КРИСТАЛЛОСТРУКТУРНЫЕ И МАГНИТНЫЕ ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В ТВЕРДЫХ РАСТВОРАХ $BiFeO_3$ - $AFe_{0.5}Nb_{0.5}O_3$ (A = Ca, Sr, Ba, Pb)

И. О. Троянчук^a, М. В. Бушинский^a^{*}, А. Н. Чобот^a, О. С. Мантыцкая^a, Н. В. Пушкарев^b, Р. Шимчак^{c**}

^а Государственное объединение

«Научно-производственный центр Национальной академии наук Беларуси по материаловедению» 220072, Минск, Беларусь

^b Международный государственный экологический университет им. А. Д. Сахарова 220009, Минск, Беларусь

> ^cInstitute of Physics, Polish Academy of Sciences PL-02-668, Warsaw, Poland

Поступила в редакцию 19 февраля 2008 г.

Получены твердые растворы ${\rm Bi}_{1-x}{\rm A}_x({\rm Fe}_{1-x/2}{\rm Nb}_{x/2}){\rm O}_3$, где ${\rm A}={\rm Ca}$, ${\rm Ba}$, ${\rm Pb}$, и исследованы их кристаллическая структура и магнитные свойства. Показано, что в случае ${\rm A}={\rm Ca}$ при $x\approx 0.15$ симметрия элементарной ячейки меняется от ромбоэдрической (пространственная группа R3c) к орторомбической (Pbnm). Переход ведет к появлению спонтанной намагниченности за счет взаимодействия Дзялошинского-Мория. Твердые растворы с ${\rm A}={\rm Pb}$ вплоть до концентрации x=0.3 остаются ромбоэдрическими. Спонтанная намагниченность резко увеличивается в составе $x\approx 1$ при низких температурах и является результатом образования спин-стекольной компоненты.

PACS: 61.05.cf, 75.50.Bb, 75.50.Dd, 75.60.Ej

1. ВВЕДЕНИЕ

ВіFеO₃ является одним из немногих материалов, который проявляет магнитное и дипольное упорядочения выше комнатной температуры. Температура, при которой устанавливается магнитное упорядочение, равна $T_N = 640$ K [1]. Магнитное упорядочение G-типа циклоидально модулировано с периодом 620 Å [2, 3]. Важным физическим следствием этой модуляции является отсутствие спонтанной намагниченности и линейного магнитоэлектрического эффекта [4–6]. Хорошо известно, что объемные образцы BiFeO₃ характеризуются элементарной ячейкой, которая описывается полярной пространственной группой R3c [7]. Дипольное упорядочение обусловлено относительным сдвигом ионов Bi³⁺, Fe³⁺ и O^{2-} вдоль гексагональной оси [001]. Дипольный порядок возникает вследствие стереохимической активности $6s^2$ -электронной пары иона висмута. Ион Bi^{3+} имеет валентную электронную конфигурацию $6s^2p^0$, при этом $6s^2$ -электроны иона Bi^{3+} гибридизуются как с пустыми $6p^0$ -орбиталями Bi^{3+} , так и с заполненными $2p^6$ -электронами анионов O^{2-} , образуя ковалентные Bi–O-связи, что ведет к структурному искажению и дипольному порядку.

Наиболее известный способ получения образцов, в которых модулированная магнитная структура разрушена и слабый ферромагнетизм сосуществует с дипольным порядком, заключается в замещении ионов висмута редкоземельными ионами (главным образом La³⁺, Nd³⁺, Tb³⁺) [8–14]. Однако большая концентрация редкоземельных ионов ведет к разрушению дипольного порядка вследствие концентрационного структурного фазового превращения в неполярную фазу. Другим эффективным мето-

^{*}E-mail: bushinsky@ifttp.bas-net.by

^{**}R. Szymczak

дом получения объемных образцов мультиферроиков является получение твердых растворов на основе BiFeO₃-PbTiO₃ [15–18]. В этой системе твердых растворов с концентрацией PbTiO₃ около 30 % обнаружена морфотропная фазовая граница с изменением симметрии элементарной ячейки от ромбоэдрической (пространственная группа R3c) к тетрагональной, которая также описывается полярной группой P4mm. Однако для получения образцов, обладающих спонтанной намагниченностью, необходимо часть ионов висмута заместить на редкоземельные ионы.

Кроме BiFeO₃, есть другой очень интересный материал, PbFe_{0.5}Nb_{0.5}O₃, который, как предполагается, также является мультиферроиком при температурах выше комнатной [19–25]. Это вещество является сегнетоэлектриком с $T_C = 370$ K и антиферромагнетиком с $T_N \approx 150$ K, причем при $T \leq 370$ K обнаружена небольшая спонтанная намагниченность [19]. Причины появления спонтанной намагниченности при температуре выше $T_N \approx 150$ K остаются неясными.

В настоящей работе проведено исследование кристаллической структуры, упругих и магнитных свойств твердых растворов в системах типа BiFeO₃-CaFe_{0.5}Nb_{0.5}O₃ и BiFeO₃-PbFe_{0.5}Nb_{0.5}O₃. Показано, что появление спонтанной намагниченности строго коррелирует с типом кристаллоструктурных искажений элементарной я чейки или является результатом образования спин-стекольной фракции.

2. ЭКСПЕРИМЕНТ

Твердые растворы состава ${
m Bi}_{1-x}{
m A}_{x}{
m Fe}_{1-x/2}{
m Nb}_{x/2}{
m O}_{3}~({
m A}={
m Pb},~{
m Ca},~{
m Sr},~{
m Ba})$ были получены по обычной керамической технологии из простых оксидов и карбонатов, смешанных в стехиометрическом соотношении в планетарной мельнице фирмы RETSCH. Образцы помещались в разогретую печь и после синтеза закаливались на воздухе. Температура синтеза повышалась с ростом содержания ниобия и составляет 870°C для BiFeO₃, 920°C для PbFe_{0.5}Nb_{0.5}O₃ и 1350°С для CaFe_{0.5}Nb_{0.5}O₃, ВаFe_{0.5}Nb_{0.5}O₃. Поверхностный слой у образцов после синтеза удалялся. Это обусловлено тем, что висмут и свинец являются летучими компонентами, что может привести к нарушению соотношения между катионами. Рентгеноструктурные исследования проведены на дифрактометре ДРОН-3М в K_{α} -излучении Cu. Расчет кристаллической структуры выполнялся с помощью программы FullProf. Измерения упругих свойств выполнены резонансным методом на СКВИД-магнитометре MPMS-5 и вибрационном магнитометре Q-2001.

3. КРИСТАЛЛОСТРУКТУРНЫЕ ФАЗОВЫЕ ПРЕВРАЩЕНИЯ

Исходное соединение BiFeO₃ кристаллизуется в ромбоэдрической сингонии, пространственная группа R3c. Элементарная ячейка твердых растворов ${\rm Bi}_{1-x}{\rm Ca}_{x}{\rm Fe}_{1-x/2}{\rm Nb}_{x/2}{\rm O}_{3}$ вплоть до x = 0.15 хорошо описывается в рамках пространственной группы R3c, однако при x > 0.15 появляются дополнительные рефлексы, которые указывают на образование сверхструктуры типа $\sqrt{2} a_p \times \sqrt{2} a_p \times 2a_p$, где a_p — параметр исходной кубической ячейки. Сверхструктура такого типа соответствует орторомбическим искажениям элементарной ячейки. Рентгенограмма образца x = 0.3 хорошо описывается пространственной группой *Pbnm*, которая характерна для большинства перовскитов типа LaMnO₃ или LaFeO₃. Расчетный и экспериментальный спектры состава x = 0.3 представлены на рис. 1*а*. С увеличением содержания кальция орторомбический тип искажений элементарной ячейки меняется на моноклинный в составе CaFe_{0.5}Nb_{0.5}O₃, в котором ионы железа и ниобия, возможно, частично упорядочены. Элементарная ячейка этого соединения описывается пространственной группой $P2_1/n$ с параметрами элементарной ячейки a = 5.438(9) Å, b = 5.550(5) Å, c = 7.752(1) Å, $\beta = 90.035(5)^{\circ}$, аналогично тому, как это было определено в работе [26].

Несколько сложнее обстоит ситуация с определением типа искажений элементарной ячейки в твердых растворах с A = Pb, Ba, Sr. Сверхструктурные рефлексы очень малы и достоверно не фиксируются, основные рефлексы на рентгенограммах уширены без разрешения тонкой структуры, что крайне затрудняет корректный выбор пространственной группы. По всей видимости, ромбоэдрический тип искажений (пространственная группа R3c) сохраняется до x = 0.3 (рис. 16). При большей концентрации щелочноземельных ионов и свинца образцы являются псевдокубическими и, возможно, состоят из микродоменов с различной локальной симметрией. То, что истинная симметрия не является кубической следует из уширения рентгеновских рефлексов. Варьируя условия синтеза и длительность отжига, можно добиться некоторого сужения пиков. Однако этот эффект незначителен. Элементарная ячейка

Рис.1. Рассчитанный И экспериментальный профили рентгенограмм coединений ${\rm Bi}_{0.7} \, {\rm Ca}_{0.3} \, {\rm Fe}_{0.85} \, {\rm Nb}_{0.15} {\rm O}_3$ (a)И Bi_{0.7}Sr_{0.3}Fe_{0.85}Nb_{0.15}O₃ (б). Нижняя кривая соответствует разности между наблюдаемыми и вычисленными значениями

соединения PbFe_{0.5}Nb_{0.5}O₃ при комнатной температуре достаточно хорошо описывается в рамках пространственной группы Ст, как это было предложено в работе [26]. Согласно нашим рентгеноструктурным данным, соединение BaFe_{0.5}Nb_{0.5}O₃ при комнатной температуре имеет кубическую структуру (пространственная группа $Pm\bar{3}m$, a = 4.02 Å). Исследование упругих свойств этого соединения в широком температурном интервале (100-450 К) не выявило аномального поведения, которое можно бы было связать с фазовым превращением. С повышением температуры модуль Юнга монотонно уменьшается. Это находится в резком контрасте с поведением упругих свойств соединения PbFe_{0.5}Nb_{0.5}O₃, которое претерпевает кристаллоструктурное фазовое превращение первого рода в довольно широком температурном интервале 350-400 К (рис. 2). Температурный гистерезис при переходе составля-

Рис. 2. Зависимость квадрата резонансной частоты (пропорциональна модулю Юнга) от температуры для соединения $\mathrm{PbFe}_{0.5}\mathrm{Nb}_{0.5}\mathrm{O}_3$

ет около 3 К, величина модуля Юнга возрастает в два раза вблизи $T_C = 370$ К. Вблизи температуры $T_N = 150$ К мы не наблюдали аномального поведения модуля Юнга, которое можно было бы связать с магнитным упорядочением или низкотемпературным кристаллоструктурным переходом.

4. МАГНИТНЫЕ СВОЙСТВА

Составы $\operatorname{Bi}_{1-x}\operatorname{Ca}_x\operatorname{Fe}_{1-x/2}\operatorname{Nb}_{x/2}\operatorname{O}_3$ при $x \leq 0.15$ характеризовались линейной зависимостью намагниченности от поля. При увеличении содержания ниобия в этой системе наблюдалось появление намагниченности. На рис. 3 представлены результаты измерения магнитного гистерезиса при x = 0.3при комнатной температуре и T = 5 К. Этот состав является магнитожестким материалом, коэрцитивная сила составляет не менее 7 кЭ. Внешнее магнитное поле величиной 15 кЭ слишком мало для того, чтобы полностью перемагнитить образец. Величина спонтанной намагниченности, равная примерно 0.3 Гс·см³/г, характерна для слабых ферромагнетиков типа ортоферритов (GdFeO₃). Для серии твердых растворов ${\rm Bi}_{1-x}{\rm Sr}_x{\rm Fe}_{1-x/2}{\rm Nb}_{x/2}{\rm O}_3$ при x=0.3также наблюдалось появление спонтанной намагниченности, однако эффект менее ярко выражен (рис. 3). Поле величиной 15 кЭ слишком мало, чтобы получить полную петлю гистерезиса. Обычно подобного типа гистерезис наблюдается в сильно анизотропных, неоднородных средах.

Нам удалось наблюдать появление заметной

Рис. 3. Частные петли магнитного гистерезиса Bi_{0.7}Ca_{0.3}Fe_{0.85}Nb_{0.15}O₃ при T = 293 K и T = 5 K (a) и для Bi_{0.7}Sr_{0.3}Fe_{0.85}Nb_{0.15}O₃ при T = 5 K (δ)

Рис. 4. Зависимость намагниченности от магнитного поля серии твердых растворов ${\rm Bi}_{1-x}{\rm Pb}_x{\rm Fe}_{1-x/2}{\rm Nb}_{x/2}{\rm O}_3$. На вставке показано поведение намагниченности в малых магнитных полях

Рис.5. Зависимость намагниченностей ZFC и FC от температуры соединений $BaFe_{0.5}Nb_{0.5}O_3$ (*a*) и $PbFe_{0.5}Nb_{0.5}O_3$ (*б*), намагниченность ZFC получена при отогреве после охлаждения без поля, FC — при отогреве после охлаждения в поле

спонтанной намагниченности в составах свинцовой серии x = 0.2, 0.3, 0.5 (рис. 4). Величина намагниченности в зависимости от магнитного поля демонстрирует поведение, близкое к линейному. Очень маленькая спонтанная намагниченность может быть приписана наличию микрообластей слабоферромагнитных включений с другой локальной симметрией, чем основная матрица, или посторонних фаз типа гексаферрита свинца. Следует отметить тот факт, что с ростом содержания ниобия величина коэрцитивного поля увеличивается, хотя удельная намагниченность в поле 15 кЭ практически совпадает для всех составов x = 0.1, 0.3, 0.5. Ширина петли гистерезиса при x = 0.5 составляет около 1.2 кЭ. Свойства составов бариевой серии до x = 0.5 слабо отличаются от свойств свинцовой серии.

Весьма интересны свойства составов x = 1, в

которых ионы висмута не содержатся. На рис. 5 показаны ZFC- и FC-зависимости намагниченности от температуры соединений PbFe_{0.5}Nb_{0.5}O₃ и ВаFe_{0.5}Nb_{0.5}O₃. Намагниченность ZFC получена при отогреве после охлаждения от 300 К без поля, а FC — при отогреве после охлаждения в поле. В случае бариевого соединения кривая ZFC при T = 25 K имеет острый максимум, а кривая FC — резкий излом. Выше $T_f = 25$ К кривые ZFC и FC различаются очень слабо. Иная зависимость намагниченности от температуры получена для PbFe_{0.5}Nb_{0.5}O₃. Для намагниченности ZFC в этом случае наблюдалось два максимума: при T = 10 К и T = 155 К. Максимум при T = 155 К получен также и в режиме FC, что указывает на фазовое превращение. Кривая ZFC при T = 10 К имеет резкий максимум, причем намагниченность FC при этой температуре аномального поведения не показывает. Кривые ZFC и FC не совпадают во всем исследованном интервале температур 5-300 К. Это свидетельствует о том, что точка Кюри находится значительно выше комнатной температуры. Кроме того, намагниченность FC вблизи комнатной температуры аномально увеличивается с ростом температуры. Дальнейшую информацию можно получить из полевых зависимостей намагниченности (рис. 6). При T = 5 К зависимость намагниченности от поля нелинейна для обоих образцов. Однако небольшая величина намагниченности $((1.5-2) \ \Gamma c \cdot c M^3 / \Gamma$ в поле 50 кЭ) свидетельствует о доминирующем характере антиферромагнитных взаимодействий. Спонтанная намагниченность мала. Ее величина не превышает 0.5 Гс·см³/г, что характерно для слабых ферромагнетиков или спиновых стекол. Однако коэрцитивные силы довольно резко различаются. Для бариевого соединения $H_C \approx 1600$ Э, тогда как для свинцового — около $H_C \approx 600$ Э. Это свидетельствует о различном механизме намагничивания этих соединений.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Дипольное упорядочение в BiFeO₃ обусловлено относительным сдвигом ионов Bi^{3+} , Fe^{3+} и O^{2-} вдоль оси [001] в гексагональной установке. В отличие от ионов висмута ионы Ca^{2+} , Sr^{2+} , Ba^{2+} не образуют резко анизотропных химических связей. Поэтому при замещении ионов висмута на щелочноземельные ионы можно ожидать постепенного разрушения дальнего дипольного порядка вследствие образования локальных центросимметричных позиций, занятых щелочноземельными ионами. Каж-

Рис. 6. Зависимости намагниченности от поля для соединений $BaFe_{0.5}Nb_{0.5}O_3$ (*a*) и $PbFe_{0.5}Nb_{0.5}O_3$ (*б*) при T = 5 K. На вставках показано поведение намагниченности в малых магнитных полях

дый А-катион перовскита ABO3 окружен ближайшими шестью соседями А-типа. Поэтому приблизительно при содержании щелочноземельного иона 15-25 % от общего количества А-мест дальний дипольный порядок должен разрушиться и система должна перейти в фазу с другим типом симметрии. Ионы Ca²⁺, Sr²⁺, Ba²⁺ сильно различаются по величине ионного радиуса. В этом ряду радиус последовательно увеличивается от $1.31 \text{ Å} (\text{Ca}^{2+})$ до 1.65 Å(Ba²⁺) для координационного числа 12 по кислороду. Вследствие размерного эффекта, возникающего при замещении этими ионами, должны возникать разного типа кристаллоструктурные искажения. В случае малых А-катионов в перовскитах часто возникают орторомбические искажения (пространственная группа Pbnm), тогда как в случае больших А-катионов ($A = Ba^{2+}$) система часто стремится принять кубическую симметрию (пространственная группа $Pm\bar{3}m$). По-видимому, эта

общая тенденция справедлива и в случае систем ${\rm BiFeO_3-A(Fe_{0.5}Nb_{0.5})O_3}$ (A = Ca, Sr, Ba). В случае замещения и
она Bi^{3+} на ионы $\mathrm{Ca}^{2+},\,\mathrm{Sr}^{2+}$ возникают орторомбические искажения, тогда как в случае $A = Ba^{2+}$ система стремится к кубической симметрии. Орторомбическая пространственная группа Рвлт допускает существование слабого ферромагнетизма, но является центросимметричной и не допускает существования дальнего дипольного порядка. Поэтому свойства систем с $A = Ca^{2+}$, Sr^{2+} заметно отличаются от свойств систем с $A = Ba^{2+}$. В первых двух системах наблюдается появление существенной спонтанной намагниченности, тогда как в бариевой системе спонтанная намагниченность очень мала по сравнению с кальциевой и стронциевой.

Важной проблемой при интерпретации магнитных свойств мультиферроиков является фазовая однородность образца. Дело в том, что наличие небольших примесей гексаферритов бария, свинца, стронция или у-Fe₂O₃ (доли вес. %) может привести к ложной интерпретации магнитных свойств, так как эти вещества обладают очень большой спонтанной намагниченностью и с помощью рентгенофазового анализа могут быть не выявлены. В случае системы BiFeO₃-CaFe_{0.5}Nb_{0.5}O₃ (рис. 3) ситуация довольно простая: гексаферрита кальция не существует, кроме того, коэрцитивная сила в этой системе слишком большая для гексаферритов. Сложнее понять происхождение очень малой спонтанной намагниченности, развивающейся в системе ${\rm BiFeO_3-PbFe_{0.5}Nb_{0.5}O_3}$ по мере замещения ионов висмута на ионы свинца (рис. 4). При x > 0.3 искажения элементарной ячейки очень малы, симметрия элементарной ячейки точно не определена и ответственным за появление спонтанной намагниченности в принципе, может быть слабый ферромагнетизм. В этом случае неколлинеарность магнитных моментов очень мала, даже в случае кристаллоструктурной двухфазности образца. Однако для образцов свинцовой серии x = 0.5 и x = 1 найденная коэрцитивная сила характерна для крупнозернистых образцов гексаферрита свинца. Обращает на себя внимание резкое различие в магнитных свойствах двух одинаковых по В-подрешетке перовскитов ВаFe_{0.5}Nb_{0.5}O₃ и PbFe_{0.5}Nb_{0.5}O₃ (рис. 5 и 6). В ${\rm PbFe}_{0.5}{\rm Nb}_{0.5}{\rm O}_3$ спин-стекольная компонента возникает при $T_f = 9$ К и значительно слабее выражена, чем в BaFe_{0.5}Nb_{0.5}O₃, в котором спин-стекольный переход происходит при T_f = 25 К. Коэрцитивные силы при T = 5 К сильно разнятся: в

ЖЭТФ, том **134**, вып. 2 (8), 2008

 $BaFe_{0.5}Nb_{0.5}O_3$ имеем $H_C = 1650$ Э, тогда как в ${\rm PbFe_{0.5}Nb_{0.5}O_3}$ — H_C = 600 Э. В области T_N и вблизи комнатной температуры в PbFe_{0.5}Nb_{0.5}O₃ наблюдалось аномальное поведение намагниченности, тогда как в BaFe_{0.5}Nb_{0.5}O₃ такое поведение полностью отсутствует, так же как отсутствует и спонтанная намагниченность выше T_f. Для PbFe_{0.5}Nb_{0.5}O₃ мессбауэровские измерения на ⁵⁷Fe выше T_N не выявили следов какого-либо магнитного упорядочения [21, 22]. Это означает, что относительная доля магнитоупорядоченного вещества очень мала и это вещество сильно магнитное. Таким веществом в системе Pb-Fe-O может быть гексаферрит свинца PbFe₁₂O₁₉. Мы предполагаем, что аномальные магнитные свойства PbFe_{0.5}Nb_{0.5}O₃ обусловлены именно этой примесью, причем структуры гексаферрита и перовскита могут сопрягаться путем образования полукогерентных границ. В этом случае системы будут связаны и намагниченность гексаферрита будет «чувствовать» фазовые превращения в PbFe0.5Nb0.5O3. Однако для подтверждения этой гипотезы необходимо провести дальнейшие исследования, в частности, на образцах с различным содержанием свинца.

Работа выполнена при финансовой поддержке БРФФИ (гранты №№ Ф06-017, Ф07-120).

ЛИТЕРАТУРА

- C. Michel, J. M. Moreau, G. D. Achenbacj et al., Sol. St. Comm. 7, 701 (1969).
- I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, Sol. St. Phys. 15, 4835 (1982).
- I. Sosnowska, M. Loewenhaupt, W. I. F. Dawid et al., Physica B 180–181, 117 (1992).
- C. Ederer and N. A. Spaldin, Curr. Opin. Sol. St. Mater. Sci. 9, 128 (2006).
- 5. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
- А. М. Кадомцева, А. К. Звездин, Ю. Ф. Попов и др., Письма в ЖЭТФ 79, 705 (2004).
- A. Palewicz, R. Przenioslo, I. Sosnowska et al., Acta Cryst. B 63, 537 (2007).
- В. А. Мурашев, Д. Н. Раков, И. С. Дубенко и др., Кристаллография 35, 912 (1990).
- Z. V. Gabbasova, M. D. Kuz'min, A. K. Zvezdin et al., Phys. Lett. A 158, 491 (1991).

- D. Lee, M. G. Kim, S. Ryu et al., Appl. Phys. Lett. 86, 222903 (2005).
- Sh.-T. Zhang, Yi Zhang, M.H. Lu et al., Appl. Phys. Lett. 88, 162901 (2006).
- 12. G. L. Yuan, S. W. Or, J. M. Liu et al., Appl. Phys. Lett. 89, 052905 (2006).
- 13. G. L. Yuan, S. W. Or, and H. L. W. Chan, J. Appl. Phys. 101, 064101 (2007).
- 14. G. L. Yuan and S. W. Or, Appl. Phys. Lett. 88, 062905 (2006).
- D. I. Woodward, I. M. Reaney, R. E. Eitel et al., J. Appl. Phys. 94, 3313 (2003).
- 16. J. Cheng, Sh. Yu, J. Chen et al., Appl. Phys. Lett. 89, 122911 (2006).
- 17. N. Wang, J. Cheng, A. Pyatakov et al., Phys. Rev. B 72, 104434 (2005).
- 18. B. Ruette, S. Zvyagin, A. P. Pyatakov et al., Phys. Rev. B 69, 064114 (2004).

- 19. R. Blinc, P. Cevc, A. Zorko et al., J. Appl. Phys. 101, 033901 (2007).
- 20. Y. Yang, J.-M. Liu, H. B. Huang et al., Phys. Rev. B 70, 132101 (2004).
- J. T. Wang, C. Zhang, Z. X. Shen et al., Ceram. Int. 30, 1627 (2004).
- Y. Yang, S. T. Zhang, H. B. Huang et al., Mater. Lett.
 59, 1767 (2005).
- 23. X. S. Gao, X. Y. Chen, J. Vin et al., Mater. Sci. Forum 35, 5421 (2000).
- 24. A. Falqui, N. Lampis, A. Geddo-Lehmann et al., J. Phys. Chem. Sol. B 109, 22967 (2005).
- N. Rama, J. B. Philipp, M. Opel et al., J. Appl Phys. 95, 7528 (2004).
- 26. A. R. Chakhmouradian, R. H. Mitchell, J. Sol. St. Chem. 138, 272 (1998).
- 27. S. B. Majmuder, S. Bhattacharyya, and R. S. Katiyar, J. Appl. Phys. 99, 024108 (2006).