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OPTICAL SUM RULE IN STRONGLY CORRELATED SYSTEMSE. Z. Ku
hinskii, N. A. Kuleeva, I. A. Nekrasov, M. V. Sadovskii *Institute for Ele
trophysi
s, Russian A
ademy of S
ien
es, Ural Bran
h620016, Ekaterinburg, RussiaRe
eived Mar
h 27, 2008We dis
uss the problem of a possible �violation� of the opti
al sum rule in the normal (nonsuper
ondu
ting)state of strongly 
orrelated ele
troni
 systems, using our re
ently proposed DMFT+� approa
h applied to twotypi
al models: the �hot spot� model of the pseudogap state and disordered Anderson�Hubbard model. Weexpli
itly demonstrate that the general Kubo single-band sum rule is satis�ed for both models. But the opti
alintegral itself is in general dependent on temperature and 
hara
teristi
 parameters, su
h as the pseudogapwidth, 
orrelation strength, and disorder s
attering, leading to an e�e
tive �violation� of the opti
al sum rule,whi
h may be observed in the experiments.PACS: 74.25.Gz, 71.10.Fd, 71.10.Hf, 71.27.+a, 71.30.+h, 74.72.-h1. INTRODUCTIONMany years ago, Kubo [1℄ proved the general sumrule for the diagonal dynami
 (frequen
y-dependent)
ondu
tivity �(!), whi
h holds for any system of
harged parti
les irrespe
tive of intera
tions, tempera-ture, or statisti
s. This sum rule is usually written as2� 1Z0 Re�(!) d! =Xr nre2rmr ; (1)where r spe
i�es the type of 
harged parti
les, and nrand er are the respe
tive densities and 
harges.For the system of ele
trons in a solid, Eq. (1) takesthe form 1Z0 Re�(!) d! = !2pl8 ; (2)where n is the density of ele
trons and !2pl = 4�ne2=mis the plasma frequen
y.In any real experiment, however, we are not dealingwith an in�nite range of frequen
ies. If we 
onsiderele
trons in a 
rystal and limit ourselves to the ele
-trons in a parti
ular (e.g., 
ondu
tion) band, negle
tinginterband transitions, the general sum rule (2) redu
esto the single-band sum rule of Kubo [1, 2℄:*E-mail: sadovski�iep.uran.ru

W = !
Z0 Re�(!) d! = f(!
)�e22 Xp �2"p�p2x np; (3)where "p is the bare dispersion de�ned by the e�e
-tive single-band Hamiltonian, and np is the momen-tum distribution fun
tion (o

upation number), whi
his in general de�ned by the intera
ting retarded ele
-tron Green's fun
tion GR(";p) [3, 4℄:np = � 1� 1Z�1 d" n(") ImGR(";p); (4)where n(") is the usual Fermi distribution. In Eq. (3),!
 represents an ultraviolet 
ut-o�, a frequen
y thatis assumed to be larger than the bandwidth of thelow-energy band but smaller than the gap to otherbands. The fun
tion f(!
) a

ounts for the 
ut-o� de-penden
e, whi
h arises from the presen
e of the Drudespe
tral weight beyond !
 [5℄; this fu
ntion is equal tounity if we formally set !
 to in�nity and ignore theinterband transitions.Although the general sum rule is 
ertainly pre-served, the opti
al integralW (!
; T ) is not a 
onservedquantity be
ause both f(!
) [5℄ and np [4, 6℄ dependon the temperature T and also on details of intera
-tions [3℄. This dependen
e of W on T and other pa-rameters of the system under study has been termedthe �sum rule violation�. It was a
tively studied ex-perimentally, espe
ially in 
uprates, where pronoun
ed330
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al sum rule in strongly 
orrelated systemsanomalies were observed in both the 
-axis and in-plane 
ondu
tivity, in normal as well as super
ondu
t-ing states [8�13℄.The �nite 
ut-o� e�e
ts were extensively studied inseveral theoreti
al papers on the T dependen
e of theopti
al integral [4, 5, 7℄. In Refs. [5, 7℄, the e�e
t ofthe 
ut-o� was 
onsidered in the 
ontext of ele
trons
oupled to phonons. In a simple Drude model,�(!) = !2pl4� .�1� � i!�and the sum rule 
an only be �violated� due to thepresen
e of f(!
). Integrating over ! and expandingfor !
� � 1, we 
an see thatf(!
) = �1� 2� 1!
� � : (5)For the in�nite 
ut-o�, f(!
) = 1 and W = !2pl=8, butfor a �nite 
ut-o�, f(!
) 
ontains the term proportionalto 1=!
� . If 1=� 
hanges with T , then we obtain a sumrule �violation� even if !pl is independent of T [5, 7℄.Other aspe
ts of the 
ut-o� dependen
e were re
entlydis
ussed in detail in Ref. [2℄.In this paper, we negle
t the 
ut-o� e�e
ts in theopti
al integral from the outset. Our goal is to studythe dependen
e of W on T and a number of inter-a
tion parameters determining the ele
tron propertiesof strongly 
orrelated systems, su
h as 
uprates. Inthis 
ontext, we dis
uss the problem of a possible �vio-lation� of the opti
al sum rule in the normal (non-super
ondu
ting) state of strongly 
orrelated ele
troni
systems, using our re
ently proposed DMFT+� ap-proa
h [14�16℄ applied to dynami
 
ondu
tivity in twotypi
al models of su
h systems: the �hot spot� model ofthe pseudogap state [19℄ and the disordered Anderson�Hubbard model [20℄. Our aim is to 
he
k the 
onsis-ten
y of the DMFT+� approa
h applied to 
al
ula-tions of opti
al 
ondu
tivity as well as to demonstraterather important dependen
es of the opti
al integralW not only on T but also on important 
hara
teris-ti
s su
h as the pseudogap width, disorder, and 
or-relation strength, whi
h makes the (single-band) sumrule �violation� rather ubiquitous in strongly 
orrelatedsystems, even if the 
ut-o� e�e
ts are negle
ted.2. OPTICAL SUM RULE IN THEGENERALIZED DMFT+� APPROACHA 
hara
teristi
 feature of the general sum rule ex-pressed by Eqs. (3) and (4) is that the integral Wover frequen
y in the left-hand side is 
al
ulated based

on a two-parti
le property (the dynami
 
ondu
tivity,whi
h is determined by the two-parti
le Green's fun
-tion, with appropriate vertex 
orre
tions in general),but the right-hand side is determined by single-parti
le
hara
teristi
s, su
h as the bare dispersion and o
-
upation number (4) (determined by a single-parti
leGreen's fun
tion). Thus, 
he
king the validity of thissum rule, we are in fa
t thoroughly 
he
king the 
on-sisten
y of any theoreti
al approa
h used in our model
al
ulations.Our generalized dynami
 mean �eld theory(DMFT+�) approa
h [14�16℄, supplementing thestandard dynami
 mean �eld theory (DMFT) [17, 18℄with an additional �external� self-energy � (due to anykind of intera
tion outside the s
ope of the DMFT,whi
h is exa
t only in in�nitely many dimensions),provides an e�e
tive method to 
al
ulate both single-parti
le and two-parti
le properties [19, 20℄. The
onsisten
y 
he
k of this new approa
h is obviously ofgreat interest by itself. We also see in what followsthat it gives a kind of a new insight into the sum-rule�violation� problem.A. Pseudogap state, the �hot spot� modelPseudogap phenomena in strongly 
orrelatedsystems have an essential spatial length s
ale de-penden
e [21℄. To merge pseudogap physi
s andstrong ele
tron 
orrelations, we have generalized theDMFT [17, 18℄ by in
lusion of the dependen
e on the
orrelation length of pseudogap �u
tuations via anadditional (momentum-dependent) self-energy �p(").This self-energy �p(") des
ribes nonlo
al dynami

orrelations indu
ed either by short-ranged 
olle
tiveSDW-like antiferromagneti
 spin or CDW-like 
harge�u
tuations [22, 23℄.To 
al
ulate �p(") in two-dimensional �hot spot�model [21℄ for an ele
tron moving in the random�eld of pseudogap �u
tuations (
onsidered to be stati
and Gaussian) with dominant s
attering momentumtransfers of the order of the 
hara
teristi
 ve
torQ = (�=a; �=a) (where a is the latti
e spa
ing),we used [15, 16℄ the re
ursion pro
edure proposed inRefs. [22, 23℄, whi
h is 
ontrolled by two main physi-
al 
hara
teristi
s of the pseudogap state: the pseudo-gap amplitude �, whi
h 
hara
terizes the energy s
aleof the pseudogap, and the inverse 
orrelation length� = ��1 of short-range SDW (CDW) �u
tuations.Both parameters � and �, determining pseudogap be-havior, 
an in prin
iple be 
al
ulated from the relevantmi
ros
opi
 model [15℄.331
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hinskii, N. A. Kuleeva, I. A. Nekrasov, M. V. Sadovskii ÆÝÒÔ, òîì 134, âûï. 2 (8), 2008The weakly doped one-band Hubbard model witha repulsive Coulomb intera
tion U on a square lat-ti
e with nearest and next-to-nearest neighbor hop-ping was numeri
ally investigated within this general-ized DMFT+� self-
onsistent approa
h, as des
ribedin detail in Refs. [14�16℄.Brie�y, the DMFT+� self-
onsistent loop is as fol-lows. First, we guess some initial lo
al (DMFT) ele
t-ron self-energy �("). Se
ond, we 
ompute the p-depen-dent �external� self-energy �p("), whi
h is in general afun
tional of �("). Then, negle
ting interferen
e e�e
tsbetween the self-energies (whi
h is in fa
t the major as-sumption of our approa
h), we 
an set up and solve thelatti
e problem of DMFT [17, 18℄. Finally, we de�nean e�e
tive Anderson single-impurity problem, whi
his to be solved by any �impurity solver� (we mostly usethe numeri
al renormalization group, NRG) to 
losethe DMFT+� equations.The additive form of self-energy is in fa
t an ad-vantage of our approa
h [14�16℄. It allows preser-ving the set of self-
onsistent equations of the standardDMFT [17, 18℄. But there are two distin
tions from the
onventional DMFT. During ea
h DMFT iteration, were
al
ulate the 
orresponding p-dependent self-energy�p(�; "; [�(!)℄) via an approximate s
heme, taking in-tera
tions with 
olle
tive modes or order parameter�u
tuations into a

ount, and the lo
al Green fun
tionGii(i!) is �dressed� by�p(") at ea
h step. When the in-put and output Green's fun
tions (or self-energies) 
on-verge to ea
h other (with pres
ribed a

ura
y), we 
on-sider the obtained solution self
onsistent. Physi
ally,this 
orresponds to a

ounting for some �external� (e.g.,pseudogap) �u
tuations, 
hara
terized by an importantlength s
ale �, in the fermioni
 �bath� surrounding thee�e
tive Anderson impurity of the usual DMFT. The
ases of strongly 
orrelated metals and doped Mott in-sulators were 
onsidered in [15, 16℄. Energy dispersions,quasiparti
le damping, spe
tral fun
tions, and ARPESspe
tra 
al
ulated within the DMFT+� s
heme, allshow a pseudogap e�e
t 
lose to the Fermi level of thequasiparti
le band.In Ref. [19℄, this DMFT+� pro
edure was gener-alized to 
al
ulate two-parti
le properties, su
h as thedynami
 
ondu
tivity, using the previously developedre
ursion pro
edure for vertex 
orre
tions due to pseu-dogap �u
tuations [24℄, produ
ing typi
al pseudogapanomalies of the opti
al 
ondu
tivity and a dependen
eof these anomalies on the 
orrelation strength U . Be-low, we use the approa
h in Ref. [19℄ to investigate thesum-rule in the �hot spot� model.To 
al
ulate the opti
al integral W , we have justused the 
ondu
tivity data in Ref. [19℄ (extended to a

1 3 2 12108642 !=t00:1
0:20:3
0:40:5Re� 1 U = 4t2 U = 6t3 U = 10t4 U = 40t

4Fig. 1. Real part of the opti
al 
ondu
tivity for astrongly 
orrelated system in the pseudogap state(t0 = �0:4t, t = 0:25 eV, and T = 0:089t) in theDMFT+�p approximation, the U dependen
e. Band�lling n = 0:8, pseudogap amplitude � = t, 
orrela-tion length � = 10a. Condu
tivity is given in units of�0 = e2=~wider frequen
y range needed to 
al
ulate W ), whilethe right-hand side of (3) was re
al
ulated using re
ur-sion relations for �p(") and the whole self-
onsisten
yDMFT+� loop. All 
al
ulations were done for atight-binding �bare� spe
trum on the square latti
e,with the nearest-neighbor transfer integral t and thenext-to-nearest-neighbor transfer integral t0.In Fig. 1, we present our typi
al data for the realpart of 
ondu
tivity (with t0 = �0:4t, t = 0:25 eV,the band �lling n = 0:8, and the temperatureT = 0:089t) for di�erent values of Hubbard intera
tionU = 4t; 6t; 10t; 40t and a �xed pseudogap amplitude� = t (at the 
orrelation length � = 10a). It is ob-vious from these data that the opti
al integral W isdi�erent for all of these 
urves; its value a
tually de-
reases with an in
rease in U (along with damping ofpseudogap anomalies [19℄). However, the single bandopti
al sum-rule in (3) is satis�ed within our numeri-
al a

ura
y, as 
an be seen from Table 1. The small�de�
ien
y� in the values of W in Table 1 is naturallydue to a �nite frequen
y integration interval over the
ondu
tivity data in Fig. 1.In Fig. 2, we show the real part of the opti
al
ondu
tivity for a doped Mott insulator (at a �xedU = 40t, t0 = �0:4t, t = 0:25 eV, and the band �ll-332
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al sum rule in strongly 
orrelated systemsTable 1. Single-band opti
al sum rule 
he
k in the�hot spot� model, the U dependen
e. The opti
al in-tegral is given in units of e2t=~U �e22 Xp �2"p�p2x np W = 1Z0 Re�(!) d!4t 0.456 0.4086t 0.419 0.38710t 0.371 0.35940t 0.323 0.306

0 2015105

0.20

0.15

0.10

0.05

Reσ

123
1 ∆ = 02 ∆ = t, κa = 0.13 ∆ = 2t, κa = 0.1

ω/tFig. 2. Real part of the opti
al 
ondu
tivity for a dopedMott insulator (U = 40t, t0 = �0:4t, t = 0:25 eV,and T = 0:089t) in the DMFT+�p approximation fordi�erent values of the pseudogap amplitude � = 0,� = t, and � = 2t. Correlation length � = 10a, band�lling fa
tor n = 0:8ing n = 0:8, T = 0:089t) for di�erent values of thepseudogap amplitude � = 0, � = t, and � = 2t. The
orrelation length is again � = 10a and the band �llingfa
tor n = 0:8. The �violation� of the sum rule hereis espe
ially striking: the opti
al integral obviously de-
reases with an in
rease in �. However, again, thesingle-band opti
al sum rule in (3) is stri
tly valid, as
an be seen from Table 2.To study the details of the sum-rule �violation�, i.e.,the dependen
e of the opti
al integralW on the param-eters of the model, we performed extensive 
al
ulations

Table 2. Single-band opti
al sum rule 
he
k in the�hot spot� model, the � dependen
e. The opti
al in-tegral is given in units of e2t=~� �e22 Xp �2"p�p2x np W = 1Z0 Re�(!) d!0 0.366 0.36t 0.314 0.3042t 0.264 0.252

0:30:20:10
0:50:40:30:20:1
W 1 U = 4t2 U = 10t� = t

1 1 � = 02 � = t; �a = 0:12
10 20 30 40U=t0

1:00:8.0:60:40:2

W (U)=W (0)

�a
Fig. 3. Dependen
e of the normalized opti
al integralon the 
orrelation strength U in the pseudogap state(T = 0:089t, t = 0:25 eV, t0 = �0:1 eV, n = 0:8).Inset: the 
orrelation length dependen
e of the opti
alintegral in units of the e2t=~of the appropriate dependen
es of the right-hand side ofEq. (3) and the opti
al integral W on the temperatureT , doping, the pseudogap amplitude �, the 
orrelationlength of pseudogap �u
tuations � = ��1, and the 
or-relation strength U . Some of the results are presentedin Figs. 3�5.A typi
al dependen
e of the (normalized) opti
al in-tegral on the 
orrelation strength U is shown in Fig. 3for two values of �. We 
an see a rather signi�
antde
rease in W with an in
rease in U . As regards the
orrelation length dependen
e, whi
h is shown in theinset to Fig. 3, it was found to be very weak (pra
ti-
ally negligible) in the whole region of realisti
 valuesof �, and we therefore do not dis
uss it further. The333
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0 0.5 1.0 1.5 2.0
∆/t

0.8

0.7

0.9

1.0

W (∆)/W (0) 12 3 1 U = 02 U = 4t3 U = 10t

Fig. 4. Dependen
e of the normalized opti
al integ-ral on the pseudogap amplitude � (T = 0:011t,t = 0:25 eV, t0 = �0:1 eV, n = 0:8, �a = 0:1)
n = 0:8

0 0:05 0:300:250:200:150:10 x = 1� n

1:00:90:80:70:60:50:40:30:20:1 0 T=t
1:0021:0000:9980:9960:9940:9920:9900:988

13 21 U = 02 U = 4t3 U = 10t

W (x)=W (0)
W (T )=W (0)

0:02 0:04 0:06 0:080:10Fig. 5. Dependen
e of the normalized opti
al integralon hole doping in the pseudogap state. Inset: the tem-perature dependen
e (T = 0:011t, U = 4t, � = t,t = 0:25 eV, t0 = �0:1 eV, �a = 0:1)dependen
e of W on the pseudogap amplitude � (forseveral values of U) is shown in Fig. 4. A typi
al dopingdependen
e, whi
h re�e
ts just the dependen
e of thesquare of the plasma frequen
y !2pl on doping, is given

in Fig. 5. In all other 
ases, the 
hange of the relevantparameters of the model leads to a rather signi�
antde
rease in the values of W . As regards the temper-ature dependen
e (shown in the inset to Fig. 5), it israther weak, quadrati
 in T and quite similar to thatfound in Refs. [4℄.Basi
ally, these results show that the value of theopti
al integral depends on all the major parameters ofthe model and, in this sense, its value is not universaland hen
e the opti
al sum rule is signi�
antly �violated�if we restri
t ourselves to a single-band 
ontribution.B. Disordered Anderson�Hubbard modelIn Ref. [20℄, we used the DMFT+� approximationto 
al
ulate the density of states, the opti
al 
ondu
tiv-ity, and the phase diagram of a strongly 
orrelated andstrongly disordered paramagneti
 Anderson�Hubbardmodel, with a Gaussian site disorder. Strong 
orre-lations were taken into a

ount by the DMFT, whiledisorder was taken into a

ount via the appropriategeneralization of the self-
onsistent theory of lo
al-ization [25�28℄. We 
onsidered the three-dimensionalsystem with a semi-ellipti
 density of states. The
orrelated metal, Mott insulator, and 
orrelated An-derson insulator phases were identi�ed via the evolu-tion of the density of states and dynami
 
ondu
tiv-ity, demonstrating both Mott�Hubbard and Andersonmetal�insulator transitions and allowing the 
onstru
-tion of the 
omplete zero-temperature phase diagramof the Anderson�Hubbard model.For the �external� self-energy entering theDMFT+� loop, we used the simplest possibleapproximation (negle
ting �
rossing� diagrams fordisorder s
attering), i.e., just the self-
onsistentBorn approximation, whi
h in the 
ase of Gaussiansite-energy disorder takes the usual form�(") = �2Xp G(";p); (6)where � now denotes the amplitude of site disorder.Cal
ulations of the opti
al 
ondu
tivity are 
onsid-erably simpli�ed [20℄ be
ause there are no 
ontributionsto 
ondu
tivity due to vertex 
orre
tions determinedby a lo
al Hubbard intera
tion. The 
ondu
tivity is es-sentially determined by the generalized di�usion 
oe�-
ient, whi
h is obtained from the appropriate general-ization of the self-
onsisten
y equation in Refs. [25�28℄,whi
h is to be solved in 
onjun
tion with the DMFT+�loop.In Fig. 6, we show typi
al results for the real partof the dynami
 
ondu
tivity of a 
orrelated metal de-334
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2

1 543
1 ∆/2D = 02 0.253 0.374 0.435 0.50

0.5 1.0 1.5 2.0

ω/2D

0

0.1

0.2

Re σ

U/2D = 1.25

Fig. 6. Real part of the dynami
 
ondu
tivity for thehalf-�lled Anderson�Hubbard model for di�erent de-grees of disorder � and U = 2:5D, typi
al for a 
orre-lated metal. Lines 1 and 2 are for the metalli
 phase,line 3 
orresponds to the mobility edge (Anderson tran-sition), and lines 4 and 5 
orrespond to the 
orrelatedAnderson insulator. The 
ondu
tivity is in units ofe2=~aTable 3. Single-band opti
al sum rule 
he
k in theAnderson�Hubbard model, the � dependen
e. Theopti
al integral is in units of 2e2D=~a�=2D �e22 Xp �2"p�p2x np W = 1Z0 Re�(!) d!0 0.063 0.0640:25 0.068 0.070:37 0.06 0.0560:5 0.049 0.05s
ribed by the half-�lled Anderson�Hubbard model(with the bandwidth 2D) for di�erent degrees of disor-der � and U = 2:5D; the results demonstrate a 
on-tinuous transition to the 
orrelated Anderson insulatoras disorder in
reases.Again, the dire
t 
he
k shows that the single-bandopti
al sum rule in (3) is satis�ed within our numeri
ala

ura
y, as 
an be seen from Table 3. At the sametime, the opti
al integral W itself obviously 
hangeswith disorder.

1 �=2D = 0:112 �=2D = 0:373 �=2D = 0:50
1 2 3 4

32100:2
0:40:6
0:81:0W (U)=W (0)

U=2DFig. 7. Dependen
e of the normalized opti
al integralon the 
orrelation strength in the Anderson�Hubbardmodel for di�erent degrees of disorder � (1 and 2,strongly disordered metal; 3, 
orrelated Anderson insu-lator)Again, to study the details of this sum rule �viola-tion�, i.e., the dependen
e of W on the parameters ofthe Anderson�Hubbard model, we performed detailed
al
ulations of its dependen
es on the temperature T ,the disorder amplitude �, and the 
orrelation strengthU . Some of the results are presented in Figs. 7�9.In Fig. 7, we show the dependen
e of the normalizedopti
al integral on U , for di�erent degrees of disorder(for both a strongly disordered metal and a 
orrelatedAnderson insulator). It is seen that in all 
ases, anin
rease in the 
orrelation strength leads to a rathersharp de
rease in W in the metalli
 state; this de
reaseis mu
h slower in the Mott insulator.In Fig. 8, we present similar dependen
es on the dis-order strength �. In the metalli
 state, the opti
al in-tegral generally de
reases as disorder in
reases, but theopposite behavior is observed if we start from the Mottinsulator (obtained either with an in
rease in U fromthe metalli
 state or for a redu
ed U in the hysteresisregion of the phase diagram [20℄). We note the absen
eof any signi�
ant 
hanges in the immediate vi
inity ofthe 
riti
al disorder �
=2D = 0:37, 
orresponding tothe Anderson metal�insulator transition. At the sametime, we note that the most signi�
ant in
rease in theopti
al integral o

urs as the system transforms intothe disorder-indu
ed metalli
 state obtained from theMott insulator, as observed in Ref. [20℄.335
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1 U/2D = 02 U/2D = 0.753 U/2D = 1.254 U/2D = 2.255 U/2D = 1.25 from insulator
0.1 0.2 0.3 0.4 0.5

∆/2D
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2.0

1.5

1.0

W (∆)/W (0)

Fig. 8. Disorder dependen
e of the normalized opti
alintegral in Anderson-Hubbard model for di�erent val-ues of Hubbard intera
tion U . Lines 1, 2, 3 � 
orre-lated metal, transforming into Anderson insulator. Line4 � Mott insulator state obtained with the growth ofU from 
orrelated metal, line 5 � Mott insulator ob-tained with diminishing U in hysteresis region of thephase diagram
123
4

1 �=2D = 02 �=2D = 0:113 �=2D = 0:304 �=2D = 0:500 0:0060:0040:002 T=2D
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Fig. 9. Temperature dependen
e of the normalized op-ti
al integral in the Anderson�Hubbard model for diffe-rent degrees of disorder. Inset: a similar dependen
e ata �xed disorder but for different values of the Hubbardintera
tion U ; line 3 here 
orresponds to a disorderedMott insulator

In Fig. 9, we show the temperature dependen
e ofthe normalized opti
al integral, for di�erent degreesof disorder. In the Anderson�Hubbard model, it ap-pears to be signi�
antly stronger than in the �hot spots�model (see above), and de
reases as disorder in
reases.Moreover, in a relatively weakly 
orrelated state, thesituation is qualitatively the same, the opti
al integralde
reases as T in
reases, but in a disordered Mott in-sulator, the integral in
reases, as 
an be seen from line3 in the inset to Fig. 9.Again, as in the 
ase of the pseudogap �hot spot�model, these results for the Anderson�Hubbard model
learly demonstrate that the value of the opti
al in-tegral is not universal and depends on all the majorparameters of the model, and therefore the single-bandopti
al sum rule is strongly �violated�.3. CONCLUSIONBased on the DMFT+� approa
h, we have studiedthe single-band opti
al sum rule for two typi
al strongly
orrelated systems, whi
h are outside the s
ope of thestandard DMFT s
heme: (i) the �hot spot� model ofthe pseudogap state, whi
h takes important nonlo
al
orrelations due to AFM(CDW) short-range order �u
-tuations into a

ount and (ii) the Anderson�Hubbardmodel, whi
h in
ludes strong disorder e�e
ts leading tothe disorder-indu
ed metal�insulator (Anderson) tran-sition alongside with the Mott transition.We have expli
itly demonstrated that the sing-le-band opti
al sum rule in (3) is satis�ed for both mo-dels, 
on�rming the self-
onsisten
y of the DMFT+�approa
h for 
al
ulation of two-parti
le properties.However, the opti
al integralW = 2 1Z0 Re�(!) d!entering single-band sum rule (3) is nonuniversal anddepends on the parameters of the model under 
on-sideration. Most of the previous studies addressed its(relatively weak) temperature dependen
e. Here, wehave analyzed dependen
es on the essential parametersof our models, showing that these may lead to ratherstrong �violations� of the opti
al sum rule. Be
ausemost of the parameters under dis
ussion may be var-ied in di�erent kinds of experiments, these dependen
esshould be taken into a

ount in the analysis of opti
alexperiments on strongly 
orrelated systems.336
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