ОСЦИЛЛИРУЮЩИЕ БЕГУЩИЕ ВОЛНЫ В ВОЗБУДИМЫХ СРЕДАХ

Е. П. Земсков^а^{*}, А. Ю. Лоскутов^{b**}

^а Вычислительный центр им. А. А. Дородницына Российской академии наук 119333, Москва, Россия

^b Московский государственный университет им. М. В. Ломоносова 119992, Москва, Россия

Поступила в редакцию 27 ноября 2007 г.

Описывается новый тип автоволн в возбудимой среде, характеризующийся тем, что в профиле таких волн наблюдаются осцилляции. Возбудимая среда рассматривается в рамках двухкомпонентной системы с одним активатором и одним ингибитором. Исследуются два основных случая системы реакция-диффузия: с обычной (диагональной) диффузией и с перекрестной диффузией. В качестве примера волны выбран фронт (кинк), представляющий собой гетероклиническую траекторию в фазовом пространстве. Форма и скорость автоволн обсуждаются с использованием точных аналитических решений для волнового профиля.

PACS: 82.40.Bj, 82.40.Ck

1. ВВЕДЕНИЕ

Распределенные активные (возбудимые) среды [1], в отличие от обычных сред, способны без затуханий и искажений передавать сигналы на большие расстояния. Формирование и распространение волн в таких средах описывается уравнениями типа реакция-диффузия [1-3], где нелинейные реакционные члены отвечают за кинетику, а процессы переноса представлены диффузией. Простейшее одномерное уравнение реакция-диффузия применительно к биологическим проблемам впервые было исследовано в 1937 г. [4].

Целью настоящей работы является изучение двухкомпонентной одномерной системы типа активатор-ингибитор

$$\frac{\partial u}{\partial t} = f(u,v) + D_u \frac{\partial^2 u}{\partial x^2} + h_v \frac{\partial}{\partial x} \left[Q_v(u,v) \frac{\partial v}{\partial x} \right],$$
(1)
$$\frac{\partial v}{\partial t} = g(u,v) + D_v \frac{\partial^2 v}{\partial x^2} + h_u \frac{\partial}{\partial x} \left[Q_u(u,v) \frac{\partial u}{\partial x} \right],$$

где реакционные члены представлены некоторыми нелинейными функциями f(u,v) и g(u,v), а D_u и

 D_v — коэффициенты диффузии. При $h_u = h_v = 0$ модель представляет собой обычную систему типа реакция-диффузия, а в случае $h_{u,v} \neq 0$ система является кросс-диффузионной. Мы ограничимся здесь линейной перекрестной диффузией, когда $Q_{u,v}(u,v) = \text{const.}$

В реакционно-диффузионных системах могут наблюдаться различные виды волновых структур: однородные временные колебания, стационарные пространственные структуры, пространственно-временной хаос и др. В настоящей работе описывается новый вид одномерных волн — бегущие волны, профиль которых осциллирует, такой тип волн относится к автоволнам¹. В однокомпонентной системе

$$\frac{\partial u}{\partial t} = f(u) + D_u \frac{\partial^2 u}{\partial x^2}$$

для существования таких осциллирующих решений необходимо, чтобы одна из точек равновесия была фокусом. Тогда немонотонное автомодельное решение будет образовано траекторией, выходящей из фокуса. При этом волна может двигаться вправо и

^{*}E-mail: e-zemskov@yandex.ru

^{**}E-mail: loskutov@chaos.phys.msu.ru

Автоволнами называются волны, которые движутся с постоянной скоростью и сохраняют свою форму.

влево, так что осцилляции профиля могут находиться как на переднем фронте, так и в хвосте волны [5].

В данной работе на примере одной из простых моделей возбудимой среды типа ФитцХью-Нагумо (FitzHugh–Nagumo) [6] в модификации, удобной для точных аналитических вычислений [7], показано, что в случае двух компонент также возможно образование бегущих волн с осциллирующим профилем, когда их фронт образован траекторией, соединяющей две седловые точки. Осцилляции в профиле волны в нашем случае имеют место именно для автоволновых решений, т.е. для решений, зависящих только от одной автоволновой переменной $\xi = x - ct$ (здесь с — скорость волны, х — пространственная переменная, а *t* — время). При этом волна с осцилляциями в профиле в автоволновой системе координат (системе координат, связанной с автоволновой переменной) является неподвижной. Таким образом, осцилляции в профиле автоволн являются частным случаем обычных пространственно-временных колебаний. В общем случае пространственно-временные осциллирующие решения были получены численно в работах [14].

Обычные бегущие волны (т. е. с профилями без осцилляций) давно известны и хорошо изучены. Для исследуемой нами конкретной системы кусочно-линейной аппроксимации модели ФитцХью-Нагумо обычные бегущие волны аналитически были впервые получены в работе Ринцеля и Келлера в 1973 г. [7], в то время как осциллирующие бегущие волны — в относительно недавней статье [12]. Данная работа является продолжением исследований в этом направлении и содержит новые результаты, полученные для кусочно-линейной системы типа реакция-диффузия при учете эффектов, связанных с перекрестной диффузией компонент.

2. БЕГУЩИЕ ВОЛНЫ С ОСЦИЛЛИРУЮЩИМ ПРОФИЛЕМ

В данном разделе мы рассматриваем одномерную двухкомпонентную модель типа реакция-диффузия, описываемую системой типа ФитцХью-Нагумо. В такой системе первое уравнение описывает временную динамику активатора, а второе — ингибитора. Обе компоненты в модели являются диффундирующими.

2.1. Модель без перекрестной диффузии

Модель ФитцХью-Нагумо для случая, когда обе компоненты являются диффундирующими, можно записать как

$$\frac{\partial u}{\partial t} = u(u-a)(1-u) - v + D_u \Delta u,$$

$$\frac{\partial v}{\partial t} = \varepsilon (u-bv) + D_v \Delta v,$$
(2)

где a, b и ε — некоторые константы. Первые две определяют динамический режим, порождающий решения типа фронтов (гетероклиник), либо импульсов (гомоклиник), либо периодических последовательностей импульсов; ε связано с отношением временных масштабов (time scale) для обеих переменных.

Модель (2) очень широко используется как базовая во многих областях современной химической физики, но изначально она была предложена в качестве математического описания распространения возбуждения в нервном волокне. В приложении к динамике химических реакций переменные u и v соответствуют концентрации реагентов (соответственно активатора и ингибитора).

Для получения аналитических решений [8, 9, 10] в системе (2) нелинейный реакционный член в уравнении для активатора обычно представляют в виде кусочно-линейной функции

$$f(u,v) = -u - v + \theta(u - u_0),$$

где u_0 — константа, а $\theta(u)$ — ступенчатая функция Хэвисайда [11]. Рассмотрим сначала такую систему. В одномерном случае она описывается уравнениями

$$\frac{\partial u}{\partial t} = -\alpha u - v - 1 + 2\theta(u - u_0) + D_u \frac{\partial^2 u}{\partial x^2},$$

$$\frac{\partial v}{\partial t} = \varepsilon(u - v) + D_v \frac{\partial^2 v}{\partial x^2}.$$
(3)

При $D_u = D_v = 1$ для этой системы были найдены точные аналитические решения для автоволн [12]. Вводя автомодельную переменную $\xi = x - ct$, систему (3) можно записать в виде обыкновенных дифференциальных уравнений. Благодаря тому, что реакционный член активатора является кусочно-линейной функцией, решения для этой системы представляют собой сшитые в месте сдвига куски из сумм экспонент, которые при определенной комбинации модельных параметров заменяются на синусы и косинусы, отвечающие решениям с осцилляциями профиля. Подробно это рассмотрено в работе [12].

В качестве иллюстрации пространственно-временного поведения автоволн с осцилляциями в профиле на рис. 1 показан пример решения для фронта активатора с отрицательным значением скорости.

Рис. 1. Диагональная диффузия. Пространственновременная диаграмма для фронта активатора при $\varepsilon=0.05,\ \alpha=0.1$ и $u_0=0$

Видно, что с увеличением пространственной координаты осцилляции в профиле затухают, в то время как сама форма волны с течением времени остается неизменной. Этим рассматриваемый фронт отличается от волн с пульсациями по пространству и времени, полученных в работах [14].

В данной работе мы остановимся на уравнении для скорости фронта (при $\alpha = 1$), которое можно получить при уменьшении числа уравнений при сшивке. Используя порог возбуждения u_0 , это уравнение можно записать следующим образом:

$$u_0 = \frac{c}{4} \frac{1}{1 - \gamma^2 / \varepsilon} \frac{1}{\sigma \rho} \left[\sigma - \frac{\gamma^2}{\varepsilon} \rho - \frac{\gamma}{\varepsilon} (\sigma - \rho) \right], \quad (4)$$

где

$$\rho = \sqrt{c^2/4 + (\varepsilon + 1)/2 + \sqrt{(\varepsilon - 1)^2/4 - \varepsilon}},$$

$$\sigma = \sqrt{c^2/4 + (\varepsilon + 1)/2 - \sqrt{(\varepsilon - 1)^2/4 - \varepsilon}},$$

$$\gamma = (\varepsilon - 1)/2 + \sqrt{(\varepsilon - 1)^2/4 - \varepsilon}.$$
(5)

Отсюда сразу видно, что для симметричной системы, когда $u_0 = 0$, существует покоящийся фронт.

Диаграмма для соотношения между скоростью фронта и отношением временных шкал ε содержит бифуркацию типа вилки, которая известна в литературе как неравновесная бифуркация Изинга – Блоха [13, 14]. На рис. 2a-e показан график зависимости скорости фронта от величины порога возбуждения (см. (4), (5)). Неравновесная бифуркация Изинга – Блоха проявляется здесь как одно- (рис. 2e) или многозначное (рис. 2a) соответствие $c - u_0$ между скоростью и порогом возбуждения, изображае-

мое соответствующей кривой. В случае многозначности (рис. 2*a*) кривая содержит три ветви, верхняя и нижняя из которых представляют собой два блоховских фронта, распространяющихся в противоположных направлениях. Эти ветви соединяются со средней ветвью при некоторых критических значениях порога возбуждения. Отвечающие этим двум ветвям фронты представляют собой устойчивые решения, в то время как средняя ветвь, которой соответствует изинговский фронт, образует неустойчивое решение. В работе [15] описаны только два фронта с положительными скоростями, что соответствует крайней и части средней ветвям на наших диаграммах. Полный сценарий неравновесной бифуркации Изинга-Блоха был получен в работе [14] для кубической системы типа ФитцХью-Нагумо.

Когда величина отношения шкал ε возрастает, многозначная кривая распрямляется до однозначной кривой (рис. 2в). Эта ситуация соответствует единственному изинговскому фронту. При этом оба блоховских фронта исчезают, а изинговский фронт становится устойчивым. В зависимости от величины ε изинговские и блоховские фронты могут быть как осциллирующими, так и не осциллирующими. Когда $\varepsilon_{im}^- < \varepsilon < \varepsilon_{im}^+$, где $\varepsilon_{im}^\pm = 3 \pm 2\sqrt{2}$ [12], фронты являются осциллирующими. При этом такие осцилляции явно выражены у бегущих фронтов и различимы на хвосте бегущей волны. Отметим, что в данной модели это имеет место и для импульсов. В случае периодической последовательности импульсов осцилляции по пространственной координате порождают аномальное дисперсионное соотношение (соотношение между скоростью и периодом).

2.2. Анализ системы с перекрестной диффузией

При учете взаимной диффузии компонентов можно построить различные автоволновые модели. Так, например, следующая схема реакций (подробнее см. [2])

$$A + Y \to X, \quad B + X \to Y + D,$$

 $X + X \to C, \quad Y + P \to E$

приводит к распределенной модели вида

$$\frac{\partial x}{\partial t} = Ay - Bx - x^2 + \frac{\partial}{\partial r} \left(D_{xx} \frac{\partial x}{\partial r} + D_{xy} \frac{\partial y}{\partial r} \right),$$
$$\frac{\partial y}{\partial t} = Bx - Py + \frac{\partial}{\partial r} \left(D_{yy} \frac{\partial y}{\partial r} + D_{yx} \frac{\partial x}{\partial r} \right).$$

Рис.2. Диагональная диффузия. Зависимость скорости от порога возбуждения при различных значениях отношения шкал времени $\varepsilon = 0.01$ (*a*), 0.3 (*b*), 1 (*b*)

Такие модели описывают разнообразные автоволновые процессы при минимальных требованиях к точечной кинетике, основное из которых сводится к тому, чтобы система имела достаточно большой приток «извне». В данном случае это приток вещества *A* [2].

Перекрестная диффузия встречается и в экологии в системах хищник – жертва, когда пространственная эволюция включает в себя положительный таксис²⁾ хищников по направлению роста градиента жертвы (процесс преследования) и отрицательный таксис жертвы при уменьшении градиента хищника (процесс уклонения) [3].

Система реакция-диффузия с линейной перекрестной диффузией имеет следующий вид:

$$\frac{\partial u}{\partial t} = f(u,v) + D_u \frac{\partial^2 u}{\partial x^2} + h_v \frac{\partial^2 v}{\partial x^2},
\frac{\partial v}{\partial t} = g(u,v) + D_v \frac{\partial^2 v}{\partial x^2} - h_u \frac{\partial^2 u}{\partial x^2},$$
(6)

где выбор знаков при $h_{u,v}$ отражает взаимодействие преследование—уклонение для хищника и жертвы. Известно [20], что включение таксиса $\partial_x (u\partial_x v)$ и $\partial_x (v\partial_x u)$ в системы реакция—диффузия порождает волны с солитоноподобным поведением. Эти волны проходят друг сквозь друга и отражаются от непроницаемых границ. Мы следуем здесь подходу, предложенному в [21], и вместо традиционного описания распространения компонент с помощью обычного диффузионного механизма рассматриваем только вклад от перекрестной диффузии. Кросс-диффузионные (без обычной диффузии) члены означают, что пространственное перемещение одного объекта, описываемого одной из переменных, происходит за счет диффузии другого объекта, описываемого другой переменной. На популяционном уровне простейший пример — паразит (первый объект), находящийся внутри «хозяина» (второго объекта), перемещается за счет диффузии хозяина [16]. Модели с чистой перекрестной диффузией исследовались ранее во многих работах [17–19].

Исследуемая нами модифицированная модель ФитцХью-Нагумо с учетом перекрестной диффузии имеет вид

$$\frac{\partial u}{\partial t} = -u - v - 1 + 2\theta(u - u_0) + \frac{\partial^2 v}{\partial x^2},$$

$$\frac{\partial v}{\partial t} = \varepsilon(u - v) - \frac{\partial^2 u}{\partial x^2}.$$
(7)

В случае $\varepsilon = 1$ для этой системы легко построить точные аналитические решения. Общие решения для $u(\xi)$ и $v(\xi)$ записываются в виде

$$u(\xi) = \sum_{n} A_{n} e^{\lambda_{n}\xi} + u^{*},$$

$$v(\xi) = \sum_{n} B_{n} e^{\lambda_{n}\xi} + v^{*},$$

(8)

где A_n, B_n, u^* и v^* — некоторые константы, определяемые для каждой области $u < u_0$ и $u > u_0$; константы B_n могут быть выражены через постоянные A_n , их выражения будут приведены ниже.

Подставляя выражения (8) в систему (7), получим следующее матричное уравнение:

$$\begin{pmatrix} c\lambda - 1 & \lambda^2 - 1 \\ -(\lambda^2 - 1) & c\lambda - 1 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = 0.$$
(9)

²⁾Под таксисом в биологии понимают явления, когда особи в популяции, кроме случайного блуждания, перемещаются по ареалу в определенном направлении [5], например, благодаря течениям.

Отсюда характеристическое уравнение

$$(\lambda^2 - 1)^2 - i^2(c\lambda - 1)^2 = 0$$

(здесь $i^2 = -1$) дает четыре корня:

$$\lambda_{\pm} = -\frac{ic}{2} \pm \sqrt{1 - \frac{c^2}{4} + i} = \pm y \pm iz - \frac{ic}{2},$$

$$\lambda_{\pm}^* = \frac{ic}{2} \pm \sqrt{1 - \frac{c^2}{4} - i} = \pm y \mp iz + \frac{ic}{2},$$
(1)

где

$$y = \sqrt{\frac{\sqrt{(1 - c^2/4)^2 + 1} + 1 - c^2/4}{2}},$$

$$z = \sqrt{\frac{\sqrt{(1 - c^2/4)^2 + 1} - (1 - c^2/4)}{2}}$$
(11)

 положительные величины. При этом решения для фронта запишутся как

$$u_{1}(\xi) = e^{y\xi} [A_{+} \cos(p_{-}\xi) + A_{+}^{*} \sin(p_{-}\xi)] - 1/2,$$

$$u_{2}(\xi) = e^{-y\xi} [A_{-} \cos(p_{+}\xi) + A_{-}^{*} \sin(p_{+}\xi)] + 1/2,$$

$$v_{1}(\xi) = e^{y\xi} [B_{+} \cos(p_{-}\xi) + B_{+}^{*} \sin(p_{-}\xi)] - 1/2,$$

$$v_{2}(\xi) = e^{-y\xi} [B_{-} \cos(p_{+}\xi) + B_{-}^{*} \sin(p_{+}\xi)] + 1/2.$$

(12)

Здесь введено обозначение $p_{\pm} = z \pm c/2$. Константы интегрирования *В* выражаются как

$$B_{\pm} = \pm \frac{c(2y - q_{\mp})A_{\pm} - (c^2 + 2yq_{\mp})A_{\pm}^*}{c^2 + q_{\mp}^2},$$

$$B_{\pm}^* = \pm \frac{c(2y - q_{\mp})A_{\pm}^* + (c^2 + 2yq_{\mp})A_{\pm}}{c^2 + q_{\mp}^2},$$
(13)

где

$$q_{\pm} = \frac{1 \pm cy}{p_{\pm}}.$$

Процедура сшивки включает в себя пять уравнений: два уравнения для функций и и и и два уравнения для их производных, пятое уравнение представляет собой просто равенство, указывающее, что значение и в точке сшивки известно и равно и₀. Эти пять уравнений содержат пять неизвестных A_{\pm}, A_{\pm}^*, c , так что скорость c фронта может быть определена. Ее зависимость от порога возбуждения ио показана на рис. 3. Из этого рисунка ясно видно, что кривая скорости качественно не меняется по сравнению с ранее рассмотренным случаем диагональной диффузии. Единственное отличие — в значении параметра ε , при котором имеет место многозначность: при $\varepsilon = 1$ в случае перекрестной диффузии мы имеем многозначную кривую, в то время как для обычной диффузии — однозначную (см.

Рис. 3. Перекрестная диффузия. Зависимость скорости от порога возбуждения при $\varepsilon = 1$

рис. 2*в*). Поэтому по аналогии будем называть соответствующие фронты изинговскими и блоховскими, как и ранее.

Примеры фронтов графически представлены на рис. 4. Блоховский фронт имеет ненулевую скорость, осцилляции в его профиле ярко выражены. Изинговский фронт является покоящимся и имеет типичный вид для фронтов в системах реакция-диффузия типа активатор-ингибитор. Единственное отличие здесь от случая изинговского фронта с обычной диффузией состоит в том, что профили и и и меняются местами. Для бегущих (блоховских) фронтов приведены волны с положительным значением скорости, т.е. фронты, изображенные на рис. 4а, движутся слева направо и выраженные осцилляции в профиле волны находятся впереди нее по направлению движения, что отличается от случая диагональной диффузии, рассмотренного нами ранее.

Бегущие волны описанного типа возможны и в системах с бо́льшим количеством уравнений. Так, например, совсем недавно [22] был описан случай осциллирующих фронтов в трехкомпонентной системе реакция-диффузия (с диагональной диффузией) с одним активатором и двумя ингибиторами.

Рис.4. Перекрестная диффузия. Профили фронтов для (a, b) активатора $u(\xi)$ (жирная линия) и ингибитора $v(\xi)$ (тонкая линия) и (b, c) фазовые u-v-диаграммы; бегущий со скоростью c = 2 фронт (a, b) и покоящийся фронт (b, c). Значение порога возбуждения фиксировано при $u_0 = 0$. Изоклины f(u, v) = 0 и g(u, v) = 0 показаны штриховыми линиями (b, c)

3. ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

Таким образом, двухкомпонентная система может демонстрировать новый по сравнению с однокомпонентной системой тип бегущих волн, которые в своем профиле содержат осцилляции. Характерной особенностью этих осцилляций является их затухающее по пространству поведение, что кардинально отличает их от последовательностей импульсов, которые не затухают. Это дает право говорить о соответствующем квазиосцилляторном режиме, отличном от осцилляторного, порождающего периодические последовательности импульсов. Последние являются незатухающими и в двумерном случае представляют собой спиральные волны или концентрические волны возбуждения от ведущего центра.

В случае рождения большого количества таких структур в возбудимой среде наблюдается возникновение пространственно-временного хаоса [14]. Известно, что подобный режим спирально-волновой турбулентности не является переходным и в отсутствие внешних воздействий будет сохраняться сколь угодно долго [1]. Сегодня, в связи с приложениями в аритмологии, исследование таких режимов привлекает очень большое внимание. Так, недавно было выяснено, что хаотическое поведение большинства модельных возбудимых сред может быть стабилизировано достаточно слабым параметрическим или силовым воздействием (см. [1] и приведенные там ссылки). Для более реалистичных систем, описывающих в определенном приближении возбудимую (например, сердечную) ткань, удалось показать [23], что спирально-волновая турбулентность может быть подавлена посредством слабого воздействия, прилагаемого к небольшой (почти точечной) области среды.

Возникновение пространственно-временного хаоса в моделях типа моделей ФитцХью-Нагумо связано с бифуркацией фронтов, описанной в данной работе, когда в результате изменения параметра среды фронт меняет направление и спиральная волна или волны от ведущего центра разрываются на отдельные части. Интересно поэтому изучить эффект изменения скорости фронта применительно к таким типам двумерных волн как спиральные и концентрические волны возбуждения в части влияния осцилляций в их пространственном профиле.

Авторы искренне благодарны М. А. Цыганову за консультации по системам с перекрестной диффузией. Е. П. З. также благодарит фонд РФФИ (грант № 07-01-00295) за финансовую поддержку исследований.

ЛИТЕРАТУРА

- 1. А. Ю. Лоскутов, А. С. Михайлов, Основы теории сложных систем, Изд-во «Регулярная и хаотическая динамики», Москва (2008).
- 2. В. А. Васильев, Ю. М. Романовский, В. Г. Яхно, Автоволновые процессы, Наука, Москва (1987).
- J. D. Murray, *Mathematical Biology*, Springer-Verlag, Berlin (2003).

- 4. А. Н. Колмогоров, И. Г. Петровский, Н. С. Пискунов, Бюллетень МГУ. Серия А. Математика и механика 1, 1 (1937); R. A. Fisher, Ann. Eugenics 7, 355 (1937).
- 5. Ю. М. Свирежев, *Нелинейные волны, диссипативные структуры и катастрофы в экологии*, Наука, Москва (1987).
- R. FitzHugh, Biophys. J. 1, 445 (1961); J. Nagumo, S. Arimoto, and Y. Yoshizawa, Proc. IRE 50, 2061 (1962).
- 7. J. Rinzel and J. B. Keller, Biophys. J. 13, 1313 (1973).
- 8. A. Ito and T. Ohta, Phys. Rev. A 45, 8374 (1992).
- 9. S. Koga, Physica D 84, 148 (1995).
- E. M. Kuznetsova and V. V. Osipov, Phys. Rev. E 51, 148 (1995).
- 11. H. P. McKean, Adv. Math. 4, 209 (1970).
- 12. E. P. Zemskov, V. S. Zykov, K. Kassner, and S. C. Müller, Nonlinearity 13, 2063 (2000).
- P. Coullet, J. Lega, B. Houchmanzadeh, and J. Lajzerowicz, Phys. Rev. Lett. 65, 1352 (1990).
- A. Hagberg and E. Meron, Chaos 4, 477 (1994);
 A. Hagberg and E. Meron, Nonlinearity 7, 805 (1994).
- 15. J. Rinzel and D. Terman, SIAM J. Appl. Math. 42, 1111 (1982).
- 16. М. А. Цыганов, В. Н. Бикташев, Дж. Бриндли, А. В. Холден, Г. Р. Иваницкий, УФН 177, 275 (2007).
- 17. R. Burridge and L. Knopoff, Bull. Seismol. Soc. Amer. 57, 341 (1967).
- J. H. E. Cartwright, E. Hernández-Garcia, and O. Piro, Phys. Rev. Lett. 79, 527 (1997).
- Y. A. Kuznetsov, Y. Antonovsky, V. N. Biktashev, and E. A. Aponina, J. Math. Biol. **32**, 219 (1994).
- M. A. Tsyganov, J. Brindley, A. V. Holden, and V. N. Biktashev, Phys. Rev. Lett. 91, 218102 (2003);
 M. A. Tsyganov and V. N. Biktashev, Phys. Rev. E 70, 031901 (2004).
- 21. V. N. Biktashev and M. A. Tsyganov, Proc. R. Soc. London A 461, 3711 (2005).
- 22. E. P. Zemskov, Phys. Rev. E 73, 046127 (2006).
- 23. А. Ю. Лоскутов, С. А. Высоцкий, Письма в ЖЭТФ
 84, 616 (2006).