ПИКОВЫЕ ВЕЛИЧИНЫ ПРОДОЛЬНОЙ ПРОВОДИМОСТИ В РЕЖИМЕ ЦЕЛОЧИСЛЕННОГО КВАНТОВОГО ЭФФЕКТА ХОЛЛА ДЛЯ РЕЗКОГО И ПЛАВНОГО ХАОТИЧЕСКИХ ПОТЕНЦИАЛОВ

А. А. Грешнов^{*}, Г. Г. Зегря, Э. Н. Колесникова

Физико-технический институт им. А. Ф. Иоффе Российской академии наук 194021, Санкт-Петербург, Россия

Поступила в редакцию 9 октября 2007 г.

Изучена проблема пиковых величин продольной проводимости в режиме целочисленного квантового эффекта Холла. Рассмотрены предельные случаи резкого и плавного хаотических потенциалов. В случае резкого хаотического потенциала величина первого пика продольной проводимости $\sigma_{xx}^{(0)}$, полученная путем экстраполяции численных данных к бесконечному размеру образца $L \to \infty$, составляет $(0.55 \pm 0.03)e^2/h$. В случае плавного хаотического потенциала к бесконечному размеру образца $L \to \infty$, составляет ($0.55 \pm 0.03)e^2/h$. В случае плавного хаотического потенциала пиковые величины продольной проводимости не зависят от номера уровня Ландау n и уменьшаются при увеличении корреляционной длины хаотического потенциала λ . Результаты, полученные для резкого и плавного хаотических потенциалов, согласуются с имеющимися в литературе экспериментальными данными и данными численных расчетов.

PACS: 73.43.-f

1. ВВЕДЕНИЕ

Проблема пиковых величин продольной проводимости в режиме целочисленного квантового эффекта Холла представляет большой интерес в связи с утверждением об универсальности поведения компонент тензора проводимости, следующего из теории Пруискена-Хмельницкого [1,2]. Согласно этой теории компоненты тензора проводимости σ_{xx} и σ_{xy} подчиняются уравнениям ренормгруппы, из которых следует независимость пиковых величин $\sigma_{xx}^{(n)}$ от номера уровня Ландау *n*, к которому относится данный пик продольной проводимости. Этот результат был получен в рамках нелинейной σ -модели для помещенных в магнитное поле невзаимодействующих электронов с резким хаотическим потенциалом (белым шумом) [3], и впоследствии обобщен на случай системы взаимодействующих носителей [4]. Оценка этого универсального (не зависящего от n) значения $\sigma_{xx}^{(*)}$, полученная в рамках нелинейной σ -модели [5], составляет $0.88e^2/h$, что плохо согласуется с экспериментальными данными [6–8]. Однако поскольку такая оценка была получена в модели невзаимодействующих электронов, ее прямое сравнение с экспериментом, в котором важную роль заведомо играет кулоновское взаимодействие, не совсем последовательно. В работе [9] конкретное значение $\sigma_{xx}^{(*)}$ было получено в рамках подхода, основанного на топологической квантовой теории поля Черна – Саймонса, пренебрегающей действием на носители хаотического потенциала,

$$\sigma_{xx}^{(*)} = 0.5e^2/h. \tag{1}$$

В работе [10] такое же значение было получено в рамках феноменологической двухфазной модели.

В структурах с резким хаотическим потенциалом (например квантовых ямах на основе твердого раствора, таких как InGaAs/AlGaAs) соотношение (1) приближенно выполняется для основного уровня Ландау n = 0 (при этом обычно изучается переход целочисленный квантовый эффект Холла-изолятор), экспериментальная проверка для возбужденных уровней Ландау $n \ge 1$ затруднена сильным подавлением локализации по сравнению с

^{*}E-mail: a greshnov@hotmail.com

В структурах с плавным хаотическим потенциалом (модуляционно-легированных квантовых ям GaAs/AlGaAs) соотношение (1) выполняется плохо. В таких структурах обычно наблюдается несколько (до десяти) пиков σ_{xx} и величина каждого из них существенно меньше $0.5e^2/h$ [11–13].

Не имеется полной однозначности и в данных численных расчетов. Расчеты, проведенные в работе [14] для первого пика $\sigma_{xx}^{(0)}$, дали значение 0.54 ± 0.04 (для образца фиксированной длины L), что было истолковано в пользу соотношения (1). В работе [15] расчет при n = 0 был выполнен для образцов достаточно больших размеров L, в результате чего были получены значения $\sigma_{xx}^{(0)}$ вплоть до $0.55e^2/h$ и предел при $L \rightarrow \infty$, равный $0.58e^2/h$. Для расчета второго пика (n = 1) авторы работы [15] применили формулу Ландауэра и с точностью до вычислительной погрешности получили тот же ответ, $\sigma_{xx}^{(1)} \approx 0.61 e^2/h$. В работе [16] для вычисления второго пика (n = 1) была применена формула Кубо и был получен принципиально иной ответ, $\sigma_{xx}^{(1)} \approx 1.07 e^2/h$ [16]. Авторы работы [16] провели расчеты для n = 1 и в случае плавного хаотического потенциала, обнаружив при этом, что первоначальное значение $1.07e^2/h$ снижается до $0.44e^2/h$ при увеличении корреляционной длины хаотического потенциала до полутора магнитных длин. Такое поведение величины пика они трактовали как «приближение к квазиклассическому значению $0.5e^2/h$, не зависящему от номера уровня Ландау», что противоречит экспериментальным данным работ [11–13], в которых в случае плавного потенциала наблюдались пики, значительно меньшие $0.5e^2/h$.

Таким образом, величина первого пика продольной проводимости, соответствующего n = 0, в случае резкого хаотического потенциала не является твердо установленной. Отсутствует теория для плавного хаотического потенциала. В настоящей работе проведен анализ величины первого пика $\sigma_{xx}^{(0)}$ для случая резкого хаотического потенциала в терминах плотности состояний и матричного элемента оператора скорости. Получен предел при $L \to \infty$, равный $(0.55\pm0.03)e^2/h$. Показано, что в случае плавного хаотического потенциала пиковые величины продольной проводимости практически не зависят от n, уменьшаясь при росте корреляционной длины хаотического потенциала λ . Такая зависимость объясняет экспериментальные данные работ [11–13].

ЖЭТФ, том **134**, вып. 3 (9), 2008

2. МОДЕЛЬ

При расчете тензора проводимости ограничимся случаем нулевой температуры T = 0 и пренебрежем кулоновским взаимодействием носителей. В этом случае компоненты тензора проводимости определяются исключительно влиянием примесей и дефектов, которое можно описать с помощью хаотического потенциала $V(\mathbf{r})$ [17]. Гамильтониан невзаимодействующих носителей заряда с эффективной массой m^* , помещенных в магнитное поле **В** и хаотический потенциал $V(\mathbf{r})$, имеет вид

$$\hat{H} = \frac{(\hat{\mathbf{p}} - e/c\mathbf{A})^2}{2m^*} + V(\mathbf{r}), \quad \text{rot } \mathbf{A} = \mathbf{H} = \mathbf{B}.$$
 (2)

Ниже будем рассматривать магнитное поле **B**, направленное строго вдоль оси z, перпендикулярной плоскости двумерной структуры. Ограничимся также двумерной моделью хаотического потенциала $V(\mathbf{r}) = V(x, y)$. Представляя $V(\mathbf{r})$ в виде ряда Фурье

$$V(\mathbf{r}) = \sum_{\mathbf{q}} V_{\mathbf{q}} e^{i\mathbf{q}\cdot\mathbf{r}},\tag{3}$$

нетрудно вычислить матричные элементы хаотического потенциала на базисных волновых функциях вида

$$|nk\rangle = \frac{\exp(ikx)}{\sqrt{2^n n!}\sqrt{\pi a_H L_x}} \times \\ \times \exp\left(-\frac{\tilde{y}^2}{2a_H^2}\right) H_n\left(\frac{\tilde{y}}{a_H}\right), \quad (4)$$
$$\tilde{y} = y - ka_H^2, \quad a_H^2 = \frac{\hbar c}{|e|B},$$

воспользовавшись формулой

$$\langle n_1 k_1 | e^{i \mathbf{q} \cdot \mathbf{r}} | n_2 k_2 \rangle = \delta_{q_x, k_1 - k_2} \times \\ \times \exp\left(i \frac{k_1 + k_2}{2} q_y a_H^2\right) \exp\left(-\frac{q^2 a_H^2}{4}\right) \times \\ \times \left[\frac{(q_x + iq_y)a_H}{\sqrt{2}}\right]^{|n_1 - n_2|} \times \\ \times \sqrt{\frac{\min(n_1, n_2)!}{\max(n_1, n_2)!}} L_{\min(n_1, n_2)}^{|n_1 - n_2|} \left(\frac{q^2 a_H^2}{2}\right), \quad (5)$$

где $H_n(x)$ — полиномы Эрмита, а $L_n^m(x)$ — присоединенные полиномы Лагерра, a_H — магнитная длина. Как следует из формулы (5), влияние коротковолновой составляющей хаотического потенциала, соответствующей $qa_H \gg 1$, является экспоненциально малым благодаря множителю $\exp(-q^2a_H^2/4)$. Поскольку фурье-компоненты хаотического потенциала $V_{\mathbf{q}}$ являются случайными величинами, введем неслучайную величину U_q , характеризующую распределение фурье-компонент по величине волнового вектора q:

$$U_q = \sum_{|\mathbf{Q}|=q} |V_{\mathbf{Q}}|^2.$$
 (6)

Введенную таким образом функцию U_q будем считать детерминированной благодаря проведенному усреднению по углам волнового вектора, что эквивалентно усреднению по беспорядку квадрата конкретной фурье-компоненты $|V_{\bf q}|^2$. Ниже будем считать случайные величины $V_{\bf q}$ распределенными некоррелированным образом и на этом основании использовать U_q вместо весового функционала P[V]. В случае некоррелированного (пуассоновского) распределения отдельных примесей с потенциалом $v({\bf r})$ величина U_q пропорциональна квадрату фурье-образа потенциала одной примеси, $U_q \propto |v_q|^2$.

В дальнейшем ограничимся случаем сильного магнитного поля, при котором соседние уровни Ландау не перекрываются, $\hbar\omega_c \gg \Gamma$, где $\hbar\omega_c - ци$ клотронная энергия, Г — ширина уровней Ландау. В этом случае для нахождения приближенных волновых функций и энергий нулевого приближения достаточно независимой диагонализации блоков гамильтониана \hat{H}_n , задаваемых матричными элементами $\langle nk_1 | \hat{H} | nk_2 \rangle$. После этого поправки к волновым функциям и энергиям могут быть найдены по теории возмущений. Обозначим набор гамильтонианов нулевого приближения \hat{H}_n , собственные энергии и волновые функции — $E_{n\alpha}^{(0)}$ и $|\Psi_{n\alpha}^{(0)}\rangle$. Вид волновых функций нулевого приближения не зависит от амплитуды хаотического потенциала $V = \sqrt{\langle V^2(\mathbf{r}) \rangle} = \sqrt{\sum_{\mathbf{q}} |V_{\mathbf{q}}|^2}$, а энергии, отсчитанные от центра *n*-го уровня Ландау, пропорциональны V, поэтому мы можем записать

$$\hat{H}_n |\Psi_{n\alpha}\rangle = \hat{H}_n |\Psi_{n\alpha}^{(0)}\rangle =$$
$$= (\hbar\omega_c (n+1/2) + V e_{n\alpha}) |\Psi_{n\alpha}^{(0)}\rangle, \quad (7)$$

$$|\Psi_{n\alpha}^{(0)}\rangle = \sum_{k} C_{n\alpha k} |nk\rangle, \qquad (8)$$

где $\alpha = 1, \ldots, N_L$ — номер одночастичного состояния на *n*-м уровне Ландау, $N_L = S/(2\pi a_H^2)$ — кратность вырождения уровней Ландау, S — площадь образца.

Дальнейший анализ проведем в двух предельных случаях плавного (дальнодействующий потенциал одной примеси) и резкого (короткодействующий потенциал одной примеси) хаотических потенциалов. В случае, если корреляционная длина хаотического потенциала значительно превышает (классический) циклотронный радиус, $\lambda \gg r_c = \sqrt{2n+1}a_H$, зависимость «внутризонных» матричных элементов $\langle nk_1 | \hat{H} | nk_2 \rangle$ от номера уровня Ландау n исчезает, поскольку в пределе малых q, $q^2 a_H^2/2 \ll 1/n$, полиномы Лагерра в выражении (5) могут быть заменены на 1. Если критерий $\lambda \gg r_c = \sqrt{2n+1}a_H$ выполнен, то структура всех уровней Ландау вплоть до n-го в нулевом приближении (т. е. без учета подмешивания соседних уровней Ландау) совпадает. Это означает, что совпадают энергии $Ve_{n\alpha}$, отсчитанные от центров соответствующих уровней Ландау, и вид волновых функций таков:

$$e_{n\alpha} = e_{\alpha}, \quad C_{n\alpha k} = C_{\alpha k}. \tag{9}$$

Другими словами, имеется полная корреляция структуры соседних уровней Ландау. Ниже используем соотношения (9) для анализа пиков продольной проводимости в случае плавного хаотического потенциала.

В случае резкого хаотического потенциала будем считать, что функция Uq постоянна вплоть до волновых векторов, сопоставимых с несколькими обратными магнитными длинами a_H^{-1} ; обозначим это значение U_0 . Поскольку матричные элементы (5) существенно зависят от номера уровня Ландау *n*, сделать какой-либо вывод о структуре уровней Ландау в этом случае затруднительно. Тем не менее ниже мы продвинемся в анализе резкого хаотического потенциала, использовав для расчета модель равномерно делокализованных уровней Ландау. В рамках этой модели будем считать коэффициенты разложения волновой функции $C_{n\alpha k}$ случайными, некоррелированными по всем трем аргументам величинами, распределение которых можно описать единой функцией распределения.

Используя волновые функции нулевого приближения, нетрудно вычислить поправку первого порядка за счет подмешивания последующего и предыдущего уровней Ландау,

$$\begin{split} |\delta\Psi_{n\alpha}\rangle &= \frac{1}{\hbar\omega_c} \sum_{\beta} \left[\langle \Psi_{n-1,\beta}^{(0)} | V | \Psi_{n\alpha}^{(0)} \rangle | \Psi_{n-1,\beta}^{(0)} \rangle - \right. \\ &- \left. \langle \Psi_{n+1,\beta}^{(0)} | V | \Psi_{n\alpha}^{(0)} \rangle | \Psi_{n+1,\beta}^{(0)} \rangle \right]. \end{split}$$
(10)

Поправками высших порядков и подмешиванием других уровней Ландау пренебрегаем, поскольку их учет дает поправки к компонентам тензора проводимости более высоких порядков по $V/\hbar\omega_c$.

Знание вида волновых функций $|\Psi_{n\alpha}\rangle \approx |\Psi_{n\alpha}^{(0)}\rangle + |\delta\Psi_{n\alpha}\rangle$ и собственных энергий $E_{n\alpha} \approx \hbar\omega_c(n+1/2)+$

 11^{*}

 $+ V e_{n\alpha}$ позволяет выполнить расчет компонент тензора проводимости с помощью формул линейного отклика [18–20]:

$$\sigma_{xx} = \pi e^2 \hbar S D^2(E_F) \langle |v_x|^2 \rangle, \qquad (11)$$

$$\sigma_{xy} = \frac{e^2\hbar}{S} \sum_{E_i < E_F, E_f > E_F} \frac{2Im\{(v_x)_{if}(v_y)_{fi}\}}{(E_i - E_f)^2}.$$
 (12)

Здесь «i» и «f» нумеруют (микроскопические) электронные состояния, E_F — энергия Ферми, $S = L_x L_y$ — площадь образца, D(E) — плотность состояний на единицу площади образца, $\langle |v_x|^2 \rangle$ усредненное по поверхности Ферми значение квадрата модуля матричного элемента оператора скорости. Формула (11) оказывается особенно удобной при численных расчетах, поскольку при такой записи снимается проблема предела нулевой частоты $\omega \to 0$ в системе дискретных энергетических уровней. Ранее она применялась для анализа продольной проводимости в режиме целочисленного квантового эффекта Холла в работе [19], а ее вывод можно найти в книге [18].

3. АНАЛИЗ ПЛОТНОСТИ СОСТОЯНИЙ И МАТРИЧНОГО ЭЛЕМЕНТА ОПЕРАТОРА СКОРОСТИ

Как следует из вида формулы (11), продольная проводимость σ_{xx} определяется произведением квадрата плотности состояний $D^2(E_F)$ на усредненный по поверхности Ферми квадрат матричного элемента оператора скорости $\langle |v_x|^2 \rangle$. Заметим прежде всего, что плотность состояний определяется уширением каждого из уровней Ландау за счет хаотического потенциала примесей, и для ее расчета в главном порядке по $V/\hbar\omega_c$ не требуется учитывать подмешивание уровней Ландау. В противоположность плотности состояний матричный элемент оператора скорости отличен от нуля лишь при учете подмешивания соседних уровней Ландау, описываемого формулой (10). Ниже мы проанализируем вид плотности состояний и матричного элемента оператора скорости в двух предельных случаях резкого и плавного хаотического потенциала.

В случае плавного потенциала задача вычисления плотности состояний при $V \ll \hbar \omega_c$ приводит к «квазиклассическому» ответу [21]

$$D_n(E) = \frac{1}{2\pi a_H^2} f\left(E - \hbar\omega_c \left(n + \frac{1}{2}\right)\right) =$$
$$= \frac{1}{2\pi a_H^2} \operatorname{Prob}\left\{V(\mathbf{r}) = E - \hbar\omega_c \left(n + \frac{1}{2}\right)\right\}, \quad (13)$$

т. е. плотность состояний на каждом уровне Ландау повторяет функцию распределения хаотического потенциала f(V). В этом случае плотность состояний не зависит от номера уровня Ландау n, в согласии с формулами (9). Поправки к формуле (13) возникают вследствие подмешивания уровней Ландау (параметр $V/\hbar\omega_c$) и конечной корреляционной длины хаотического потенциала (параметр a_H/λ). Ширина уровней Ландау определяется в случае плавного хаотического потенциала вторым моментом функции распределения хаотического потенциала,

$$\Gamma^{2} = \Gamma_{n}^{2} = \frac{\int (E - \hbar\omega_{c}(n+1/2))^{2} D_{n}(E) dE}{\int D_{n}(E) dE} = \int V^{2} f(V) dV = \langle V^{2}(\mathbf{r}) \rangle.$$
(14)

Случай резкого хаотического потенциала подробно изучался в работах [22–24], и в рамках самосогласованного борновского приближения был получен ответ в форме полукруга,

$$D_n(E) =$$

$$= \frac{1}{4\pi^2 a_H^2 \Gamma} \left(4\Gamma^2 - \left(E - \hbar\omega_c \left(n + \frac{1}{2} \right) \right)^2 \right)^{1/2}, \quad (15)$$

где ширина уровней Ландау Γ не зависит от номера n (при фиксированной величине магнитного поля, $\hbar\omega_c = \text{const}$). Величина Γ (и высшие моменты плотности состояний) может быть рассчитана при $V \ll \hbar\omega_c$ для хаотического потенциала произвольного вида $V(\mathbf{r})$ следующим образом:

$$\begin{split} \Gamma_n^2 &= \frac{1}{N_L} \operatorname{Tr}_n \left(\hat{H} - \hbar \omega_c \left(n + \frac{1}{2} \right) \right)^2 = \\ &= \frac{1}{N_L} \sum_{k_1, k_2} \langle nk_1 | V | nk_2 \rangle \langle nk_2 | V | nk_1 \rangle = \\ &= \frac{1}{N_L} \sum_{k_1, k_2} V_{\mathbf{q}_1} V_{\mathbf{q}_2} \exp\left(-\frac{(q_1^2 + q_2^2)a_H^2}{4} \right) \times \\ &\times L_n \left(\frac{q_1^2 a_H^2}{2} \right) L_n \left(\frac{q_2^2 a_H^2}{2} \right) \times \\ &\times \sum_{k_1, k_2} \delta_{q_{1x}, k_1 - k_2} \delta_{q_{2x}, k_2 - k_1} \times \\ &\times \exp\left(i \frac{(k_1 + k_2)(q_{1y} + q_{2y})a_H^2}{2} \right) = \\ &= \sum_{\mathbf{q}} |V_{\mathbf{q}}|^2 \exp\left(-\frac{q^2 a_H^2}{2} \right) \left[L_n \left(\frac{q^2 a_H^2}{2} \right) \right]^2 = \end{split}$$

где Tr_n включает суммирование по всем электронным состояниям на *n*-м уровне Ландау, B — постоянная, возникающая при переходе от суммы по волновому вектору к интегралу, а замена U_q на постоянную U_0 оправдана тем, что в рассматриваемом случае резкого хаотического потенциала U_q постоянно вплоть до $q \sim a_H^{-1}$, а коротковолновая часть потенциала экспоненциально подавляется за счет множителя $\exp(-q^2 a_H^2/4)$. Заметим, что в случае плавного хаотического потенциала из формулы (16) следует, что $\Gamma^2 = \sum_q U_q = \langle V^2(\mathbf{r}) \rangle$, в согласии с выражением (14).

Таким образом, в рамках самосогласованного борновского приближения плотность состояний в случае резкого хаотического потенциала также не зависит от *n*. Учет поправок к плотности состояний, рассчитанной в рамках этого приближения, приводит к увеличению максимумов плотности состояний, как показано в работе [23]. К вопросу значимости этих поправок для пиковых величин продольной проводимости вернемся ниже. Важно, что в обоих случаях резкого и плавного хаотических потенциалов в наиболее грубом приближении можно считать максимумы плотности состояний не зависящими от *n*.

В главном порядке по параметру $V/\hbar\omega_c$ матричные элементы оператора скорости содержат четыре вклада, два из которых соответствуют подмешиванию вышележащего уровня Ландау, два других нижележащего:

$$(v_{x})_{n\beta,n\alpha} = \langle \Psi_{n\beta}^{(0)} + \delta \Psi_{n\beta} | v_{x} | \Psi_{n\alpha}^{(0)} + \delta \Psi_{n\alpha} \rangle =$$

$$= \langle \delta \Psi_{n\beta} | v_{x} | \Psi_{n\alpha}^{(0)} \rangle + \langle \Psi_{n\beta}^{(0)} | v_{x} | \delta \Psi_{n\alpha} \rangle =$$

$$= \frac{v_{H}}{\hbar\omega_{c}} \sum_{\gamma,k} \left\{ C_{n-1,\gamma k}^{*} C_{n\alpha k} \sqrt{\frac{n}{2}} \langle \Psi_{n-1,\gamma}^{(0)} | V | \Psi_{n\alpha}^{(0)} \rangle - \right. \\ \left. - C_{n+1,\gamma k}^{*} C_{n\alpha k} \sqrt{\frac{n+1}{2}} \langle \Psi_{n+1,\gamma}^{(0)} | V | \Psi_{n\alpha}^{(0)} \rangle + \right. \\ \left. + C_{n\beta k}^{*} C_{n-1,\gamma k} \sqrt{\frac{n}{2}} \langle \Psi_{n\beta}^{(0)} | V | \Psi_{n-1,\gamma}^{(0)} \rangle - \right. \\ \left. - C_{n\beta k}^{*} C_{n+1,\gamma k} \sqrt{\frac{n+1}{2}} \langle \Psi_{n\beta}^{(0)} | V | \Psi_{n+1,\gamma}^{(0)} \rangle \right\}, \quad (17)$$

где $v_H = \hbar/(m^* a_H)$. В случае плавного хаотического потенциала формула (17) существенно упрощается

благодаря соотношениям (9) и упрощению матричных элементов (5),

$$\langle n-1, k_1 | e^{i\mathbf{q}\cdot\mathbf{r}} | nk_2 \rangle \approx \delta_{q_x, k_1-k_2} \exp\left(-\frac{k^2 a_H^2}{4}\right) \times \\ \times \exp\left(i\frac{(k_1+k_2)q_y a_H^2}{2}\right) (q_x+iq_y) a_H \sqrt{\frac{n}{2}}, \quad (18)$$

$$\langle n+1, k_1 | e^{i\mathbf{q}\cdot\mathbf{r}} | nk_2 \rangle \approx \delta_{q_x, k_1 - k_2} \exp\left(-\frac{k^2 a_H^2}{4}\right) \times \\ \times \exp\left(i\frac{(k_1 + k_2)q_y a_H^2}{2}\right) \times \\ \times (-q_x + iq_y)a_H \sqrt{\frac{n+1}{2}}, \quad (19)$$

в результате вклады от подмешивания нижележащего и вышележащего уровней Ландау частично компенсируются и ответ не зависит от номера уровня Ландау,

$$\left(v_x^{(n)} \right)_{n\beta,n\alpha} = -i \frac{v_H}{\hbar\omega_c} \sum_{q_y} q_y a_H \times \\ \times \sum_{k_1 k_2} C^*_{\beta k_1} C_{\alpha k_2} V_{k_1 - k_2, q_y} \exp\left(i \frac{(k_1 + k_2)q_y a_H^2}{2} \right) = \\ = \operatorname{const}(n).$$
 (20)

В случае резкого хаотического потенциала структура уровней Ландау некоррелирована и описанный выше анализ не применим. Поэтому проведем расчет в рамках модели равномерно делокализованных уровней Ландау. Будем считать коэффициенты разложения волновой функции $C_{n\alpha k}$ случайными, некоррелированными по всем трем аргументам величинами. Представим комплексную величину C в виде $C = M \exp(i\varphi)$ и будем считать фазу φ равномерно распределенной на отрезке $[0, 2\pi]$. Пусть распределение величин $M \ge 0$ описывается некоторой функцией F(M), не зависящей от n, α и k, и обладающей следующими свойствами:

$$\int_{0}^{\infty} F(M) \, dM = 1, \tag{21}$$

$$\int_{0}^{\infty} M^2 F(M) \, dM = \frac{1}{N_L}.$$
(22)

В пределе большого образца $S \to \infty$ из формулы (22) следует правильная нормировка волновой функции,

$$\lim_{N_L \to \infty} F\left(\sum_k |C_{n\alpha k}|^2\right) = \delta\left(\sum_k |C_{n\alpha k}|^2 - 1\right), \quad (23)$$

т. е. $\sum_k |C_{n\alpha k}|^2 = 1.$ Также несложно показать, что в пределе $N_L \to \infty$

$$\sum_{k_1 \neq k_2} C^*_{n_1 \gamma_1 k_1} C_{n_2 \gamma_2 k_1} C^*_{n_3 \gamma_3 k_2} C_{n_4 \gamma_4 k_2} = 0, \qquad (24)$$

$$\sum_{k} C_{n\alpha k}^{*} C_{n\beta k} C_{n_{1}\gamma_{1}k}^{*} C_{n_{2}\gamma_{2}k} \propto \delta_{\alpha\beta} \delta_{n_{1}n_{2}} \delta_{\gamma_{1}\gamma_{2}}$$

$$(n_{1,2} \neq n),$$

$$(25)$$

где суммирование в формуле (24) выполняется по обоим квантовым числам k_1 и k_2 . Выражение для квадрата матричного элемента оператора скорости содержит 16 слагаемых главного порядка по $V/\hbar\omega_c$, однако ненулевой вклад при учете соотношений (24), (25) дают лишь слагаемые, содержащие квадраты случайных величин $|C_{n\alpha k}|^2$,

$$|(v_{x})_{n\beta,n\alpha}|^{2} = \left(\frac{v_{H}}{\hbar\omega_{c}}\right)^{2} \times \\ \times \sum_{\gamma,k} \left\{\frac{n}{2}|C_{n-1,\gamma k}|^{2}|C_{n\alpha k}|^{2}\left|\langle\Psi_{n-1,\gamma}^{(0)}|V|\Psi_{n\alpha}^{(0)}\rangle\right|^{2} + \frac{n+1}{2}|C_{n+1,\gamma k}|^{2}|C_{n\alpha k}|^{2}\left|\langle\Psi_{n+1,\gamma}^{(0)}|V|\Psi_{n\alpha}^{(0)}\rangle\right|^{2} + \frac{n}{2}|C_{n\beta k}|^{2}|C_{n-1,\gamma k}|^{2}\left|\langle\Psi_{n\beta}^{(0)}|V|\Psi_{n-1,\gamma}^{(0)}\rangle\right|^{2} + \frac{n+1}{2}|C_{n\beta k}|^{2}|C_{n+1,\gamma k}|^{2}\left|\langle\Psi_{n\beta}^{(0)}|V|\Psi_{n+1,\gamma}^{(0)}\rangle\right|^{2}\right\}.$$
(26)

Поскольку величины $C_{n\pm 1,\alpha k}$ и $C_{n\beta k}$ являются некоррелированными и равномерно распределенными по квантовому числу k, суммирование по k в каждом из слагаемых снимается и дает одинаковый множитель $1/N_L$. Далее, ненулевой вклад в величину квадрата матричного элемента потенциала также дают лишь слагаемые, содержащие квадраты $|C_{n\alpha k}|^2$, и здесь суммирование по k снимается, так что

$$\begin{split} |\langle \Psi_{n\beta}^{(0)}|V|\Psi_{n+1,\gamma}^{(0)}\rangle|^2 &= \frac{1}{N_L} \sum_{\mathbf{q}} |V_{\mathbf{q}}|^2 \exp\left(-\frac{q^2 a_H^2}{2}\right) \times \\ &\times \frac{q^2 a_H^2}{2(n+1)} \left[L_n^1\left(\frac{q^2 a_H^2}{2}\right)\right]^2 = \\ &= \frac{1}{N_L} \sum_{q} U_q \exp\left(-\frac{q^2 a_H^2}{2}\right) \frac{q^2 a_H^2}{2(n+1)} \times \end{split}$$

$$\times \left[L_n^1 \left(\frac{q^2 a_H^2}{2} \right) \right]^2 = \frac{1}{N_L} U_0 B \int_0^\infty \frac{dx \, e^{-x} x}{n+1} [L_n^1(x)]^2 =$$
$$= \frac{1}{N_L} U_0 B = \frac{\Gamma^2}{N_L}, \quad (27)$$

где Г — ширина уровней Ландау, смысл постоянных U₀ и *В* обозначен выше. Такой же ответ получается и для остальных матричных элементов потенциала, входящих в выражение (26). В результате

$$|(v_x)_{n\beta,n\alpha}|^2 = \left(\frac{v_H}{\hbar\omega_c}\right)^2 \frac{1}{N_L} \sum_{\gamma} \frac{n}{2} \frac{\Gamma^2}{N_L} + \frac{n+1}{2} \frac{\Gamma^2}{N_L} + \frac{n}{2} \frac{\Gamma^2}{N_L} + \frac{n}{2} \frac{\Gamma^2}{N_L} + \frac{n}{2} \frac{\Gamma^2}{N_L} + \frac{n}{2} \frac{\Gamma^2}{N_L} = \frac{(2n+1)\Gamma^2}{N_L} \left(\frac{v_H}{\hbar\omega_c}\right)^2.$$
 (28)

Заметим, что левые части формул (27), (28) содержат величины, не усредненные по беспорядку, и, следовательно, обязанные содержать нетривиальную зависимость от квантовых чисел (n, α, β) . Отсутствие такой зависимости есть прямое следствие модели, в рамках которой мы считали коэффициенты $C_{n\alpha k}$ некоррелированными случайными величинами, распределенными одинаковым образом вне зависимости от n, α и k. В рамках такой модели квадрат матричного элемента оператора скорости линейно растет с ростом номера уровня Ландау n.

4. ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Поскольку полученные выше аналитические результаты существенно опираются на ряд не вполне очевидных предположений и не дают конкретных значений $\sigma_{xx}^{(n)}$, нами проведены прямые численные расчеты компонент тензора проводимости. Кроме того, такие расчеты являются на данный момент единственным теоретическим методом, позволяющим количественно изучать зависимости компонент тензора проводимости от фактора заполнения в режиме целочисленного квантового эффекта Холла.

Для моделирования хаотического потенциала $V(\mathbf{r})$ воспользуемся простейшей моделью, представляя $V(\mathbf{r})$ в виде ряда Фурье со случайными коэффициентами:

$$V(\mathbf{r}) = \sum_{|\mathbf{q}| \le q_0} V_0 e^{i\varphi_{\mathbf{q}}} e^{i\mathbf{q}\cdot\mathbf{r}}, \qquad (29)$$

где случайные фазы $\varphi_{\mathbf{q}}$ равномерно распределены на отрезке $[0, 2\pi], q_0 = 1/\lambda$ — обратная корреляционная длина хаотического потенциала. Использова-

Рис. 1. Рассчитанная плотность состояний для (a), (b) плавного и (b), (c) резкого хаотического потенциала. Графики (a) и (b) соответствуют малой амплитуде хаотического потенциала $V \ll \hbar\omega_c$, а (b) и (c) — большой амплитуде $V \gtrsim \hbar\omega_c$

ние такой модели хаотического потенциала позволяет ограничить описание двумя параметрами, амплитудой $V = \sqrt{\sum_{|\mathbf{q}| \leq q_0} |V_0|^2}$ и корреляционной длиной λ . Численное решение уравнения Шредингера с гамильтонианом (2) позволяет получить собственные энергии и волновые функции и затем их использовать для расчета компонент тензора проводимости по формулам линейного отклика (11), (12). При этом в главном порядке по $V/\hbar\omega_c$ можно ограничиться учетом трех соседних уровней Ландау.

Перейдем к анализу полученных численных результатов. Прежде всего обратим внимание на то, что вид плотности состояний, рассчитанной в случаях плавного и резкого хаотических потенциалов, представленный на рис. 1, согласуется с формулами (13), (15). В то же время имеется и некоторое отклонение от формул (13), (15). В случае плавного хаотического потенциала это связано с поправками за счет конечности корреляционной длины λ и постепенным нарушением условия $\lambda \gg r_c = \sqrt{2n+1}a_H$ с ростом номера уровня Ландау. В случае резкого хаотического потенциала отличия связаны с поправками, возникающими за пределами самосогласованного борновского приближения, при этом максимум плотности состояний для основного уровня Ландау (n = 0) на 13 % превышает рассчитанный в рамках самосогласованного борновского приближения, в со-

Рис.2. Продольная и холловская проводимости для плавного (a), $\lambda = 4a_H$, и резкого (b), $\lambda = 0.25a_H$, хаотических потенциалов. Здесь $\nu = 2\pi n_s a_H^2$ — фактор заполнения, n_s – двумерная концентрация носителей, $a_H = \sqrt{\hbar c/eB}$ – магнитная длина

гласии с работой [23]. Важно, что максимумы плотности состояний в обоих предельных случаях слабо зависят от номера уровня Ландау *n* и в первом приближении этой зависимостью можно пренебречь.

Результаты численных расчетов компонент тен-

Рис.3. Зависимость величины первого пика $\sigma_{xx}^{(0)}$ от корреляционной длины хаотического потенциала λ

зора проводимости, выполненных для образца с размерами $L_x = L_y = 60a_H$ при достаточно малой амплитуде хаотического потенциала, $V = 0.1\hbar\omega_c$, представлены на рис. 2. Результаты были усреднены по 200 реализациям хаотического потенциала, при этом в областях делокализованных состояний в случае резкого хаотического потенциала все же остались заметные флуктуации холловской проводимости.

В случае плавного хаотического потенциала все четыре показанных на рис. 2а плато холловской проводимости σ_{xy} ярко выражены, имеют практически максимальную ширину. Пиковые величины продольной проводимости $\sigma_{xx}^{(n)}$ не зависят от номера уровня Ландау, составляя около $0.35e^2/h$ при $\lambda = 4a_H$ и уменьшаясь с ростом λ . Такое поведение компонент тензора проводимости хорошо согласуется с экспериментальными данными, полученными на образцах с плавным хаотическим потенциалом [11–13]. Независимость пиков σ_{xx} от номера уровня Ландау n объясняется независимостью от n как плотности состояний (13), так и матричного элемента (20); уменьшение пиков с ростом корреляционной длины объясняется наличием в выражении (20) множителя q_y , дающего при усреднении обратную корреляционную длину, так что

$$\sigma_{xx}^{(n)} \propto \lambda^{-2} \cdot \operatorname{const}(n), \quad \lambda/a_H \gg 1.$$
 (30)

Уменьшение пиков продольной проводимости с ростом корреляционной длины хаотического потенциала λ , описываемое формулой (30), согласуется с зависимостью $\sigma_{xx}^{(n)}(\lambda)$, полученной из численного расчета (рис. 3).

В противоположном случае резкого хаотического потенциала лишь первое плато холловской проводимости σ_{xy} на рис. 26 является ярко выраженным,

Рис. 4. Зависимость величины первого пика $\sigma_{xx}^{(0)}$ в случае резкого хаотического потенциала от обратного размера образца 1/L. Штриховая кривая соответствует зависимости $\sigma_{xx}^{(0)}(L) = \sigma_{xx}^{(0)}(\infty) - \alpha L^{-y}$, где $\sigma_{xx}^{(0)}(\infty) = 0.55 e^2/h$, y = 0.5

ширина же высших плато быстро уменьшается с ростом номера уровня Ландау n, что свидетельствует о сильном подавлении локализации на возбужденных уровнях Ландау $n \geq 1$. На рис. 4 приведена зависимость величины первого пика $\sigma_{xx}^{(0)}$ от размера образца L, найденная из численного расчета для резкого хаотического потенциала. Экстраполяция численных данных, полученных для размеров образца L в диапазоне от 10 до 100 магнитных длин, к $L \to \infty$ дает

$$\sigma_{xx}^{(0)} = (0.55 \pm 0.03)e^2/h. \tag{31}$$

Это значение находится в хорошем согласии не только с численными расчетами работы [15], в которой было получено значение $(0.58 \pm 0.03)e^2/h$, но и с экспериментальными данными работ [6-8], в которых наблюдались значения, близкие к $0.5e^2/h$. Тот факт, что значение (31) несколько превышает найденное в численных расчетах работы [14], мы связываем с выполненной нами экстраполяцией к бесконечному размеру образца $L \to \infty$, в то время как в работе [14] такой экстраполяции выполнено не было. То же замечание относится и к работам [6–8], в которых приведены экспериментальные данные для конкретных температур, а экстраполяции к нулевой темпеparype $T \to 0$, что соответствует пределу $L \to \infty$, выполнено не было. Как следует из рис. 4, увеличение размера образца L (а в эксперименте уменьшение температуры T) приводит к увеличению $\sigma_{xx}^{(0)}$. Также отметим, что сравнение результатов численных расчетов и экспериментальных данных в случае резкого хаотического потенциала не дает оснований для выводов о существенном (превышающем 10%)

изменении пиковых величин продольной проводимости за счет кулоновского взаимодействия.

В заключение проанализируем величину первого пика продольной проводимости $\sigma_{xx}^{(0)}$ в случае резкого хаотического потенциала, используя формулу (11), вид плотности состояний для n = 0 [25] и модель равномерно делокализованных уровней Ландау, дающую выражение (28) для усредненного квадрата матричного элемента оператора скорости. В наиболее грубом приближении максимум плотности состояний для n = 0 можно найти по формуле (15), являющейся точной, строго говоря, лишь в пределе $n \to \infty$. Подставляя (15) и (28) в формулу (11), находим

$$\sigma_{xx}^{(n)} = \pi e^2 \hbar S D_n^2 \left(\hbar \omega_c \left(n + \frac{1}{2} \right) \right) \langle |v_x|^2 \rangle_n =$$
$$= \frac{2n+1}{\pi} \frac{e^2}{h}, \quad (32)$$

что в точности совпадает с результатом, полученным методом функций Грина в рамках самосогласованного борновского приближения [24]. В частности, для основного уровня Ландау $\sigma_{xx}^{(0)} = 1/\pi \approx 0.32e^2/h$. Уточним этот результат, пользуясь точным видом плотности состояний для n = 0, полученным в работе [25],

$$D_0(E) = \frac{1}{2\pi N a_H^2 \Gamma} \frac{\exp(E^2/\Gamma^2)}{1 + \Phi(E/\Gamma)^2},$$
 (33)

$$\Phi(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(y^2) \, dy,$$
 (34)

$$\mathcal{N} = \int_{-\infty}^{\infty} \frac{\exp(x^2)}{1 + \Phi^2(x)} dx \approx 2.784.$$
(35)

Используя формулу (33) вместо (15), получаем $\sigma_{xx}^{(0)} \approx 0.41 e^2/h.$ (36)

Это значение примерно на 25 % меньше, чем значение (31), полученное из численных расчетов в пределе $L \to \infty$. Причиной этого является увеличение среднего квадрата матричного элемента оператора скорости $\langle |v_x|^2 \rangle$, входящего в формулу (11), по сравнению с найденным в модели равномерно делокализованных уровней Ландау, формула (28):

$$\langle |v_x|^2 \rangle_{exact}^{(0)} \approx 1.35 \langle |v_x|^2 \rangle_{deloc}^{(0)}.$$
 (37)

Таким образом, для основного уровня Ландау n = 0 локализация состояний на хвостах уровней Ландау, где $\lim_{L\to\infty} \langle |v_x|^2 \rangle = 0$, приводит к увеличению среднего квадрата матричного элемента оператора скорости в центре уровня (т. е. состояния в центре уровня Ландау являются «сверхделокализованными»).

5. ВЫВОДЫ

Проведен подробный теоретический анализ проблемы пиковых величин продольной проводимости в режиме целочисленного квантового эффекта Холла. Показано, что пиковые величины $\sigma_{xx}^{(n)}$, так же как и ширины плато целочисленного квантового эффекта Холла, существенно зависят от отношения корреляционной длины хаотического потенциала λ к магнитной длине a_H и номера уровня Ландау n.

В случае плавного хаотического потенциала, $\lambda \gg r_c = \sqrt{2n+1}a_H$, пиковые величины $\sigma_{xx}^{(n)}$ не зависят от номера уровня Ландау n, а их величина существенно меньше $0.5e^2/h$. В то же время плато целочисленного квантового эффекта Холла ярко выражены и их ширина не зависит от n. Это хорошо согласуется как с большим числом плато, наблюдаемым экспериментально, так и с малыми значениями пиков σ_{xx} (вплоть до $0.1e^2/h$), обнаруженных в работах [11–13].

В случае резкого хаотического потенциала, $\lambda \ll$ « a_H , выраженным является лишь первое плато целочисленного квантового эффекта Холла, ширина высших плато быстро убывает с ростом *n*. Величина первого пика продольной проводимости, соответствующая основному уровню Ландау n = 0, равна в пределе бесконечного образца $(0.55 \pm 0.03)e^2/h$. Показано, что такая величина $\sigma_{xx}^{(0)}$ обусловлена двумя типами поправок к результату, полученному в работе [24] в рамках самосогласованного борновского приближения. Поправка, связанная с отличием плотности состояний на основном уровне Ландау от формулы (15), составляет 28%. Поправка, связанная с отличием структуры электронных состояний на основном уровне Ландау от описываемого моделью равномерно делокализованного уровня (или самосогласованного борновского приближения), составляет 35 % и имеет положительный знак. Суммарная поправка от этих факторов составляет 73%, что обусловливает найденное значение $\sigma_{xx}^{(0)} = (0.55 \pm 0.03) e^2 / h.$ Полученное значение хорошо (с погрешностью менее 10%) согласуется с численными данными работ [14,15] и экспериментальными данными работ [6-8]. Некоторый разброс имеющихся в литературе экспериментальных значений $\sigma_{xx}^{(0)}$ и их отличие от полученной в данной работе величины $0.55e^2/h$ связаны, на наш взгляд, со следующими факторами.

1. Конечность температуры $T \neq 0$. Экспериментальные данные по $\sigma_{xx}^{(0)}$ в области минимально допустимых экспериментально температур все еще существенно зависят от T.

2. Неточечность потенциалов примесей и дефектов. В ряде работ наблюдались значения, существенно меньшие $0.5e^2/h$ [11–13]. Даже если материалом квантовой ямы служит твердый раствор, соответствующий хаотический потенциал может быть плавным за счет экранировки, если концентрация носителей достаточно велика, $n_s \gtrsim 10^{12}$ см⁻² [26].

3. Перекрытие хвостов уровней Ландау. В реальных структурах параметр $\Gamma/\hbar\omega_c$ обычно не мал.

4. Асимметрия хаотического потенциала. В больпинстве экспериментальных работ фактор заполнения, соответствующий пикам продольной проводимости и полуцелому значению σ_{xy} , отличается от полуцелого, что является прямым следствием асимметрии.

- 5. Эффекты кулоновского взаимодействия.
- 6. Неоднородность образца.

Работа выполнена при финансовой поддержке РФФИ (грант № 08-02-01337-а) и Федеральной программы поддержки ведущих научных школ. Один из авторов (А. А. Г.) благодарит за поддержку Фонд «Династия» и Фонд содействия отечественной науке.

ЛИТЕРАТУРА

- H. Levine, S. B. Libby, and A. M. M. Pruisken. Phys. Rev. Lett. 51, 1915 (1983).
- **2**. Д. Е. Хмельницкий, Письма в ЖЭТФ, **38**, 454 (1983).
- 3. A. M. M. Pruisken, Nucl. Phys. B 235, 277 (1984).
- A. M. M. Pruisken and I. S. Burmistrov, Ann. Phys. 322, 1265 (2007).
- A. M. M. Pruisken and I. S. Burmistrov, Ann. Phys. 316, 285 (2005).
- D. Shahar, D. C. Tsui, M. Shayegan, R. N. Bhatt, and J. E. Cunningham, Phys. Rev. Lett. **74**, 4511 (1995); R. B. Dunford, N. Griffin, M. Pepper, P. J. Phillips, and T. E. Whall, Physica E **6**, 297 (2000); E. Peled, D. Shahar, Y. Chen, D. L. Sivco, and A. Y. Cho, Phys. Rev. Lett. **90**, 246802 (2003); S. S. Murzin, M. Weiss, A. G. M. Jansen, and K. Eberl, Phys. Rev. B **66**, 233314 (2002).
- L. A. Ponomarenko, Ph. D. thesis, University of Amsterdam (2005); D. T. N. de Lang, Ph. D. thesis,

University of Amsterdam (2005) (http://www.science. uva.nl/research/cmp/docs/ponomarenko/ thesis-ponomarenko.htm, http://www.science.uva.nl/ research/cmp/docs/delang/thesis-delang.htm).

- K. Yang, D. Shahar, R. N. Bhatt, D. C. Tsui, and M. Shayegan, J. Phys. C 12, 5343 (2000).
- S. Kivelson, D.-H. Lee, and S.-C. Zhang, Phys. Rev. B 46, 2223 (1992).
- 10. A. M. Dykhne and I. M. Ruzin, Phys. Rev. B 50, 2369 (1994).
- H. P. Wei, S. Y. Lin, D. C. Tsui, and A. M. M. Pruisken, Phys. Rev. B 45, 3926 (1992).
- S. Koch, R. J. Haug, K. V. Klitzing, and K. Ploog, Phys. Rev. Lett. 67, 883 (1991).
- L. P. Rokhinson, B. Su, and V. J. Goldman, Sol. St. Comm. 96, 309 (1995); P. T. Coleridge, Phys. Rev. B 60, 4493 (1999); F. Hols, U. Zeitler, R. J. Haug, and K. Pierz, Physica B 298, 88 (2001).
- 14. Y. Huo, R. E. Hetzel, and R. N. Bhatt. Phys. Rev. Lett. 70, 481 (1993).
- 15. L. Schweitzer and P. Markos, Phys. Rev. Lett. 95, 256805 (2005).
- 16. B. M. Gammel and F. Evers. Phys. Rev. B 57, 14829 (1998).
- The Quantum Hall Effect, 2nd ed., ed. by R. E. Prange and S. M. Girvin, Springer-Verlag, New York (1990).
- Y. Imry, Introduction to Mesoscopic Physics, Oxford University Press (2002).
- S. R. E. Yang, A. H. MacDonald, and B. Huckestein, Phys. Rev. Lett. 74, 3229 (1995).
- 20. Q. Niu, D. J. Thouless, and Y. S. Wu, Phys. Rev. B 31, 3372 (1985).
- 21. M. Tsukada, J. Phys. Soc. Jpn. 41, 1466 (1976).
- 22. T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 36, 959 (1974).
- 23. T. Ando, J. Phys. Soc. Jpn. 37, 622 (1974).
- 24. T. Ando, J. Phys. Soc. Jpn. 37, 1233 (1974).
- 25. F. Wegner, Z. Phys. B 51, 279 (1983).
- 26. I. S. Vasil'evskii, private communication.