ZKIT®, 2008, rom 134, Boim. 2 (8), crp. 330-337

© 2008

OPTICAL SUM RULE IN STRONGLY CORRELATED SYSTEMS

E. Z. Kuchinskii, N. A. Kuleeva, I. A. Nekrasov, M. V. Sadovskii"

Institute for Electrophysics, Russian Academy of Sciences, Ural Branch
620016, Ekaterinburg, Russia

Received March 27, 2008

We discuss the problem of a possible “violation” of the optical sum rule in the normal (nonsuperconducting)
state of strongly correlated electronic systems, using our recently proposed DMFT+Y approach applied to two
typical models: the “hot spot” model of the pseudogap state and disordered Anderson—-Hubbard model. We
explicitly demonstrate that the general Kubo single-band sum rule is satisfied for both models. But the optical
integral itself is in general dependent on temperature and characteristic parameters, such as the pseudogap
width, correlation strength, and disorder scattering, leading to an effective “violation” of the optical sum rule,

which may be observed in the experiments.

PACS: 74.25.Gz, 71.10.Fd, 71.10.Hf, 71.27.+a, 71.30.+h, 74.72.-h

1. INTRODUCTION

Many years ago, Kubo [1] proved the general sum
rule for the diagonal dynamic (frequency-dependent)
conductivity o(w), which holds for any system of
charged particles irrespective of interactions, tempera-
ture, or statistics. This sum rule is usually written as

o0
-/
™
0
where r specifies the type of charged particles, and n,
and e, are the respective densities and charges.

For the system of electrons in a solid, Eq. (1) takes
the form

2
Reo(w) dw = Z fr€r
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where n is the density of electrons and w?) = 4mne”/m
is the plasma frequency.

In any real experiment, however, we are not dealing
with an infinite range of frequencies. If we consider
electrons in a crystal and limit ourselves to the elec-
trons in a particular (e.g., conduction) band, neglecting
interband transitions, the general sum rule (2) reduces
to the single-band sum rule of Kubo [1, 2]:
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where ¢, is the bare dispersion defined by the effec-
tive single-band Hamiltonian, and n, is the momen-
tum distribution function (occupation number), which
is in general defined by the interacting retarded elec-
tron Green's function G®(z,p) [3, 4]:
17 .
- / den(e) ImG" (e, p), (4)
— o
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where n(e) is the usual Fermi distribution. In Eq. (3),
w, represents an ultraviolet cut-off, a frequency that
is assumed to be larger than the bandwidth of the
low-energy band but smaller than the gap to other
bands. The function f(w.) accounts for the cut-off de-
pendence, which arises from the presence of the Drude
spectral weight beyond w,.. [5]; this fucntion is equal to
unity if we formally set w, to infinity and ignore the
interband transitions.

Although the general sum rule is certainly pre-
served, the optical integral W (w..,T') is not a conserved
quantity because both f(w.) [5] and n, [4, 6] depend
on the temperature T and also on details of interac-
tions [3]. This dependence of W on T and other pa-
rameters of the system under study has been termed
the “sum rule violation”. It was actively studied ex-
perimentally, especially in cuprates, where pronounced
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anomalies were observed in both the c-axis and in-
plane conductivity, in normal as well as superconduct-
ing states [8-13].

The finite cut-off effects were extensively studied in
several theoretical papers on the 7" dependence of the
optical integral [4, 5, 7]. In Refs. [5, 7], the effect of
the cut-off was considered in the context of electrons
coupled to phonons. In a simple Drude model,

and the sum rule can only be “violated” due to the
presence of f(w.). Integrating over w and expanding
for w.r > 1, we can see that

(1-

For the infinite cut-off, f(w.) =1 and W = w?,/8, but
for a finite cut-off, f(w.) contains the term proportional
to 1/w.7. If 1/7 changes with T', then we obtain a sum
rule “violation” even if wy; is independent of T [5, 7].
Other aspects of the cut-off dependence were recently
discussed in detail in Ref. [2].

In this paper, we neglect the cut-off effects in the
optical integral from the outset. Our goal is to study
the dependence of W on T and a number of inter-
action parameters determining the electron properties
of strongly correlated systems, such as cuprates.
this context, we discuss the problem of a possible “vio-
lation” of the optical sum rule in the normal (non-
superconducting) state of strongly correlated electronic
systems, using our recently proposed DMFT+X. ap-
proach [14-16] applied to dynamic conductivity in two
typical models of such systems: the “hot spot” model of
the pseudogap state [19] and the disordered Anderson—
Hubbard model [20]. Our aim is to check the consis-
tency of the DMFT+X approach applied to calcula-
tions of optical conductivity as well as to demonstrate
rather important dependences of the optical integral
W not only on T but also on important characteris-
tics such as the pseudogap width, disorder, and cor-
relation strength, which makes the (single-band) sum
rule “violation” rather ubiquitous in strongly correlated
systems, even if the cut-off effects are neglected.
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2. OPTICAL SUM RULE IN THE
GENERALIZED DMFT+3 APPROACH

A characteristic feature of the general sum rule ex-
pressed by Egs. (3) and (4) is that the integral W
over frequency in the left-hand side is calculated based
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on a two-particle property (the dynamic conductivity,
which is determined by the two-particle Green’s func-
tion, with appropriate vertex corrections in general),
but the right-hand side is determined by single-particle
characteristics, such as the bare dispersion and oc-
cupation number (4) (determined by a single-particle
Green’s function). Thus, checking the validity of this
sum rule, we are in fact thoroughly checking the con-
sistency of any theoretical approach used in our model
calculations.

Our generalized dynamic theory
(DMFT+X) approach [14-16], supplementing the
standard dynamic mean field theory (DMFT) [17, 18]
with an additional “external” self-energy ¥ (due to any
kind of interaction outside the scope of the DMFT,
which is exact only in infinitely many dimensions),
provides an effective method to calculate both single-
particle and two-particle properties [19, 20]. The
consistency check of this new approach is obviously of
great interest by itself. We also see in what follows
that it gives a kind of a new insight into the sum-rule
“violation” problem:.

mean field

A. Pseudogap state, the “hot spot” model
Pseudogap phenomena in strongly correlated
systems have an essential spatial length scale de-
pendence [21]. To merge pseudogap physics and
strong electron correlations, we have generalized the
DMFT [17, 18] by inclusion of the dependence on the
correlation length of pseudogap fluctuations via an
additional (momentum-dependent) self-energy ¥p(¢).
This self-energy X,(¢) describes nonlocal dynamic
correlations induced either by short-ranged collective
SDW-like antiferromagnetic spin or CDW-like charge
fluctuations [22, 23].

To calculate () in two-dimensional “hot spot”
model [21] for an electron moving in the random
field of pseudogap fluctuations (considered to be static
and Gaussian) with dominant scattering momentum
transfers of the order of the characteristic vector
Q (r/a,m/a) (where a is the lattice spacing),
we used [15, 16] the recursion procedure proposed in
Refs. [22, 23], which is controlled by two main physi-
cal characteristics of the pseudogap state: the pseudo-
gap amplitude A, which characterizes the energy scale
of the pseudogap, and the inverse correlation length
k = &1 of short-range SDW (CDW) fluctuations.
Both parameters A and &, determining pseudogap be-
havior, can in principle be calculated from the relevant
microscopic model [15].
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The weakly doped one-band Hubbard model with
a repulsive Coulomb interaction U on a square lat-
tice with nearest and next-to-nearest neighbor hop-
ping was numerically investigated within this general-
ized DMFT+X self-consistent approach, as described
in detail in Refs. [14-16].

Briefly, the DMFT+X self-consistent loop is as fol-
lows. First, we guess some initial local (DMFT) elect-
ron self-energy Y(¢). Second, we compute the p-depen-
dent “external” self-energy T (¢), which is in general a
functional of £(¢). Then, neglecting interference effects
between the self-energies (which is in fact the major as-
sumption of our approach), we can set up and solve the
lattice problem of DMFT [17, 18]. Finally, we define
an effective Anderson single-impurity problem, which
is to be solved by any “impurity solver” (we mostly use
the numerical renormalization group, NRG) to close
the DMFT+X equations.

The additive form of self-energy is in fact an ad-
vantage of our approach [14-16]. Tt allows preser-
ving the set of self-consistent equations of the standard
DMFT [17, 18]. But there are two distinctions from the
conventional DMFT. During each DMFT iteration, we
recalculate the corresponding p-dependent self-energy
Sp(p, e, [E(w)]) via an approximate scheme, taking in-
teractions with collective modes or order parameter
fluctuations into account, and the local Green function
Gii(iw) is “dressed” by ¥, (¢) at each step. When the in-
put and output Green’s functions (or self-energies) con-
verge to each other (with prescribed accuracy), we con-
sider the obtained solution selfconsistent. Physically,
this corresponds to accounting for some “external” (e.g.,
pseudogap) fluctuations, characterized by an important
length scale £, in the fermionic “bath” surrounding the
effective Anderson impurity of the usual DMFT. The
cases of strongly correlated metals and doped Mott in-
sulators were considered in [15, 16]. Energy dispersions,
quasiparticle damping, spectral functions, and ARPES
spectra calculated within the DMFT+X. scheme, all
show a pseudogap effect close to the Fermi level of the
quasiparticle band.

In Ref. [19], this DMFT+X procedure was gener-
alized to calculate two-particle properties, such as the
dynamic conductivity, using the previously developed
recursion procedure for vertex corrections due to pseu-
dogap fluctuations [24], producing typical pseudogap
anomalies of the optical conductivity and a dependence
of these anomalies on the correlation strength U. Be-
low, we use the approach in Ref. [19] to investigate the
sum-rule in the “hot spot” model.

To calculate the optical integral W, we have just
used the conductivity data in Ref. [19] (extended to a
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Fig.1. Real part of the optical conductivity for a

strongly correlated system in the pseudogap state

(' = —0.4t, t = 0.25 eV, and T = 0.089¢) in the

DMFT+X, approximation, the U dependence. Band

filling n = 0.8, pseudogap amplitude A = ¢, correla-

tion length ¢ = 10a. Conductivity is given in units of
oo = 62/h

wider frequency range needed to calculate W), while
the right-hand side of (3) was recalculated using recur-
sion relations for ¥ (¢) and the whole self-consistency
DMFT+X loop. All calculations were done for a
tight-binding “bare” spectrum on the square lattice,
with the nearest-neighbor transfer integral ¢ and the
next-to-nearest-neighbor transfer integral ¢'.

In Fig. 1, we present our typical data for the real
part of conductivity (with ¢ = —0.4¢t, t = 0.25 €V,
the band filling n 0.8, and the temperature
T = 0.089¢) for different values of Hubbard interaction
U 4t,6t, 10,40t and a fixed pseudogap amplitude
A =t (at the correlation length & = 10a). It is ob-
vious from these data that the optical integral W is
different for all of these curves; its value actually de-
creases with an increase in U (along with damping of
pseudogap anomalies [19]). However, the single band
optical sum-rule in (3) is satisfied within our numeri-
cal accuracy, as can be seen from Table 1. The small
“deficiency” in the values of W in Table 1 is naturally
due to a finite frequency integration interval over the
conductivity data in Fig. 1.

In Fig. 2, we show the real part of the optical
conductivity for a doped Mott insulator (at a fixed
U = 40t, t' = —0.4t, t = 0.25 €V, and the band fill-
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Table 1.  Single-band optical sum rule check in the
“hot spot” model, the U dependence. The optical in-
tegral is given in units of e?t/h

0%e T
U Z p W = /Re o(w) dw
0
4t 0.456 0.408
6t 0.419 0.387
10t 0.371 0.359
40t 0.323 0.306
Reo
0.20 T T T

0.15

0.10

0.05

20
w/t

Fig.2. Real part of the optical conductivity for a doped

Mott insulator (U = 40t, t' = —0.4¢t, t = 0.25 eV,

and T = 0.089t) in the DMFT+X, approximation for

different values of the pseudogap amplitude A = 0,

A =t, and A = 2¢t. Correlation length £ = 10a, band
filling factor n = 0.8

ing n = 0.8, T = 0.089¢) for different values of the
pseudogap amplitude A = 0, A = ¢, and A = 2¢. The
correlation length is again ¢ = 10a and the band filling
factor n = 0.8. The “violation” of the sum rule here
is especially striking: the optical integral obviously de-
creases with an increase in A. However, again, the
single-band optical sum rule in (3) is strictly valid, as
can be seen from Table 2

To study the details of the sum-rule “violation”, i.e.,
the dependence of the optical integral W on the param-
eters of the model, we performed extensive calculations
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Table 2.
“hot spot” model, the A dependence. The optical in-

Single-band optical sum rule check in the

tegral is given in units of e?t/h

oo
A 826” W= [R d
Z 3px = eo(w)dw
0
0 0.366 0.36
t 0.314 0.304
2t 0.264 0.252
w(U)/w(0)
1.0 1A=0 :
2 A=t, ka=0.1
0.8 .\ 1 i
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Fig.3. Dependence of the normalized optical integral

on the correlation strength U in the pseudogap state

(T = 0.089, t = 0.25 eV, t' = —0.1 eV, n = 0.8).

Inset: the correlation length dependence of the optical
integral in units of the e’t/h

of the appropriate dependences of the right-hand side of
Eq. (3) and the optical integral W on the temperature
T, doping, the pseudogap amplitude A, the correlation
length of pseudogap fluctuations ¢ = k!, and the cor-
relation strength U. Some of the results are presented
in Figs. 3-5.

A typical dependence of the (normalized) optical in-
tegral on the correlation strength U is shown in Fig. 3
for two values of A. We can see a rather significant
decrease in W with an increase in U. As regards the
correlation length dependence, which is shown in the
inset to Fig. 3, it was found to be very weak (practi-
cally negligible) in the whole region of realistic values
of ¢, and we therefore do not discuss it further. The
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Fig.4. Dependence of the normalized optical integ-

ral on the pseudogap amplitude A (T 0.011¢,
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Fig.5. Dependence of the normalized optical integral

on hole doping in the pseudogap state. Inset: the tem-

perature dependence (T = 0.011¢, U = 4t, A = ¢,
t=0.25¢eV, t' = —0.1 eV, ka = 0.1)

dependence of W on the pseudogap amplitude A (for
several values of U) is shown in Fig. 4. A typical doping
dependence, which reflects just the dependence of the
square of the plasma frequency le on doping, is given
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in Fig. 5. In all other cases, the change of the relevant
parameters of the model leads to a rather significant
decrease in the values of W. As regards the temper-
ature dependence (shown in the inset to Fig. 5), it is
rather weak, quadratic in 7" and quite similar to that
found in Refs. [4].

Basically, these results show that the value of the
optical integral depends on all the major parameters of
the model and, in this sense, its value is not universal
and hence the optical sum rule is significantly “violated”
if we restrict ourselves to a single-band contribution.

B. Disordered Anderson—Hubbard model

In Ref. [20], we used the DMFT+X approximation
to calculate the density of states, the optical conductiv-
ity, and the phase diagram of a strongly correlated and
strongly disordered paramagnetic Anderson—Hubbard
model, with a Gaussian site disorder. Strong corre-
lations were taken into account by the DMFT, while
disorder was taken into account via the appropriate
generalization of the self-consistent theory of local-
ization [25-28]. We considered the three-dimensional
system with a semi-elliptic density of states. The
correlated metal, Mott insulator, and correlated An-
derson insulator phases were identified via the evolu-
tion of the density of states and dynamic conductiv-
ity, demonstrating both Mott—Hubbard and Anderson
metal-insulator transitions and allowing the construc-
tion of the complete zero-temperature phase diagram
of the Anderson—Hubbard model.

For the “external” self-energy entering the
DMFT+X loop, we wused the simplest possible
approximation (neglecting “crossing” diagrams for
disorder scattering), just the self-consistent
Born approximation, which in the case of Gaussian
site-energy disorder takes the usual form

S(e) =A%) Gle.p).

ie.,

(6)

where A now denotes the amplitude of site disorder.

Calculations of the optical conductivity are consid-
erably simplified [20] because there are no contributions
to conductivity due to vertex corrections determined
by a local Hubbard interaction. The conductivity is es-
sentially determined by the generalized diffusion coeffi-
cient, which is obtained from the appropriate general-
ization of the self-consistency equation in Refs. [25-28],
which is to be solved in conjunction with the DMFT+3X
loop.

In Fig. 6, we show typical results for the real part
of the dynamic conductivity of a correlated metal de-



MKIT®, Tom 134, Boin. 2 (8), 2008 Optical sum rule in strongly correlated systems
Reo W (U)/W(0) . . . .
= 1.0 1 A/2D =0.11 .
1 A/2D =0
2 0.25 \ti*\ 2 A/2D =0.37
bt . ok —
0.2 g 3 0.37 os | \.\*\ 3 A/2D =0.50 |
4 0.43 \ \ \
: [}
; U/2D =1.25 5 050 . \ "\
. 0.6 0\ a\g i
b \ LN
N ]
OLR /33 I 04 \, 1
'-/ '\‘\ \2
U4
'l \ 5 n .\ ‘\
] 2 0.2 | \ 1 N,
; > LS ®—9_o_
N _l__.\_\~ .\.\-\ °
Lertt T S T T I—.‘._._-_-
) 1 ......... 1 1 1 1
0 0.5 1.0 1.5 2.0 0 1 2 3 4
w/2D U/2D

Fig.6. Real part of the dynamic conductivity for the
half-filled Anderson-Hubbard model for different de-
grees of disorder A and U = 2.5D, typical for a corre-
lated metal. Lines 1 and 2 are for the metallic phase,
line 3 corresponds to the mobility edge (Anderson tran-
sition), and lines 4 and 5 correspond to the correlated
Anderson insulator. The conductivity is in units of
e? /ha

Table 3.  Single-band optical sum rule check in the
Anderson—Hubbard model, the A dependence. The
optical integral is in units of 2¢*>D/ha

e’ — 9%cp r
A/2D TZ a2 Ny Wz/ReU(w)dw
p 0
0 0.063 0.064
0.25 0.068 0.07
0.37 0.06 0.056
0.5 0.049 0.05

scribed by the half-filled Anderson—-Hubbard model
(with the bandwidth 2D) for different degrees of disor-
der A and U = 2.5D; the results demonstrate a con-
tinuous transition to the correlated Anderson insulator
as disorder increases.

Again, the direct check shows that the single-band
optical sum rule in (3) is satisfied within our numerical
accuracy, as can be seen from Table 3. At the same
time, the optical integral W itself obviously changes
with disorder.
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Fig. 7. Dependence of the normalized optical integral

on the correlation strength in the Anderson-Hubbard

model for different degrees of disorder A (1 and 2,

strongly disordered metal; 3, correlated Anderson insu-
lator)

Again, to study the details of this sum rule “viola-
tion”, i.e., the dependence of W on the parameters of
the Anderson-Hubbard model, we performed detailed
calculations of its dependences on the temperature T,
the disorder amplitude A, and the correlation strength
U. Some of the results are presented in Figs. 7-9.

In Fig. 7, we show the dependence of the normalized
optical integral on U, for different degrees of disorder
(for both a strongly disordered metal and a correlated
Anderson insulator). Tt is seen that in all cases, an
increase in the correlation strength leads to a rather
sharp decrease in T in the metallic state; this decrease
is much slower in the Mott insulator.

In Fig. 8, we present similar dependences on the dis-
order strength A. In the metallic state, the optical in-
tegral generally decreases as disorder increases, but the
opposite behavior is observed if we start from the Mott
insulator (obtained either with an increase in U from
the metallic state or for a reduced U in the hysteresis
region of the phase diagram [20]). We note the absence
of any significant changes in the immediate vicinity of
the critical disorder A./2D = 0.37, corresponding to
the Anderson metal-insulator transition. At the same
time, we note that the most significant increase in the
optical integral occurs as the system transforms into
the disorder-induced metallic state obtained from the
Mott insulator, as observed in Ref. [20].
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Fig.8. Disorder dependence of the normalized optical
integral in Anderson-Hubbard model for different val-
ues of Hubbard interaction U. Lines 1, 2, 3 — corre-
lated metal, transforming into Anderson insulator. Line
4 — Mott insulator state obtained with the growth of
U from correlated metal, line 5 — Mott insulator ob-
tained with diminishing U in hysteresis region of the

phase diagram
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Fig.9. Temperature dependence of the normalized op-
tical integral in the Anderson—Hubbard model for diffe-
rent degrees of disorder. Inset: a similar dependence at
a fixed disorder but for different values of the Hubbard
interaction U; line 3 here corresponds to a disordered

Mott insulator
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In Fig. 9, we show the temperature dependence of
the normalized optical integral, for different degrees
of disorder. In the Anderson—-Hubbard model, it ap-
pears to be significantly stronger than in the “hot spots”
model (see above), and decreases as disorder increases.
Moreover, in a relatively weakly correlated state, the
situation is qualitatively the same, the optical integral
decreases as T increases, but in a disordered Mott in-
sulator, the integral increases, as can be seen from line
3 in the inset to Fig. 9.

Again, as in the case of the pseudogap “hot spot”
model, these results for the Anderson—-Hubbard model
clearly demonstrate that the value of the optical in-
tegral is not universal and depends on all the major
parameters of the model, and therefore the single-band
optical sum rule is strongly “violated”.

3. CONCLUSION

Based on the DMFT+X. approach, we have studied
the single-band optical sum rule for two typical strongly
correlated systems, which are outside the scope of the
standard DMFT scheme: (i) the “hot spot” model of
the pseudogap state, which takes important nonlocal
correlations due to AFM(CDW) short-range order fluc-
tuations into account and (ii) the Anderson-Hubbard
model, which includes strong disorder effects leading to
the disorder-induced metal-insulator (Anderson) tran-
sition alongside with the Mott transition.

We have explicitly demonstrated that the sing-
le-band optical sum rule in (3) is satisfied for both mo-
dels, confirming the self-consistency of the DMFT+X.
approach for calculation of two-particle properties.

However, the optical integral

W = 2/Rea(w)dw

0

entering single-band sum rule (3) is nonuniversal and
depends on the parameters of the model under con-
sideration. Most of the previous studies addressed its
(relatively weak) temperature dependence. Here, we
have analyzed dependences on the essential parameters
of our models, showing that these may lead to rather
strong “violations” of the optical sum rule. Because
most of the parameters under discussion may be var-
ied in different kinds of experiments, these dependences
should be taken into account in the analysis of optical
experiments on strongly correlated systems.
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