means of these equations, we have extracted the
gluon distribution from HERA data using the slopes
dFy/dIn Q* determined in [21]. Figure 1 shows the
extracted values of the gluon distribution compared to

Fig.2. Behavior of the 7 function versus § values

the Kotikov—Parente (KP) model [4], the Ellis-Kunszt—
Levin (EKL) model [24], and the MRST fit [17,22].
This result indicates that our calculations, based on the
available structure functions and their derivatives [21],
are of the same form as the one predicted by QCD.

In the Regge theory, the high-energy behavior of the
hadron-hadron and photon—hadron total cross sections
is determined by the Pomeron intercept ap = 146§ and
is given by

030(32)17(’/) ~ v

This behavior is also valid for a virtual photon for
z < 1, leading to the well-known behavior Fy ~ 279
of the structures at fixed Q% and x — 0. The power
0 is found to be either § = 0 or 6 = 0.5. The first
value corresponds to the soft Pomeron and the second
value to the hard (Lipatov) Pomeron intercept. The
form 2% for the gluon parameterization at small
is suggested by Regge behavior, but whereas the con-
ventional Regge exchange is that of the soft Pomeron,
with 6, ~ 0.0, one may also allow a hard Pomeron
with §, ~ 0.5. The form 27% in the sea-quark pa-
rameterization comes from similar considerations be-
cause the process ¢ — ¢g dominates the evolution of
sea quarks at small z. Hence, the fits to early HERA
data have the constraint g = d, = §, and the value of
0 should be close to 0.5 in quite a broad range of small
x [4,9,10,25]. Figure 2 illustrates the behavior of the
7 function in the kinematic region. The derivative of
the 7 function is zero at 6 = 0.5. For the specific value
0 = 0.5, we obtain

dGg

o = 2UG(z) + UrrS(x)],

(22)
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and

dx

pITYeR = 2[ViZ(z) + ViiG(2)].

(23)

We now discuss how the presented results give the
independent evolution equations for the gluon and sin-
glet structure functions at small x. By solving these
equations, we find

2y 1 1 d 1 dG(SU,QQ)
6.0 =7 |3 ame (o) “ngr
1 PG(z,Q%) d U ,
2U;r din?Q?  dInQ? <U_H> Gz, Q) —
Ur dG(2,Q?)
Ui W} -
Vi1 dG@Q) Ur . .,
Vi {ﬁ ImQz T, @@ )} . (24)
and
oy L [T d 1\ dS(z, Q?)
Sz, Q%) = 2U;; {5 dln Q? (E) W
1 dQZ(vaz) d Vi )
2Vi; dln®Q2  dInQ? <W> Yz, Q%) —
Vi d¥(z, Q%)
CVir W} -
U [ 1 dS@e) Vi o,
Ui [Wn Y R T )} . (25)

Inserting the effective power-law behavior correspond-
ing to Eq. (11) in these equations gives

11 &G [t a1y
2Vir 2Urr dIn® Q? 2Vir 2din Q2 \ Up;
_lﬂ_ﬁl}@%+PlL

2Vir Urr Vir 2Urr] din@Q? Vir Urr
1 d U; ~
- — — [ ) = 1| G(*) =0, (26
QV[[ dan2 (U]]) :| (Q ) ’ ( )
and

11 &*3(Q?) [t d (1Y
2U1r 2Vir dIn® Q? 2Ur 2 dIn Q2 \ Vg
_lﬁ_ﬂl}m®+PlL_

2Urr Vir - Upr 2Vir] dln@? Vir Unr
1 d Vi )
- _L)-1|s =0. (27
2U[[ dan2 <V11> :| (Q) ( )

These equations show that the structure functions
f(Q?*) are functions of @Q%. The InQ? dependence of

810

f(@?) is observed to be nonlinear [21]. It can be well
described by a quadratic expression

fQ) =ai +binQ* +c;(n Q%)% i=g.%, (28)
where the function f(Q?) is determined by the evolu-
tion equation resulting from Eqs. (26) and (27) with the
starting parameterizations of partons Q? = Q3 given by
the input distributions [10, 16, 17] of the gluon and the
singlet and its derivatives, respectively. Therefore, the
effective power-law behavior of the gluon distribution
and the singlet structure function corresponds to

G(JU-, QQ) = (ag + bg In Q2 + Cg(ln Q2)2)x70'5, (29)
and
Y(z,Q%) = (ax + bz In Q* + cx(In Q*)*)2~ 5. (30)

3. RESULTS AND DISCUSSION

In this paper, we obtained a new independent evolu-
tion descriptions for the gluon distribution and singlet
structure function based on Regge-like behavior of dis-
tribution functions via Eqgs. (24) and (25). In these
equations, we need the input functions F(z, Q%) and
G(z, Q%) and the derivatives of Fy(x,Q3) and G(z, Q3)
with respect to In Q% at each constant 2 value from the
QCD parton distributions in the literature [10, 16, 17].
We compared our results of the gluon distribution and
singlet structure function in the next-to-leading order
with the MRST model [17] and GRV model [16] pa-
rameterizations and the DL fit [10]. We have taken
the parameterizations fit to the H1 data in [21] with
2 < 0.1 and 2 GeV? < Q% < 150 GeV2. Here, we used
the QCD cut-off parameter A7 = 0.323 GeV [17] for
as(M,2) = 0.119.

In Figs. 3-5, we show the prediction of Eqs. (26)
and (29) for the gluon distribution function. In these
calculations, we need G(z,Q3) and its derivative with
respect to InQ? at Q2 = Q3. In Fig. 3, we compare
our results for the gluon distribution function with the
DL fit [10], Martin—Roberts-Stirling (MRSD"_) fit [23],
and MRST fit [17]. We have taken the DL parametric
form for the starting distribution at Q% = 5 GeV? given
by

rg(x, Q%) = 0.95(Q*) (14 Q%/0.5) 1 <0/2p 0,

where € is equal to 0.437 according to a hard Pomeron
exchange. As can be seen, the values of the gluon distri-
bution increase as x decreases but its rate of increment
is much higher than the MRSD” and MRST fits. But
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Fig.3. The gluon distribution given by Eqs. (26) and

(29) versus = at fixed Q% = 20 GeV? (solid circles),

compared with the DL fit [10] (solid line), the MRSD’.

fit [23] (dotted line), and the MRST fit [17] (dashed

line). The starting parameterization of the gluon den-
sity at Q3 = 5 GeV? is given by the DL model

we do observe that there is some violation at small z.
This is because the hard Pomeron exchange defined by
the DL model is expected to hold in the small-2 limit.
One can see that the scaling with the DL fit is nearly
preserved in this case.

To better illustrate our calculations at small x, we
plot G(z) versus the x variable (see Fig. 4). Tt can be
clearly seen that our results increase as x decreases, but
at a somewhat smaller rate. In this figure, we take the
next-to-leading-order GRV fit [16] input gluon density
at Q2 = 1 GeV? and compare our results with the GRV
fit, MRSD’_ fit [23], and MRST fit [17]. For a constant
Q?, there is a cross-over point for both curves, whose
predictions are numerically equal. The cross-over point
shifts to MRSD"_ [23] as # decreases. However, we see
that this behavior is because our calculations are de-
pendent on the input conditions.

In Fig. 5, we present the gluon distribution
G(x) for the Hl HERA proton parameterization at
Q? = 20 GeV? [21] for different small-z values. The
initial condition for the evolution of the gluon density
is assumed to be of the form

zg(z, Q3) = 1127020 (1—2)'75 (1-4.83/+68.2x)

for Q2 > 3.5 GeV? at the initial scale Q3 = 4 GeV?2.
The gluon distribution G(z) increases as = decreases.
In the same graph, we present the G(z) values for the
H1 data [21], MRSD’ [23], and MRST [17] global fit
results; but its rate of increment is higher than that for

811
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Fig.4. The gluon distribution given by Eqgs. (26)

and (29) versus z at fixed Q* = 20 GeV? (solid cir-

cles), compared with the next-to-leading-order GRV

model [16] (solid line), the MRSD’ fit [23] (dashed

line), and the MRST fit [17] (dotted line). The starting

parameterization of the gluon density at Q3 = 1 GeV?
is given by next-to-leading-order GRV model

20
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0 | | |
1074 1073

Fig.5. The gluon distribution given by Eqs. (26) and

(29) versus = at fixed Q% = 20 GeV? (solid circles),

compared with the H1 data [21] (A), the MRSD"

fit [23] (dashed line), and the MRST fit [17] (solid line).

The starting parameterization of the gluon density at
Q3 = 4 GeV? is given by the H1 data

the MRST and smaller than for the MRSD’ data. Our
results show that the calculations are sensitive to the
initial conditions at @® = Q2. For any initial condition,
the figures show good agreement between our results
and those parameterizations at small 2. In this figure,
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Fig.6. The calculated values of the singlet structure
function F»(z,Q?) plotted as functions of z in accor-
dance with Eqgs. (27) and (30) with the starting param-
eterization of the structure function at Q} = 5 GeV?
given by the DL model (solid circles), compared with
the next-to-leading order QCD fit to the H1 data with
total errors [21] (A) and with the DL fit [10] (solid
line) and the singlet structure function MRST fit (dot-
ted line)

we show the best fit to the MRST gluon distribution
parameterization corresponding to the initial-condition
H1 data.

In Fig. 6, we show the prediction of Eqgs. (27) and
(30) for the singlet structure function. We obtain our
results with the input parameterization at the initial
scale Q2 = 5 GeV? and compare with the DL fit [10],
MRST fit [17], and H1 data [21] with the total errors at
Q? = 20 GeV2. In this figure, we observe a continuous
increase towards small . The In Q? dependence of F»
is observed to be nonlinear. It can be well described by
a quadratic expression,

Y(Q%) = as + bsIn Q% + cs(In Q?)?, (31)

which nearly coincides with the QCD fits in the kine-
matic range of this calculation. Then the effective
power-law behavior of the singlet structure function
corresponds to

Fy(z,Q%) = Fy(Q*)a "% (32)

This behavior is associated with the exchange of an
object known as the hard Pomeron. In [9,10], this be-
havior was obtained by the simplest fit to the small-z
data corresponding to

FZ(vaQ) = Z fi(Q2)x7€i7 (33)

i=0,1

where the i = 0 term is a hard Pomeron exchange
and ¢ = 1 term is a soft Pomeron exchange. These
parameters were obtained from the best fit to all the
small-z data for Fy(x, Q%) together with the data for
o7P?. Hence, our structure function is dominated at
small z by the hard Pomeron exchange. This powerful
approach to the small-z data for Fy(z,Q?) is to ex-
tend the Regge phenomenology that is so successful for
hadronic processes [7]. The Regge theory relates high-
energy behavior to singularities in the complex angu-
lar momentum plane [6]. Therefore, for deep inelastic
scattering, the soft Pomeron contributions is not suf-
ficient to describe the rapid increase with 1/z seen in
the data at small z and large Q2. This singularity is a
hard Pomeron [9,10].

In conclusion, a set of new formulas connecting the
gluon density with its derivative and the singlet struc-
ture function with its derivative with respect to In Q?
at small 2 have been presented. We found that the
Regge theory can be used to constrain the initial par-
ton densities at Q% = Q% and to obtain the distribu-
tions at higher virtualities with the DGLAP evolution
equations. Careful investigation of our results shows a
good agreement with the previously published parton
distributions based on QCD. The gluon distribution
and singlet structure functions increase as usual, as @
decreases. The form of the obtained distribution func-
tions for the gluon distribution and the singlet struc-
ture functions are similar to the one predicted from the
parton parameterization. The formulas used to gener-
ate the parton distributions are in agreement with the
increase observed by the H1 experiments. We observed
a continuous increase towards small #. The In Q? de-
pendence of f(z,Q?) is observed to be quadratically
nonlinear (see Eq. (28)) which nearly coincides with
the QCD fits in the kinematic range of these calcula-
tions. Thus, the effective power-law behavior of the
parton densities corresponds to

f(2,Q% = f(@*)2~°7, (34)

which is associated with an exchange of the object
known as the hard Pomeron at small 2. The obtained
results give strong indications that the proposed for-
mulas, being very simple, provide relatively accurate
values for the gluon distribution and structure func-
tion.
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