
ÆÝÒÔ, 2008, òîì 133, âûï. 4, ñòð. 805�813 

 2008
SOLUTIONS OF INDEPENDENT DGLAP EVOLUTION EQUATIONSFOR THE GLUON DISTRIBUTION AND SINGLET STRUCTUREFUNCTIONS IN THE NEXT-TO-LEADING ORDER AT LOW xG. R. Boroun *Physi
s Department, Razi University67149, Kermanshah, IranRe
eived De
ember 18, 2007We present a set of independent formulas to extra
t the gluon distribution and the singlet stru
ture fun
tionfrom its derivatives with respe
t to lnQ2 in the next-to-leading order of the perturbation theory at low x basedon a hard Pomeron ex
hange. In this approa
h, both singlet quarks and gluons have the same high-energybehavior at small x. This approa
h requires the QCD input parameterizations for independent DGLAP evolu-tions, whi
h we 
al
ulated numeri
ally and 
ompared with the MRST, GRV, and DL models. The Pomeron hasa hard nature. Its evolution gives a good �t to the experimental data. The obtained values are in the range10�4 � x � 10�2 at Q2 = 20 GeV2.PACS: 12.38.-t, 12.39.-x, 11.55.Jy1. INTRODUCTIONThe Dokshitzer�Gribov�Lipatov�Altarelli�Parisi(DGLAP) [1℄ evolution equations are fundamentaltools to study the Q2- and x-evolutions of stru
turefun
tions, where x is the Bjorken s
aling parameterand Q2 is the squared four-momentum transferredin a deep inelasti
 s
attering pro
ess [2℄. The mea-surements of the F2(x;Q2) stru
ture fun
tion by deepinelasti
 s
attering pro
esses in the small-x region haveopened a new era in parton density measurementsinside hadrons. The stru
ture fun
tion re�e
ts themomentum distributions of the partons in the nu
leon.It is also important to know the gluon distributioninside a hadron at low x be
ause gluons are expe
tedto be dominant in this region. The steep in
reaseof F2(x;Q2) towards low x observed at the had-ron�ele
tron ring a

elerator (HERA) also indi
ates asimilar in
rease in the gluon distribution towards lowx in perturbative quantum 
hromodynami
s. In theusual pro
edure, the deep inelasti
 s
attering data areanalyzed by the next-to-leading order QCD �ts basedon the numeri
al solution of the DGLAP evolution*E-mail: boroun�razi.a
.ir

equations and it is found that the DGLAP analysis
an well des
ribe the data in the perturbative regionQ2 � 1 GeV2 [3℄. As an alternative to the numer-i
al solution, one 
an study the behavior of quarksand gluons via analyti
 solutions of the evolutionequations. Although exa
t analyti
 solutions of theDGLAP equations 
annot be obtained in the entirerange of x and Q2, su
h solutions are possible under
ertain 
onditions [4; 5℄ and are then quite su

essfulas far as the HERA small-x data are 
on
erned.Small-x behavior of stru
ture fun
tions for �xed Q2re�e
ts the high-energy behavior of the virtual Comp-ton s
attering total 
ross se
tion with in
reasing thetotal 
enter-of-mass energy squared W 2 be
auseW 2 = Q2� 1x � 1� :The appropriate framework for the theoreti
al des
rip-tion of this behavior is the Regge-pole ex
hange pi
-ture [6℄. It 
an be asserted with 
on�den
e that theRegge theory is one of the most su

essful approa
hesto the des
ription of high-energy s
attering of hadrons.This high-energy behavior 
an be des
ribed by two
ontributions: an e�e
tive Pomeron with its inter
eptslightly above unity (�1:08) and the leading mesonRegge traje
tories with the inter
ept �R(0) � 0:5 [7℄.805



G. R. Boroun ÆÝÒÔ, òîì 133, âûï. 4, 2008The Regge pole model gives the following param-eterization of the deep inelasti
 s
attering stru
turefun
tion F2(x;Q2) at small x:F2(x;Q2) =Xi e�i(Q2)x1��i(0): (1)Here, the singlet part of F2 is 
ontrolled at small x bya Pomeron ex
hange and the nonsinglet partFNS2 = F p2 � Fn2by the A2 Reggeon [3℄.At small x, the dominant role is played by gluons,and the basi
 dynami
 quantity is the unintegratedgluon distribution f(x;Q2t ), where x denotes the mo-mentum fra
tion of a parent hadron 
arried by a gluonand Qt is its transverse momentum. The unintegrateddistribution f(x;Q2t ) is related to the more familiars
ale-dependent gluon distribution xg(x;Q2) as [4℄xg(x;Q2) = Q2Z dQ2tQ2t f(x;Q2t ): (2)In the leading ln(1=x) approximation, the unintegrateddistribution f(x;Q2t ) satis�es the Balitsky�Fadin�Ku-raev�Lipatov (BFKL) equation [8℄f(x;Q2t ) = f0(x;Q2t ) + �s �� 1Zx dx0x0 Z d2q�q2 � Q2t(q +Qt)2 �� f(x0; (q+Qt)2)� f(x0; Q2t )�(Q2t � q2)� ; (3)where �s = 3�s� : (4)This equation gives a sum over the ladder diagramswith a gluon ex
hange a

ompanied by virtual 
orre
-tions that are responsible for the gluon reggeization.In the �xed-
oupling 
ase, this equation 
an be solvedanalyti
ally and the leading behavior of its solution atsmall x is given byf(x;Q2t ) � (Q2t )1=2 x��BFKLsln� 1x� �� exp0�� ln2 �Q2t=Q2�2�00 ln(1=x) 1A ; (5)

where �BFKL = 4 ln(2)�s; �00 = �s28�(3)with the Riemann zeta fun
tion �(3) � 1:202. Theparameter Q is of a nonperturbative origin.The quantity 1 + �BFKL is equal to the inter
eptof the so-
alled BFKL Pomeron. Its potentially largemagnitude (�1.5) should be 
ontrasted with the in-ter
ept �soft � 1:08 of the e�e
tive soft Pomeron,whi
h has been determined from the phenomenolog-i
al analysis of the high-energy behavior of hadroni
and photoprodu
tion total 
ross se
tions. When themodel in [7℄ is used in deep inelasti
 s
attering (spe
if-i
ally, in studying the proton stru
ture fun
tions), ase
ond, �hard�, Pomeron (in 
ontrast to the �rst one
alled �soft� be
ause of its inter
ept near 1) must beadded, with a larger inter
ept �hp � 1:4 [9; 10℄.The hypothesis of the Pomeron with the data of thetotal 
ross se
tion shows that a better des
ription isa
hieved in alternative models with the Pomeron hav-ing the inter
ept 1, but with a harder j singularity (adouble pole) [11℄. This model has two Pomeron 
om-ponents, ea
h of them with the inter
ept �P = 1; oneis a double pole and the other is a simple pole [12℄.It is tempting, however, to explore the possibil-ity of obtaining approximate analyti
 solutions of theDGLAP equations themselves in the restri
ted domainof low x at least. Approximate solutions of the DGLAPequations have been reported [13�15℄ with 
onsider-able phenomenologi
al su

ess. In su
h an approxi-mate s
heme, one uses a Taylor expansion valid at lowx and reframes the DGLAP equations as partial di�er-ential equations in the variables x and Q2, whi
h 
anbe solved by standard methods.In this paper, we suggest approximate analyti
 inde-pendent solutions of the next-to-leading order DGLAPequations for the gluon distribution and the singletstru
ture fun
tion. Therefore, we 
on
entrate on thePomeron in our 
al
ulations, although good �ts to theresults 
learly show that the gluon distribution and thesinglet stru
ture fun
tion need a model with a hardPomeron. We 
ompare our results with those from theGluk�Reya�Vogt (GRV) model [16℄, Martin�Roberts�Stirling�Thone (MRST) model [17℄ and Donna
hie�Landsho� (DL) �t [10℄ of parton distributions.This paper is organized as follows. In Se
. 2, solu-tions of the DGLAP equations by the Taylor expansionare presented. Se
tion 3 is devoted to the results anddis
ussions.806



ÆÝÒÔ, òîì 133, âûï. 4, 2008 Solutions of independent DGLAP evolution equations : : :2. SOLUTION OF THE DGLAP EQUATIONSBY THE TAYLOR EXPANSIONThe HERA data should determine the small-x be-havior of gluon and singlet quark distributions. Wespe
i�
ally 
onsider the singlet 
ontribution to the pro-ton stru
ture fun
tion:F ep2 (x;Q2) = 518�(x;Q2) + 318FNS2 (x;Q2);�(x;Q2) � x NfXi=1(qi(x;Q2) + qi(x;Q2)); (6)where Nf is the number of a
tive �avors. At smallx, the nonsinglet 
ontribution FNS2 (x;Q2) is negligi-ble and 
an be ignored. At small x and large Q2, thesinglet quark distribution �(x;Q2) is essentially deter-mined by the generi
 instability of the gluon distribu-tion xg(x;Q2). To see how this works, we 
onsiderthe singlet Altarelli�Parisi equations [1℄, whi
h des
ribeperturbative evolution of xg(x;Q2) and �(x;Q2).The DGLAP evolution equations for the singletquark stru
ture fun
tion and the gluon distributionhave the formsdG(x;Q2)d lnQ2 = �s2� �� 1�xZ0 dz �PLO+NLOgg (1� z)G� x1� z ;Q2� ++ PLO+NLOgq (1� z)�� x1� z ;Q2�� ; (7)d�(x;Q2)d lnQ2 = �s2� �� 1�xZ0 dz �PLO+NLOqq (1� z)�� x1� z ;Q2� ++ 2nfPLO+NLOqg (1� z)G� x1� z ;Q2�� ; (8)where the splitting fun
tions are the leading-order (LO)and next-to-leading order (NLO) Altarelli�Parisi split-ting kernels [1; 18℄. In the next-to-leading order, therunning 
oupling 
onstant �s=2� is given by�s2� = 2�0t �1� �1 ln t�20t � ; (9)where �0 = 13(33� 2Nf ); �1 = 102� 383 Nf :

The variable t is de�ned ast = ln�Q2�2�and � is the QCD 
ut-o� parameter.To �nd an analyti
 solution, we note that the split-ting kernels have the following forms as z ! 0 [19℄:PLO+NLOgg (z) = 2CAz + �s2� �� 12CFNfTR � 46CANfTR9z ;PLO+NLOgq (z) = 2CFz + �s2� �� 9CFCA � 40CFNfTRz ;PLO+NLOqq (z) = �s2� 40CFNfTR9z ;PLO+NLOqg (z) = �s2� 40CANfTR9z :
(10)

For the SU(N) gauge group, we haveCA = N; CF = N2�12N ; TF = NfTR; ; TR = 12 ;where CF and CA are the 
olor Casimir operators.We introdu
e the standard parameterizations ofgluon and singlet distribution fun
tions as�(x;Q2) = ASx�ÆS (1� x)�S �� �1 + �Spx+ 
Sx� � e�(x;Q2)x�ÆS ;G(x;Q2) = Agx�Æg (1� x)�g �� �1 + �gpx+ 
gx� � eG(x;Q2)x�Æg ; (11)where the usual assumption is that Æi(=S;g) = 0. How-ever, the small-x behavior 
ould well be more singu-lar. We note that the behavior of Eqs. (11) with a Q2-independent value for Æi(=S;g) obeys the DGLAP equa-tions when x�Æi(=S;g) � 1 [4℄. A

ording to the Reggetheory, the high-energy (low-x) behavior of both glu-ons and sea quarks is 
ontrolled by the same singularityfa
tor in the 
omplex angular momentum plane [6℄, andwe therefore expe
t ÆS = Æg = Æ, where Æ is taken asa 
onstant fa
tor throughout the 
al
ulation. For thestru
ture fun
tions, we takeef(x;Q2) = xÆf(x;Q2)to be �nite at x = 0 with Æ satisfying 0 � Æ �� 1=2 [20℄, i.e.,eG(x) = xÆG(x); e�(x) = xÆ�(x):807



G. R. Boroun ÆÝÒÔ, òîì 133, âûï. 4, 2008Expanding eG(x=1� z) and e�(x=1� z) about x = 0, weobtain eG� x1� z� = eG(0) + x1� z eG0(0);e�� x1� z� = e�(0) + x1� z e�0(0): (12)The assumptions in these equations are the 
onvergen
eand the possibility to negle
t O(x2) terms.Inserting Eqs. (10) and (11) in Eqs. (7) and (8), weobtain the DGLAP equations for the gluon and singletevolutions at small x:dGd lnQ2 = �s2� 1�xZ0 dz� �1� z + �s2� 
9(1� z)���� x1� z��Æ � � eG(0) + x1� z eG0(0)�+ �s2� �� 1�xZ0 dz� �1� z + �s2� �9(1� z)�� x1� z��Æ �� �e�(0) + x1� z e�0(0)� (13)and d�d lnQ2 = �s2� 1�xZ0 dz��s2� �9(1� z)���� x1� z��Æ � �e�(0) + x1� z e�0(0)�+ �s2� �� 1�xZ0 dz(2nf )��s2� �9(1� z)�� x1� z��Æ �� � eG(0) + x1� z eG0(0)� ; (14)where� = 2CA; 
 = 12CFNfTR � 46CANfTR;� = 2CF ; � = 9CFCA � 40CFNfTR;� = 40CFNfTR; � = 40CANfTR:Solving these equations and taking all the above
onsiderations into a

ount, we �nddGd lnQ2 == UI " ÆÆ�1jÆ � 1jÆG�x ÆjÆ � 1j�� 1Æ eG� ÆjÆ � 1j�#++UII " ÆÆ�1jÆ�1jÆ��x ÆjÆ�1j��1Æ e�� ÆjÆ�1j�# ; (15)

and d�d lnQ2 == VI " ÆÆ�1jÆ � 1jÆ��x ÆjÆ � 1j�� 1Æ e�� ÆjÆ � 1j�#++VII " ÆÆ�1jÆ�1jÆG�x ÆjÆ�1j��1Æ eG� ÆjÆ�1j�# ; (16)whereUI = �s2�� + ��s2��2 
9 ; UII = �s2�� + ��s2��2 �9 ;VI = ��s2��2 �9 ; VII = ��s2��2 (2nf ) �9 :The fun
tion ef(Æ=jÆ�1j) (f = G;�) is a small 
onstantat x = 0. At small x, this 
onstant 
an be negle
ted inEqs. (15) and (16) due to the singular behavior of thegluon distribution. We therefore havedGd lnQ2 = � [UIG(�x) + UII�(�x)℄; (17)and d�d lnQ2 = � [VI�(�x) + VIIG(�x)℄; (18)where � = ÆÆ�1jÆ � 1jÆ ; � = ÆjÆ � 1j :These equations are a set of formulas to extra
t thegluon distribution fun
tion from the singlet stru
turefun
tion and its derivative d�=d lnQ2 and also the sin-glet stru
ture fun
tion from the gluon distribution andits derivative dG=d lnQ2 at small x in the next-to-leading order of the perturbation theory.A set of formulas to extra
t the gluon distributionfun
tion from the deep inelasti
 stru
ture fun
tion F2and its derivative dF2=d lnQ2 at small x in the leadingand next-to-leading orders of the perturbation theorywas given in [4℄. For the spe
i�
 value Æ = 0:5 and thenumber of �avors Nf = 4, the authors of [4℄ extra
tedthe gluon distribution with the help of this equation:xg(x;Q2) = 10592e 1� 11 + 26:93� �dF2(x;Q2)d lnQ2 ++ 163 ��10760 �2 ln 2�F2(x;Q2)+O(�2; x1�Æ)� ; (19)where e = fXi e2i808
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Fig. 1. Our gluon predi
tion in Eq. (21) using the stru
-ture fun
tion F2 and dF2=d lnQ2 determined in [21℄ fora range of x values at Q2 = 20 GeV2 (solid 
ir
les).The error bars show total errors to the H1 data. We
ompare our results with the KP model [4℄ (N), theEKL model [24℄ (H), and the MRST �t [17; 22℄ (solidline)is the sum of squares of quark 
harges and�(Q2) = �s(Q2)4� :A di�erent method for determining the gluon distribu-tion at small values of x was proposed in [24℄ based onthe solution of the DGLAP evolution equations in themomentum spa
e up to the next-next-to-leading order.In this method, the quark and gluon momentum den-sities are assumed to behave as x�!0 , where !0 is aparameter whose a
tual value must be extra
ted fromthe data. Here, the gluon momentum density for four�avors isxg(x;Q2) = 18=5PFG(!0) � dF2d lnQ2 � PFF (!0)F2� ; (20)where the evolution kernels PFG and PFF 
al
ulatedin theMS s
heme are expanded up to third order in �s.Using Eq. (18), we 
an arrive at the gluon distri-bution fun
tion from the F2 proton stru
ture fun
tionand its s
aling violation at low x asxg(x;Q2) = 185VII �12 dF2d lnQ2 � VIF2� : (21)By means of these equations, we have extra
ted thegluon distribution from HERA data using the slopesdF2=d lnQ2 determined in [21℄. Figure 1 shows theextra
ted values of the gluon distribution 
ompared to
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Fig. 2. Behavior of the � fun
tion versus Æ valuesthe Kotikov�Parente (KP) model [4℄, the Ellis�Kunszt�Levin (EKL) model [24℄, and the MRST �t [17; 22℄.This result indi
ates that our 
al
ulations, based on theavailable stru
ture fun
tions and their derivatives [21℄,are of the same form as the one predi
ted by QCD.In the Regge theory, the high-energy behavior of thehadron�hadron and photon�hadron total 
ross se
tionsis determined by the Pomeron inter
ept �P = 1+Æ andis given by �tot
(h)p(�) � �Æ :This behavior is also valid for a virtual photon forx � 1, leading to the well-known behavior F2 � x�Æof the stru
tures at �xed Q2 and x ! 0. The powerÆ is found to be either Æ = 0 or Æ = 0:5. The �rstvalue 
orresponds to the soft Pomeron and the se
ondvalue to the hard (Lipatov) Pomeron inter
ept. Theform x�Æg for the gluon parameterization at small xis suggested by Regge behavior, but whereas the 
on-ventional Regge ex
hange is that of the soft Pomeron,with Æg � 0:0, one may also allow a hard Pomeronwith Æg � 0:5. The form x�ÆS in the sea-quark pa-rameterization 
omes from similar 
onsiderations be-
ause the pro
ess g ! qq dominates the evolution ofsea quarks at small x. Hen
e, the �ts to early HERAdata have the 
onstraint ÆS = Æg = Æ, and the value ofÆ should be 
lose to 0:5 in quite a broad range of smallx [4; 9; 10; 25℄. Figure 2 illustrates the behavior of the� fun
tion in the kinemati
 region. The derivative ofthe � fun
tion is zero at Æ = 0:5. For the spe
i�
 valueÆ = 0:5, we obtaindGd lnQ2 = 2[UIG(x) + UII�(x)℄; (22)809



G. R. Boroun ÆÝÒÔ, òîì 133, âûï. 4, 2008and d�d lnQ2 = 2[VI�(x) + VIIG(x)℄: (23)We now dis
uss how the presented results give theindependent evolution equations for the gluon and sin-glet stru
ture fun
tions at small x. By solving theseequations, we �ndG(x;Q2) = 12VII �12 dd lnQ2 � 1UII � dG(x;Q2)d lnQ2 ++ 12UII d2G(x;Q2)d ln2Q2 � dd lnQ2 � UIUII �G(x;Q2) �� UIUII dG(x;Q2)d lnQ2 ��� VIVII � 12UII dG(x;Q2)d lnQ2 � UIUIIG(x;Q2)� ; (24)and�(x;Q2) = 12UII �12 dd lnQ2 � 1VII � d�(x;Q2)d lnQ2 ++ 12VII d2�(x;Q2)d ln2Q2 � dd lnQ2 � VIVII ��(x;Q2) �� VIVII d�(x;Q2)d lnQ2 ��� UIUII � 12VII d�(x;Q2)d lnQ2 � VIVII �(x;Q2)� : (25)Inserting the e�e
tive power-law behavior 
orrespond-ing to Eq. (11) in these equations gives12VII 12UII d2 eG(Q2)d ln2Q2 + � 12VII 12 dd lnQ2 � 1UII � �� 12VII UIUII � VIVII 12UII � d eG(Q2)d lnQ2 + � VIVII UIUII �� 12VII dd lnQ2 � UIUII �� 1� eG(Q2) = 0; (26)and 12UII 12VII d2e�(Q2)d ln2Q2 + � 12UII 12 dd lnQ2 � 1VII � �� 12UII VIVII � UIUII 12VII � de�(Q2)d lnQ2 + � VIVII UIUII �� 12UII dd lnQ2 � VIVII �� 1��(Q2) = 0: (27)These equations show that the stru
ture fun
tionsef(Q2) are fun
tions of Q2. The lnQ2 dependen
e of

ef(Q2) is observed to be nonlinear [21℄. It 
an be welldes
ribed by a quadrati
 expressionefi(Q2) = ai + bi lnQ2 + 
i(lnQ2)2; i = g;�; (28)where the fun
tion ef(Q2) is determined by the evolu-tion equation resulting from Eqs. (26) and (27) with thestarting parameterizations of partonsQ2 = Q20 given bythe input distributions [10; 16; 17℄ of the gluon and thesinglet and its derivatives, respe
tively. Therefore, thee�e
tive power-law behavior of the gluon distributionand the singlet stru
ture fun
tion 
orresponds toG(x;Q2) = (ag + bg lnQ2 + 
g(lnQ2)2)x�0:5; (29)and�(x;Q2) = (a� + b� lnQ2 + 
�(lnQ2)2)x�0:5: (30)3. RESULTS AND DISCUSSIONIn this paper, we obtained a new independent evolu-tion des
riptions for the gluon distribution and singletstru
ture fun
tion based on Regge-like behavior of dis-tribution fun
tions via Eqs. (24) and (25). In theseequations, we need the input fun
tions F2(x;Q20) andG(x;Q20) and the derivatives of F2(x;Q20) and G(x;Q20)with respe
t to lnQ2 at ea
h 
onstant x value from theQCD parton distributions in the literature [10; 16; 17℄.We 
ompared our results of the gluon distribution andsinglet stru
ture fun
tion in the next-to-leading orderwith the MRST model [17℄ and GRV model [16℄ pa-rameterizations and the DL �t [10℄. We have takenthe parameterizations �t to the H1 data in [21℄ withx < 0:1 and 2 GeV2 � Q2 � 150 GeV2. Here, we usedthe QCD 
ut-o� parameter �4MS = 0:323 GeV [17℄ for�s(Mz2) = 0:119.In Figs. 3�5, we show the predi
tion of Eqs. (26)and (29) for the gluon distribution fun
tion. In these
al
ulations, we need G(x;Q20) and its derivative withrespe
t to lnQ2 at Q2 = Q20. In Fig. 3, we 
ompareour results for the gluon distribution fun
tion with theDL �t [10℄, Martin�Roberts�Stirling (MRSD0�) �t [23℄,and MRST �t [17℄. We have taken the DL parametri
form for the starting distribution at Q20 = 5 GeV2 givenbyxg(x;Q2) = 0:95(Q2)1+�0(1 +Q2=0:5)�1��0=2x��0 ;where �0 is equal to 0:437 a

ording to a hard Pomeronex
hange. As 
an be seen, the values of the gluon distri-bution in
rease as x de
reases but its rate of in
rementis mu
h higher than the MRSD0� and MRST �ts. But810
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Fig. 3. The gluon distribution given by Eqs. (26) and(29) versus x at �xed Q2 = 20 GeV2 (solid 
ir
les),
ompared with the DL �t [10℄ (solid line), the MRSD0��t [23℄ (dotted line), and the MRST �t [17℄ (dashedline). The starting parameterization of the gluon den-sity at Q20 = 5 GeV2 is given by the DL modelwe do observe that there is some violation at small x.This is be
ause the hard Pomeron ex
hange de�ned bythe DL model is expe
ted to hold in the small-x limit.One 
an see that the s
aling with the DL �t is nearlypreserved in this 
ase.To better illustrate our 
al
ulations at small x, weplot G(x) versus the x variable (see Fig. 4). It 
an be
learly seen that our results in
rease as x de
reases, butat a somewhat smaller rate. In this �gure, we take thenext-to-leading-order GRV �t [16℄ input gluon densityat Q20 = 1 GeV2 and 
ompare our results with the GRV�t, MRSD0� �t [23℄, and MRST �t [17℄. For a 
onstantQ2, there is a 
ross-over point for both 
urves, whosepredi
tions are numeri
ally equal. The 
ross-over pointshifts to MRSD0� [23℄ as x de
reases. However, we seethat this behavior is be
ause our 
al
ulations are de-pendent on the input 
onditions.In Fig. 5, we present the gluon distributionG(x) for the H1 HERA proton parameterization atQ2 = 20 GeV2 [21℄ for di�erent small-x values. Theinitial 
ondition for the evolution of the gluon densityis assumed to be of the formxg(x;Q20) = 1:1x(�0:247)(1�x)17:5 �1�4:83px+68:2x�for Q2 � 3:5 GeV2 at the initial s
ale Q20 = 4 GeV2.The gluon distribution G(x) in
reases as x de
reases.In the same graph, we present the G(x) values for theH1 data [21℄, MRSD0� [23℄, and MRST [17℄ global �tresults; but its rate of in
rement is higher than that for
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Fig. 4. The gluon distribution given by Eqs. (26)and (29) versus x at �xed Q2 = 20 GeV2 (solid 
ir-
les), 
ompared with the next-to-leading-order GRVmodel [16℄ (solid line), the MRSD0� �t [23℄ (dashedline), and the MRST �t [17℄ (dotted line). The startingparameterization of the gluon density at Q20 = 1 GeV2is given by next-to-leading-order GRV model
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Fig. 5. The gluon distribution given by Eqs. (26) and(29) versus x at �xed Q2 = 20 GeV2 (solid 
ir
les),
ompared with the H1 data [21℄ (N), the MRSD0��t [23℄ (dashed line), and the MRST �t [17℄ (solid line).The starting parameterization of the gluon density atQ20 = 4 GeV2 is given by the H1 datathe MRST and smaller than for the MRSD0� data. Ourresults show that the 
al
ulations are sensitive to theinitial 
onditions at Q2 = Q20. For any initial 
ondition,the �gures show good agreement between our resultsand those parameterizations at small x. In this �gure,811
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Fig. 6. The 
al
ulated values of the singlet stru
turefun
tion F2(x;Q2) plotted as fun
tions of x in a

or-dan
e with Eqs. (27) and (30) with the starting param-eterization of the stru
ture fun
tion at Q20 = 5 GeV2given by the DL model (solid 
ir
les), 
ompared withthe next-to-leading order QCD �t to the H1 data withtotal errors [21℄ (N) and with the DL �t [10℄ (solidline) and the singlet stru
ture fun
tion MRST �t (dot-ted line)we show the best �t to the MRST gluon distributionparameterization 
orresponding to the initial-
onditionH1 data.In Fig. 6, we show the predi
tion of Eqs. (27) and(30) for the singlet stru
ture fun
tion. We obtain ourresults with the input parameterization at the initials
ale Q20 = 5 GeV2 and 
ompare with the DL �t [10℄,MRST �t [17℄, and H1 data [21℄ with the total errors atQ2 = 20 GeV2. In this �gure, we observe a 
ontinuousin
rease towards small x. The lnQ2 dependen
e of F2is observed to be nonlinear. It 
an be well des
ribed bya quadrati
 expression,e�(Q2) = aS + bS lnQ2 + 
S(lnQ2)2; (31)whi
h nearly 
oin
ides with the QCD �ts in the kine-mati
 range of this 
al
ulation. Then the e�e
tivepower-law behavior of the singlet stru
ture fun
tion
orresponds toF2(x;Q2) = fF2(Q2)x�0:5: (32)This behavior is asso
iated with the ex
hange of anobje
t known as the hard Pomeron. In [9; 10℄, this be-havior was obtained by the simplest �t to the small-xdata 
orresponding toF2(x;Q2) = Xi=0;1 fi(Q2)x��i ; (33)

where the i = 0 term is a hard Pomeron ex
hangeand i = 1 term is a soft Pomeron ex
hange. Theseparameters were obtained from the best �t to all thesmall-x data for F2(x;Q2) together with the data for�
p. Hen
e, our stru
ture fun
tion is dominated atsmall x by the hard Pomeron ex
hange. This powerfulapproa
h to the small-x data for F2(x;Q2) is to ex-tend the Regge phenomenology that is so su

essful forhadroni
 pro
esses [7℄. The Regge theory relates high-energy behavior to singularities in the 
omplex angu-lar momentum plane [6℄. Therefore, for deep inelasti
s
attering, the soft Pomeron 
ontributions is not suf-�
ient to des
ribe the rapid in
rease with 1=x seen inthe data at small x and large Q2. This singularity is ahard Pomeron [9,10℄.In 
on
lusion, a set of new formulas 
onne
ting thegluon density with its derivative and the singlet stru
-ture fun
tion with its derivative with respe
t to lnQ2at small x have been presented. We found that theRegge theory 
an be used to 
onstrain the initial par-ton densities at Q2 = Q20 and to obtain the distribu-tions at higher virtualities with the DGLAP evolutionequations. Careful investigation of our results shows agood agreement with the previously published partondistributions based on QCD. The gluon distributionand singlet stru
ture fun
tions in
rease as usual, as xde
reases. The form of the obtained distribution fun
-tions for the gluon distribution and the singlet stru
-ture fun
tions are similar to the one predi
ted from theparton parameterization. The formulas used to gener-ate the parton distributions are in agreement with thein
rease observed by the H1 experiments. We observeda 
ontinuous in
rease towards small x. The lnQ2 de-penden
e of f(x;Q2) is observed to be quadrati
allynonlinear (see Eq. (28)) whi
h nearly 
oin
ides withthe QCD �ts in the kinemati
 range of these 
al
ula-tions. Thus, the e�e
tive power-law behavior of theparton densities 
orresponds tof(x;Q2) = ef(Q2)x�0:5; (34)whi
h is asso
iated with an ex
hange of the obje
tknown as the hard Pomeron at small x. The obtainedresults give strong indi
ations that the proposed for-mulas, being very simple, provide relatively a

uratevalues for the gluon distribution and stru
ture fun
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