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Gas flow through a two-dimensional slit into vacuum is investigated by a direct simulation Monte Carlo method.
Results for mass flow rate are obtained as a function of the rarefaction parameter, which is inversely proportional
to Knudsen number. The distributions of density, temperature and mass velocity, and streamlines are presented.
In the free molecular flow regime and in the hydrodynamic limit, our results agree with theoretical asymptotes,
and in the transition regime, they compare well with numerical simulations by other authors.
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1. INTRODUCTION

The problem of gas flow through capillaries is clas-
sical. Starting with Knudsen, much effort has been
invested into it, theoretical as well as experimental [1].
From the theoretical standpoint, it is particularly in-
teresting in that it can give rise to all flow regimes,
from free molecular flow to hydrodynamic flow. Re-
cently, applications of this gas-dynamic problem also
have been boosted by rapid developments of industrial
technologies using micro- and nano-size elements and,
in particular, micro- and nano-electromechanical sys-
tems (MEMS/NEMS; see, e.g., [2]).

Indeed, the size of micro- and nano-electromecha-
nical systems is the reason that they work in regimes
that differ significantly from working regimes of similar
macroscopic devices. A very important consequence of
their extremely small scale is that the usual treatment
of gas flow in them as continuous media with macro-
scopic state parameters varying smoothly in space and
time becomes impossible. This effect could be quanti-
fied by using the Knudsen number Kn defined as the
ratio of the mean free path of gas molecules to the
characteristic size of the system. For example, at stan-
dard room temperature, normal atmospheric pressure,
and system size of 1 micron, the Knudsen number is
0.07. But the continuous media approach to gas flow
breaks at Knudsen numbers above about 0.01. If such
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a device is meant to be used at high altitudes (i.e.,
aerospace industry), at low pressures (vacuum tech-
nologies) or has size much less then 1 micron, the effect
is significantly more pronounced. In addition, in micro-
and nano-electromechanical systems, the scattering of
gas molecules on the surface, and therefore the struc-
ture of the surface and accommodation properties of
gas molecules, become increasingly important. Some-
times, geometric sizes of the working elements are such
that the structure of the surface and interfaces is cru-
cial. Depending on application, MEMS/NEMS could
have surfaces ranging form very smooth silicon to quite
rough technical surface.

In reality, interaction of gas flow with surfaces
of micro- and nano-electromechanical systems could
differ significantly from the standard theoretical ap-
proach used in most engineering applications, where
perfect accommodation of energy and momentum of
gas molecules by the surface is assumed and the corre-
sponding accommodation coefficients are set to unity.
Relatively recently, it was shown in experiments [3]
that the accommodation coefficient for tangential mo-
mentum on an atomically clean surface can be as low
as of 0.7, which leads to a 65% increase in the gas
flow through the capillary compared to the theoretical
calculations that use the perfect accommodation as-
sumption. Nonperfect accommodation of energy has
an even stronger effect. By varying chemical composi-
tion of the surface, the corresponding accommodation
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coefficient can be lowered to a dramatically small mag-
nitude of the order of several hundredths, which would
have a huge impact on heat transfer in MEMS/NEMS.
Another important factor that changes heat transfer
behavior is the ratio of the surface area to volume, ev-
idently very different in macro- and microdevices.

All these factors need to be taken into account
to model micro- and nano-electromechanical systems
correctly. One possible way is to use methods of ki-
netic gas theory based on the famous integrodifferen-
tial Boltzmann equation for the molecular distribution
function. To model gas flow through long capillar-
ies, the linearized Boltzmann equation is frequently
used [4]. However, gas flow through short capillaries
caused by a large difference in pressure becomes essen-
tially nonequilibrium, and therefore much more com-
plicated nonlinear kinetic equations should be used.

An alternative and much more flexible way of study-
ing gas flow is the direct simulation Monte Carlo
method [5], which has shown to be an effective tool
for problems of gas dynamics for all flow regimes, from
hydrodynamic flow, for which the continuous media ap-
proximation works so well, to free molecular flow. The
direct simulation Monte Carlo method allows taking
many different factors into account, such as nonequilib-
rium and complex geometric configuration of the sys-
tem, and using different boundary conditions, models
of surface structure and assumptions about molecu-
lar interactions. An additional justification for using
numerical simulations in developing MEMS/NEMS is
that carrying out extensive experiments in design phase
is extremely difficult and economically infeasible. In
fact, doing this sometimes requires creating even more
complex gauges that would allow measuring flows, for
example, inside MEMS/NEMS. Very often, developing
them becomes more of an empirical process. There-
fore, there is a need to develop and implement methods
of numerical modeling of gas flow processes in micro-
and nano-electromechanical systems. These methods
should be capable, in the first place, to produce prelim-
inary crude data on main characteristics of a system,
model and optimize working regimes, compare different
designs, and so on.

By a “slit”, we mean an infinitesimally thin capillary
with a rectangular cross section. Overall, there has not
been much either experimental or theoretical research
done on rarefied gas flow into vacuum through a slit.

The first relatively complete experimental study of
gas flow through an orifice (infinitesimally thin capil-
lary with cylindrical cross section) was done by Liep-
mann [6]. He also argued theoretically that for a two-
dimensional problem in the hydrodynamic limit and
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large pressure drop, a somewhat greater mass flow rate
through a slit than through an orifice should be ex-
pected. However, his own conclusion was that the dif-
ference should be quite small.

Most theoretical papers on gas flow through a slit
are based on the assumption that the flow is caused by
a small difference in pressure. In particular, the sys-
tem of integral equations for gas velocity, density, and
temperature derived from the linearized Boltzmann—
Krook—Welander equation with the diffuse reflection
boundary condition was solved numerically in [7] by a
Neumann series expansion. As a result, the gas density,
temperature, flow velocity distributions, and mass flow
rates for different Knudsen numbers were obtained.

In Ref. [8], rarefied gas flow between two containers
divided by a short “channel” — a rectangular slit with
the parameters [ /h = 0.05 and w/h = 20, where [ is the
length, w is the width, and h is the height of the slit —
was studied experimentaly for Knudsen numbers from
0.0521 to 2.521. Mass flow rate measurements were
done for values of pressure difference between the con-
tainers of 3, 6, 10, and 15 times.

Numerical modeling of rarefied gas flow through a
slit was done in [9,10]. In Ref. [9], two approaches
were used to analyze gas flow from one container into
another through a slit: an approach based on numer-
ical solution of the equations of gas dynamics using
the method of finite differences, and the direct simula-
tion Monte Carlo approach. The problem was solved in
two dimensions for two different values of the ratio of
pressures in the containers: a large value correspond-
ing to flow into vacuum and the pressures ratio equal
to 2. In the direct simulation Monte Carlo approach,
the variable hard-sphere model for Argon was used to
describe interactions between gas molecules, and a no-
time-counter scheme to model collision relaxation. At
the surface, diffuse scattering was assumed. The size of
the computation domain was 5 x 2.5 slit heights both
upstream and downstream for simulation at any Knud-
sen number. The mass flow rate, density and temper-
ature distribution, and mass velocity along the center
line of the slit from the free molecular regime to the
transition regime (Kn = 0.05) were analyzed. For the
free molecular flow regime, the results were compared
with analytic expressions. Similar computations were
done in [10] for the hard-sphere model for the pressures
ratios 2, 10, and 50 and Knudsen numbers 0.2, 1, and
10. The size of the computation domain was chosen
in [10] as approximately ten local mean free paths up-
stream and three to five downstream.

Thus, in spite of great practical importance, gas
flow through a slit into vacuum has not been investi-
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gated in detail. Numerical studies pay little attention
to the accuracy of computations and justification of
model parameters, in particular, the size of the compu-
tation domain. There is no data on the mass flow rate
in a wide range of rarefactions.

In this paper, we compute the mass flow rate
through a slit into vacuum in a wide range of rarefac-
tions and study the flow field using a direct simulation
Monte Carlo method.

2. STATEMENT OF THE PROBLEM AND
DEFINITIONS

We take a system consisting of two large containers
connected by a slit. We assume the size of the con-
tainers large enough to consider the length of the slit
equal to zero, Il = 0. Far from the slit, the upstream
container contains an equilibrium monatomic gas at a
pressure P; and a temperature 77. The pressure in the
downstream container, P», is so small (compared to P )
that we can assume P, = 0. If the width of the slit is
much greater than its height, w > h, we can reduce
the problem to only two dimensions.

Let @ be the mass flow rate through the slit. We
are primarily interested in the mass flow rate normal-
ized by its value Q* = Q/Qfn in the free molecular
flow regime as a function of the rarefaction parameter

5= hPy  /m
v 2Kn'’

(1)

where 11 and vy are respectively the gas viscosity and
the most probable molecular velocity at the reference
temperature T7. As we can see, the rarefaction param-
eter ¢ is inversely proportional to the Knudsen number
Kn, defined for the slit as Kn A1/h, where \; is
the mean free path of gas molecules in the upstream
container far from the slit.

In the free molecular flow regime, § = 0 and the
mass flow rate through a two-dimensional slit can be
calculated analytically as [4]

h
\/7?1_)1

In the hydrodynamic flow limit, when § > 1, the nor-
malized mass flow rate through an ideal nozzle also can
be calculated analytically using Euler’s equation to be

Q*=%<

where v is the specific heat ratio (y 5/3 for
monatomic gas). The mass flow through a nonideal

Qfm:

(2)

P .

1+~

(1+7v)/2(1-7)
) G
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nozzle as a slit can be obtained by multiplying the mass
flow rate through an ideal nozzle by the discharge co-
efficient. A typical value of the discharge coefficient for
a two-dimensional slit is 0.85 [6]. Thus, the normalized
mass flow rate Q* for a monatomic gas through a slit in
the hydrodynamic limit should be approximately 1.55.

3. THE DIRECT SIMULATION MONTE
CARLO METHOD

As is well known, the essence of Monte Carlo meth-
ods is to describe a physical system by means of a
stochastic process and then estimate various proper-
ties of the system as the corresponding mathematical
expectations. For rarefied gas dynamics, the stochas-
tic process is the evolution (motion and collisions) of a
large number N of model particles, each of which rep-
resents F'y = nV/N of the real gas molecules, where n
is the gas density and V is the volume of the system.

There are exact and approximate Monte Carlo
schemes. Exact schemes require that after each colli-
sion in a system of N model particles, each of them
travels a distance proportional to the time between
two consecutive collisions. Such schemes are very com-
putationally intense and time-consuming, and require
considerable resources. Therefore, we limited our-
selves to using an approximate scheme. In approximate
schemes, particle motion and collisions are divided onto
time steps At that are smaller than the mean time be-
tween two collisions t; = A1 /vy, and are processed in-
dependently. In other words, the process of motion
and collision of gas molecules is split into two consecu-
tive independent processes, free molecular motion and a
spatially homogenous collision relaxation. This speeds
up simulations considerably [11]. However, the exact
scheme sometimes remains the only possibility, for ex-
ample, when there are no clear criteria for identifying
the time step At.

Modeling free molecular motion in systems of sim-
ple geometry is relatively easy. The major difficulty
in implementing an approximate scheme is therefore to
simulate collision relaxation. One way to do it is to
divide the modeled space into small cells with the cell
size chosen such that gas flow parameters change from
cell to cell very little. All cells taken together form a
spatial grid on which the simulation is run.

We used a two-level regular grid with different cell
sizes at each level (Fig. 1). The minimum cell size on
the grid was set to be of the order of or smaller than the
mean free path A\; of gas molecules in equilibrium gas at
a pressure P; and temperature T (as far from the slit
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Fig. 1. Model geometry and the computation grid

in the upstream container). As gas flows through the
slit into vacuum, its density rapidly decreases. There-
fore, in the immediate vicinity of the slit, where the flow
state parameters change very rapidly, the free path of
gas molecules in this region becomes significantly larger
than the cell size (usually, by a factor of 1.5-2). The
bold line in Fig. 1 is a part of the slit wall. As shown in
the Figure, the second level of the grid begins at some
distance L* from the slit. It is also natural to assume
that the flow is symmetric, and hence placing a mirror
boundary at the center line of the slit allows model-
ing only half of the space directly, which considerably
reduces the computation time.

Initially, all particles are placed in the upstream
container and obey the Maxwell distribution at the
temperature Ty. Then the particle free motion (i) and
collisions (ii) during each time interval At are simulated
independently.

(i) All molecules in the flow field are displaced by
distances determined by their instantaneous velocity
and the length of the time interval At¢. If a particle
leaves the computation area during this time interval,
it is considered lost and is tracked no more (deleted
from the system). If a molecule hits a boundary, its ve-
locity changes according to the imposed boundary con-
ditions. Each particle that crosses the slit contributes
to the mass flow rate, which is computed as N; — No,
where N is the number of particles passed through the
slit from the upstream container downstream, and N»
is the number of particles that cross the slit upstream.
During the same time interval, new particles that en-
ter the computation area are generated. This occurs at
the outer edge of the computation area in the upstream
container, and the number and velocities of new parti-
cles obey the distribution function for molecules cross-
ing a fixed plane in equilibrium gas at the pressure P;
and temperature 7.

(ii) Collisions between molecules are modeled for

each cell separately. In other words, only particles from
the same cell are allowed to collide because they are
assumed to be nearest neighbors of one another. How-
ever, it is quite possible that for a particle close to a
cell boundary, actual nearest neighbors are not the par-
ticles in the same cell that happen to be at the other
end of it but particles in an adjacent cell. To account
for this and ensure that only closest particles collide,
each cell was divided into subcells and only collisions
for particles in the same subcell were considered to oc-
cur. The minimum number of subcells was 9. New
velocities of particles after collision are computed from
the momentum and energy conservation laws.

It is important to note that the length of the time
interval At should not only be less than the mean time
between two collisions ¢1, but also not greater than the
average time a particle spends in one cell.

To simulate collisions, we used the homogenous ma-
jorant frequency scheme with consecutive sorting of
cells introduced in [12]. As indicated in [12], a nec-
essary condition for its applicability is that the num-
ber of collisions during a single time step At must be
large enough. Another technique widely used in direct
simulation Monte Carlo method is the no-time-counter
scheme. However, it is believed that being at the same
level of computational complexity, the majorant fre-
quency scheme requires fewer particles in the model
cell to obtain the collision frequency correctly [13].

A major problem in simulating gas flow into vacuum
is that gas densities upstream and downstream the slit
differ by orders of magnitude. Because the number of
particles in a cell is directly related to the gas density
(unless special procedures are used), the number of par-
ticles in cells on different sides of the slit could be very
different. In particular, a dangerous situation is possi-
ble when there are no particles in cells far from the slit
downstream, because it may deteriorate the accuracy
of simulations.

To overcome this problem and increase the number
of particles in the immediate vicinity of the slit in the
downstream container (in the region from 0 to LT), we
used the weight-factor plane procedure. When particles
cross a plane with weight factor 2 going downstream,
their number doubles, and when they cross the plane
going upstream, their number halves. Clearly, the rep-
resentation Fy changes in the inverse proportion. In
our simulations, at least 4 weight planes were used, e.g.,
Y =0, 0.5h, h, 1.5h (see Fig. 1), which corresponds to
a 16-fold increase in the number of model particles if
they cross all four planes. Using several planes with
weight factor 2 allows avoiding a dangerous side effect
of having many clone particles (i.e., particles with the
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same position and velocity) if only one plane with a
high weight factor is used instead.

Position of the second level of the grid L+ was cho-
sen so as to ensure a density decrease of 8-10 times
before particles reach it. In most simulations, we used
L* = 3h. Linear size of the cells at the second level
was 3 times larger than at the first level, which leads
to a 9-fold increase in the number of particles per cell
between Lt and L.

Altogether, using a nonhomogeneous grid and
weight factor planes enables us to achieve a close-to-
uniform number of model particles per cell throughout
the computation region, which should increase the ac-
curacy of simulations.

4. ERROR ANALYSIS

Produced by a numerical and simulational ap-
proach, the results of direct simulation Monte Carlo
method are obviously not free of error caused by the
statistical nature of the method and approximations
made in the process: only a limited number of simu-
lated model particles, each representing a large num-
ber of gas molecules, is used, simulations are only run
in a finite area close to the slit, continuum space is
discretized using a finite space grid, and, finally, the
particle free motion and collisions are artificially sepa-
rated. Therefore, each of these approximations should
be treated separately, and the cell and simulation area
size, the number of model particles in the cell, and the
time interval used in simulations should be analyzed
depending on the individual problem basis. Generally,
however, we should expect the best results to be ob-
tained using the maximum possible number of model
particles and simulation area size, and as small time
step and cell size as possible.

When used to model motion and collisions of gas
molecules, the direct simulation Monte Carlo method is
adequate to the physical nature of molecular transport
and can be regarded as a numerical experiment. As in
any physical experiment, one can specify two types of
errors in this method, a random error that is caused
by the statistical nature of the method and depends on
the number of time steps (or samples) simulated, and
a systematic error that depends on the cell size, the
time step length, the number of model particles in a
cell, and the simulation area size.

The random error can be greatly reduced by pro-
cessing a large number of samples. Moreover, the num-
ber of samples needed to achieve any required level of
random error can be estimated analytically. As well-
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known, statistical fluctuations in the results of direct
simulation Monte Carlo method are inversely propor-
tional to the square root of the sample size [5]. Fluc-
tuations in the number of particles N; coming through
the slit downstream can be estimated as /Ny, and fluc-
tuations in the number of particles coming through the
slit upstream, Ns, are similarly estimated as v/N5. Be-
cause the mass flow through the slit is Ny — N,, the
upper and lower estimates for the mass flow are

(Nl:l: Nl)—<N2:F\/N2).
Normalizing by the mass flow rate, we obtain

14 YN E VN,
Ni—Ny

We now formulate the condition for random error as
follows: we run samples until the inequality

VN + VN,

.001
N N, < 0.00

(4)
is satisfied. Then the random part of error is of the
order of 0.1 %.

The systematic part of error is quite remarkable in
that if we know where it comes from, we can take it
into account and directly correct the results of experi-
ments/simulation for it to reduce its influence to negli-
gible levels (that is, much lower than the random part
of simulation error). In direct simulation Monte Carlo
method, the systematic error dependence on the pa-
rameters of simulations very rapidly becomes asymp-
totic and does not change the results much when the
corresponding parameter of simulations (for example,
the cell size) is improved.

Figure 2a shows the dependence of the mass flow
rate through the slit on the cell size Ay(= Az) in units
of the mean free path \; for different sizes L of the
computation domain in the case 6 = 1. The bars at
each data point here and in the following figures show
the level of random error. Clearly, the results show
that the cell size required to exclude the systematic
error depends strongly on L. For small domain sizes,
we should use smaller cells. Besides a dependence on
the computation domain size, the optimum for reduc-
ing the systematic error clearly depends on the degree
of rarefaction 6. For large J, the cell size can even ex-
ceed the mean free path A;. The reason for this is that
in this case the cell size is already small enough to have
the flow parameters change within one cell very little.
Therefore, it has not to be reduced further down to A;.
Alternatively, dividing into subcells in some cases also
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allows using cells of larger size without loss in accuracy
of simulations.

The dependence of the mass flow rate on the ratio
of the time step At and the mean time between two col-
lisions t; for two very different values of the rarefaction
parameters, 6 = 1 and 6 = 100, is given in Fig. 2b. To
eliminate the systematic error, we have to use a time
step such that the ratio ¢; /At stays approximately the
same. Also, it is independent of the computation do-
main size L.

As mentioned above, a necessary condition for us-
ing the majorant frequency scheme is that each cell has
to contain enough particles to make the number of col-
lisions in it much greater than 1. However, our results
show that this condition can be relaxed to a certain
degree. In Fig. 3a, we show the mass flow rate depen-
dence on the average number of collisions in a cell over
a time step At for 4 = 1 and L = 5h. We do not ob-
serve any systematic error related to having different
numbers of particles in the cell even when the num-
ber of collisions over one time step is of the order of
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1. Furthermore, additional analysis showed that this
conclusion is independent of L and §. Therefore, in our
simulations, we adhered the following guidelines: the
number of collisions in each cell over a single time step
has to be greater than 1 and each subcell has to con-
tain at least 5—6 particles. Depending on the number of
cells, the total number of particles varied in the range
(5-25) - 10°.

The size of the computation domain also plays a
very important role for reducing the systematic part of
error. Figure 3b shows the dependence of the mass flow
rate through the slit on the computational domain size
in units of h for the rarefaction parameter § = 1. As we
observe, the minimum size of the domain at which the
systematic error becomes negligible is about L = 50h.
At lower degrees of rarefaction, the domain size can be
significantly smaller. For example, for § = 10, the value
L = 30h is already large enough, and for § = 100, we
have L = 20h.

Because all particles are in the upstream container
at the beginning of simulations, some time has to pass
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before a stationary flow regime is established. During
this warm-up period, all obtained data are discarded,
and only then we start collecting data on mass flow rate
to obtain our estimates. As our simulations showed,
the flow becomes stationary after times of the order of
L/v;. To be on the safe side, we extended the warm-up
period to 3L/v;.

Because the results of simulations depend on the
complete set of model parameters (in particular, as we
have mentioned, the required cell size is different for
different L and ¢), we should be careful to make sure
no systematic errors appear in each individual run. In
other words, the set of model parameters should be
chosen such that further improvement in the parame-
ters (finer space grid, and so on) would not produce
any improvement in the results at the level beyond the
random part of the error.

Thus, the random part of simulations error can be
decreased by running samples long enough, and the sys-
tematic part of error can be reduced to values of the
order of or significantly less than the random error by
choosing the model parameters appropriately. In our
computations, the total error did not exceed 0.2 %.

5. MAIN RESULTS

We used the model of hard spheres to simulate
molecular collisions, and diffuse scattering to simulate
interactions of gas molecules with the slit surface.

In Fig. 4, we show the results for the gas flow rate
Q@* through a two-dimensional slit in the range of the
rarefaction parameter § from 0.02 to 200. Solid sym-
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Fig.4. The mass flow rate Q™ as a function of the

rarefaction parameter 0: solid symbols are our simula-
tions; open symbols are the results in [10]

bols show our results and open symbols are the results
obtained in [10] for the pressure ratio of the two con-
tainers equal to 50. We see that our results agree well
with simulations in [10]. The results in [9] are notice-
ably lower, however. For example, the mass flow rate
Q* for Kn™' = 1 in [9] is about 1.10, and our result
is 1.15. However, a much smaller computation domain
was used in [9]. If we reduce the size of the domain
from L/h = 50 used in our simulations to L/h = 5
used in [9], the mass flow rate also decreases to 1.10,
as Fig. 3b shows.

As Fig. 4 shows, the mass flow rate increases very
rapidly as the rarefaction parameter increases from 0.2
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eral mass velocity u, /v1 distributions near a slit in yz
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to 20. At lower values of §, the dimensionless mass
flow rate Q* is close to the free molecular value given
by (2) within 5%. As ¢ increases beyond 20, the mass
flow rate saturates very rapidly and approaches hydro-
dynamic limit (3).

The dimensionless gas density distribution n/nq,
where n; = Py /kT;, the temperature T/T;, and the
lateral component of the mass velocity u, /v1 close to
the slit in the yz plane for § = 10 and § = 100, are pre-
sented in Fig. 5. For visual clarity, the bold lines in the
figure indicate a part of the slit wall (although the slit
is assumed infinitesimally thin). These distributions
demonstrate that although macroscopic gas parameters
change with the flow rate, qualitative characteristics of
the flow field remain essentially the same.

In Fig. 6, we show the computed distributions of the
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I =) o0

Dimensionless parameters

I
o

Fig.6. Distribution of density n/ni (o), temperature
T/Ty (A) and lateral mass velocity u, /v (O0) along
the central line of the slit in free molecular regime and
the corresponding analytic expressions [9] (solid lines)
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Fig.7.

density, temperature and lateral mass velocity along
the central line of the slit in the free molecular flow
regime, along with the corresponding theoretical pre-
dictions in [9]. As we see, they agree quite well.

The streamlines on both sides of the slit for 6 = 0.1
and § = 100 are shown in Fig. 7. As we see, in a close-
to-the-molecular flow regime (at § = 0.1), streamlines
are almost symmetric upstream and downstream. As
0 increases and gas becomes denser, the symmetry is
lost.
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6. CONCLUSIONS

To conclude, we have attempted to study gas
flow into vacuum through an infinitesimally thin two-
dimensional slit in a wide range of rarefactions us-
ing the direct simulation Monte Carlo method. The
most significant change in the mass flow rate is ob-
served in the rarefaction parameter range from 0.2 to
20. In the free molecular flow regime and in the hy-
drodynamic limit, our results agree with theoretical
asymptotes [4,6,9], and in the transition regime, they
compare well with numerical simulations by other au-
thors [9, 10]. We also present the density, tempera-
ture, and lateral mass velocity distributions, as well as
streamline analysis.

The next step would be to look at gas flow in chan-
nels of finite length and then in channels of complex
geometry similar to MEMS/NEMS geometry. Also,
it seems important to study the influence of the gas
molecule—molecule interaction, gas—surface scattering,
and finally to model effect of the surface structure and
a finite ratio of the pressures in containers.

The Institute of Mathematics and Mechanics, Ural
Branch og the Russian Academy of Sciences is acknow-
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