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KERR-GAUSS-BONNET BLACK HOLES:
EXACT ANALYTIC SOLUTION
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Gauss—Bonnet gravity provides one of the most promising frameworks to study curvature corrections to the
Einstein action in supersymmetric string theories, while avoiding ghosts and keeping second-order field equa-
tions. Although Schwarzschild-type solutions for Gauss—Bonnet black holes have been known for a long time the
Kerr—Gauss—Bonnet metric was missing. In this paper, a five dimensional Gauss—Bonnet solution is analytically

derived for spinning black holes and briefly outlined.
PACS: 04.62.+v, 04.70.Dy, 04.70.-s
1. INTRODUCTION

In any attempt to perturbatively quantize gravity
as a field theory, higher-derivative interactions must
be included in the action. Such terms also arise in
the effective low-energy action of string theories. Fur-
thermore, higher-derivative gravity theories are intrin-
sically attractive because in many cases they display
features of renormalizability and asymptotic freedom.
Among such approaches, Lovelock gravity [1] is espe-
cially interesting because the resulting equations of mo-
tion contain no more than second derivatives of the
metric, include the self interaction of gravitation, and
are free of ghosts in the expansion around flat space.
The four-derivative Gauss—Bonnet term is most prob-
ably the dominant correction to the Einstein—Hilbert
action [2] when considering the dimensionally extended
Euler densities used in the Lovelock Lagrangian, which
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straightforwardly generalizes the Einstein approach in
(4 + n) dimensions. The action is therefore given by

_ 1 D
Sap = 167rG/d xy/ g{ 2A + R+

+ a(Rupap R* P —4R,5R*P + R?)|, (1)
where a is a coupling constant of dimension (length)?
and G is the D-dimensional Newton constant defined
as G = 1/MP=2 in terms of the fundamental Planck
scale M,. Gauss—Bonnet gravity was shown to exhibit
a very rich phenomenology in cosmology (see, e.g., [3]
and the references therein), high-energy physics (see,
e.g., [4] and the references therein) and black-hole the-
ory (see, e.g., [5] and the references therein). It also
provides interesting solutions to the dark energy prob-
lem [6], offers a promising framework for inflation [7, 8],
allows a useful modification of the Randall-Sundrum
model [9], and, of course, resolves most divergences as-
sociated with the endpoint of the Hawking evaporation
process [10].
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Either in D dimensions or in 4 dimensions with a
dilaton coupling (required to make the Gauss-Bonnet
term dynamical), Gauss—Bonnet black holes and their
rich thermodynamical properties [11] have only been
studied in the nonspinning (i.e., Schwarzschild-like)
case. Although some general features can be derived
in this framework, it remains largely unrealistic be-
cause both astrophysical black holes and microscopic
black holes possibly formed at colliders [12-14] are ex-
pected to be rotating (i.e., be Kerr-like). Of course,
the latter — which should be copiously produced at
the Large Hadron Collider if the Planck scale is in the
TeV range as predicted by some large-extra-dimension
models [15] — are especially interesting for the Gauss—
Bonnet gravity because they could be observed in the
high-curvature region of general relativity and allow a
direct measurement of the related coupling constant [4].
The range of impact parameters corresponding to the
formation of a nonrotating black hole being of zero
measure, the Schwarzschild or Schwarzschild-Gauss—
Bonnet solutions are mostly irrelevant. This is also
of experimental importance because only a few quanta
should be emitted by those light black holes, evading
the Gibbons [16] and Page [17] arguments usually ad-
duced to neglect the angular momentum of primordial
black holes.

It should be underlined that D-dimensional spin-
ning black hole solutions are anyway very important
within different theoretical frameworks (e.g., in conser-
vation law studies) [18]. Thanks to perturbation theory
several attempts were made [19] to derive the solution.
In what follows, we focus on an analytical approach.

2. 5D-SOLUTION

To investigate the detailed properties of black holes
in the Lovelock gravity, it is mandatory to derive the
general solution, i.e., the metric for the spinning case.
In contrast to the numerical attempts that were pre-
sented in Ref. [20] for degenerate angular momenta, we
focus on the exact solution in 5 dimensions.

The Einstein equations in Gauss—Bonnet gravity
with a cosmological constant A are given by

1
R, —

a i

= Aguy‘l'a

1
ig/w <Ruua6Ruyaﬁ_4Ra5Ra6+R2> —

—2RR,y, + 4Ry R} + 4R RS — 2R,nsxRY |, (2)
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and the 5-dimensional metric of the spherically sym-
metric Kerr—Schild type can be written as

ds® = dt* — dr?* — (r? + a?)sin® fd¢? —
— (r® 4+ b%) cos® 0dgs — p>dh* —
2 7P

— 2dr (a sin® Od¢py + b cos® €d¢2> —

2
- B (dt — dr — asin® 8d¢, — bcos® 9d¢32> , (3)
where
0> =r? +a*cos’f + b?sin? 0

and § = §(r, ) is the unknown function.
The #6 component of the Einstein equations is

AB" + BB +CB' + DB+ E =0, (4)

where

A=rp*(4af - p%),
B = 4arp?,

C =2l4af(p* —r*) = p* (0> + )|,
D = 2r(2r* — 3p%),
E =2rAp*.

Equation (4) can be split into two relations respectively
involving only 8 and 2z = 3’ as independent unknown
functions. It is then possible to introduce a new func-
tion f(r,c), where

c=a’cos’ 0 + b*sin? 6,
such that the equations are equivalent to the system

B—A)—fﬁ"—‘2

rp*
2 2
— 1
2,+20T T Z_Ef(m;) _
p arp

P12
rp?

272 —3p?
_ i

ﬂ’,+2 ( BI =0, (5)

(6)

With the new function p(r,c) introduced via the
transformation

p* dp(r,c)
or

r

fr,c) = (7)

the second equation can be solved (with p,
= 0p(r,c)/0r), leading to

([ prdr + 2C21)(r* + %)
ar?

= (88",

1
2=3 (8)
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where C;; are constants of integration in the ith equa-
tion. This equation can be integrated to obtain

/[

The first equation results in

r2 4+ ¢? r? — 2
r2

==

«

) dr + 2021 + 020. (9)

B =
—9r2 A (12 — 2
— <C12T—C11(7’2—62)—7’/ (pr—2r r)(r ¢ )dr—}—
+ (r* + %) /(pr + 2A72) dr _ (10)
r(r2 + c?)’
where a simple integration by parts
r?—c? 2 — 2 r? 4 c?
/pr dr=1p —/p s—dr  (11)
r r r
yields
ﬁT(TQ + 62) =Ciar + 011(’!“2 — C2) +
r? + ¢ Ard 5,
+r/<p = dr+T(r +c7). (12)
With the same integral combination
r? +c?
Q= / <p ~ar, (13)

the system leads to the quadratic equation

af® = (r*+)p+

2

7._02 2

LA
6

+ <032 + O3 (’I‘2 + 202)> =0, (14)
where C3; are new integration constants obtained from
a combination of Cs; and Cy;.

Taking the asymptotic forms at infinity into account
(and therefore finding the values of the integration con-
stants, M being the Arnowitt-Deser—Misner (ADM)
mass), we obtain

2
P>+ \/p4 —4aM — gaAr2(2p2 —r?)

B (15)

2 ’

13

where the “—" branch should be chosen so as to re-
cover the usual Kerr solution in the limit @« — 0. When
a — 0, we recover the pure Kerr case [21]. In case of
a vanishing rotation (a = b = 0), the obtained solution
corresponds to the one suggested in Ref. [22]. When
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used in metric (3), this leads to the exact Kerr—Gauss—
Bonnet—(anti)de Sitter solutions of Einstein equations.
Because only the 86 component of the field equations
was used to derive this result, the compatibility with
the other components was carefully checked. Although
the equations are far too intricate to allow analytic in-
vestigations, numerical results show that they are in-
deed satisfied.

3. TRANSFORMATION TO THE
BOYER-LINGUIST FORM

To obtain the value of the horizon radius rp, it is
necessary to transform metric (3) back to the Boyer—
Linguist form with

dt' = Adt + Bdr + Cdf,
d¢y = Dd¢, + Edr + F d6,

déh, = D dpy + Hdr + Fdb.

Taking into account that the processes relevant for
thermodynamical investigations occur in the vicinity of
the horizon, M/p* can be considered a small parameter
and used for a Taylor expansion of 3 as
M  8M3a
B ~ ) + %
P P

As a necessary condition, the Boyer—Linguist parame-
terization imposes vanishing coefficients for nondiago-
nal components except for dt d¢y and dt dg,. This leads
to a system of light equations with light variables. The
solutions are explicitly the Boyer-Linguist parameteri-
zation of the Kerr—Gauss—Bonnet metric.

Solving those equations (without substituting the
direct expression of p(r,#)), we obtain that

i) all the coefficients before the components df dx
(where z is an arbitrary coordinate) vanish automati-
cally, as in the classical Kerr case;

ii) the coefficients A and D can be set equal to 1 to
recover the classical case;

iii) other coefficients are:

B = Bl/BQ',
E= El/EQ-,
H = Hl/HQ',

where

By = —p%a(r® + b?),
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By = r*p® + 8M2aa® cos® r2 — Mp*a® cos? 6r® + H, = Mr?*(8Maa® cos® § — pta®cos? 0 — pir? +
+ p%0%r% + p%v%a® — Mp*r* 4+ r?p%a® + SM2ar® —
— Mp*'t*r® + 8M?ab’r® + M p*b® cos® 4r® —

— 8M2ab? cos® Or2,

+8Mar® —p*b> +8Mab®+p*b% cos®> —8 M ab® cos® ),

Hy = r4p6 + 8M?aa® cos® Or® — Mp4a2 cos® Or® +

B, = — 2 2 Gb

1 (@ +1r°)p°b, + 50202 4 pSB%a% — MpM 412082 + 8M2art —
_ 412 2 2 12 2 42 249

By =1r*p® + 8M3aa® cos® r® — M p*a® cos® Or® + MpTbor™ + 8M7ab™r™ + Mp7b™ cos™ Or

+ p%0%r% + p%v%a® — Mp*r* 4+ r?p%a® + SM2ar® — — 8M?ab? cos® Or>.

— Mp*'t*r® + 8M2ab’r® + M p*b® cos® 4r® —

After substituting these coefficients in metric (3) and
— 8M2ab? cos® Or2,

some rearrangements, the metric becomes
|

M  8M?
ds® = dt? — (r* + a®) cos? 0d¢? — (r* + b%)sin’ 0 dp3 — p?dh? — <? + Ta> X
P
x (dt + asin® 0 déy + beos® 6 ds)” — ———dr®, (16)
M  8M-«a
PO\ (r2 +a?)(r2 +0%) —r2p? | 5 + ——
p P
where ® is a coefficient whose value is irrelevant be- We emphasize that the anglular variable 6 is in-
cause this investigation requires only the denominator cluded in expression (19) (as p? = ’I‘i + a%cos? § +
of the last term (the gy; component of the metric), + b%sin?f), which indicates a good choice of coor-
which is dinates. To remove this dependence, we must set
6 = m/4. This allows computing the temperature
6 (12 20,2 4 72 2 2 '
P ((r +a”) (" +0%) —17p ﬂ) ’ (17) which requires the surface gravity given by
1 .
4. THERMODYNAMICAL PROPERTIES K= =29"9" (0i91) (Digu) (20)
r=r4
To investigate the black hole topology, we must ) ]
study singular points of the metric component g1, i.e., In the considered case, this leads to
study the zeros of expression (17): 1
k= ——(148)[g"(8,8)* + ¢?°(0s3)? 21
(r? +a®)(r? + %) —r?p?B = 0. (18) 4( o™ @:5) (%65)°] — (21)
This is an 8th-order equation for p when /3 is Taylor ex- After substituting all the values, this formula becomes
panded in the lowest order in a. As shown in Ref. [23],
the cosmological constant can change the temperature. 0 2
In what follows, we restrict our study to the A = 0 1 K1 %ﬂ
case. Using the value of § in (15), we obtain k= _Z(l +5) Ky pe ' (22)
M*
= 19
Tariph’ (19)

where
where

k1 = (Brcos®6(a® = %) — (P2 + a®)(r® + %) +
M* =74 p® —da(r? +a®)*(r3 +b7) + 1=(8 ( )= ) ) ,
+4dar? p*(r] 4+ a®)(r} + b)) +r8p? + B2 + %) <§5> ’
”
and ry is the horizon radius. As a — 0, this leads to
the usual Kerr case. Ky = —cos® f(a® — b*) + (r* + b%).

7 KIOT®, Bein. 4 817



S. Alexeyev, N. Popov, M. Startseva et al.

MITD, Tom 133, BoIm. 4, 2008

T
0.20 B

0.15

0.10

0.05

12 14 16 18

6 8 10

Black-hole temperature T' (y axis, relative Plank val-

ues) versus the black-hole size r (2 axis, relative Plank

values) in the pure Kerr case (lower line) and the Kerr—
Gauss—Bonnet case (upper line)

The black hole temperature T' can be easily com-
puted as T' = k/2w. The pure Kerr 5D-formula, as
given in [24], leads to

_ ri A
dr(r3 4+ a?)(r3 4+ 0?)’

(23)

where
(r} +a*)(r +%)
2
L

A= .

The figure displays the pure Kerr temperature and
the Kerr-Gauss—Bonnet temperature. As expected,
both values become very close for large masses. They
differer by about 5% in the limit of very small masses
for a = 1 in Planck units.

5. DISCUSSION AND CONCLUSIONS

If, as is suggested by geometrical arguments
and by low-energy effective superstring theories, the
Gauss—Bonnet gravity is a realistic path toward the full
quantum theory of gravity, then Kerr—Gauss—Bonnet
black holes are probably among the most important
objects to understand the physical basis of our World.
This article has established the solution of Einstein
equations in the 5-dimensional Gauss—Bonnet theory.
This allows investigating into the details of the physics
of “realistic” spinning black holes, from both a pure
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theoretical and a phenomenological (in the framework
of low-Planck-scale models) standpoint.

Some improvements and developments can be fore-
seen. First, it should be very welcome to obtain the
same kind of solutions for any number of dimensions.
Unfortunately, the method introduced in this article is
not easy to generalize and a specific study is required
in each case. Then, it would be interesting to compute
the greybody factors for those black holes. Following
the techniques in [25], it is possible (although not
straightforward) to obtain a numerical solution as soon
as the metric is known, at least in the A = 0 case. The
Kerr-Gauss-Bonnet—(anti)de Sitter situation is more
intricate because the metric is nowhere flat, requiring
a more detailed investigation, as suggested in Ref. [26].
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