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NONLINEAR INTERACTION OF A TWO-LEVEL ATOMWITH COUNTER-PROPAGATING RADIATION BEAMSOF DIFFERENT FREQUENCIESG. F. Mkrt
hian *Department of Quantum Ele
troni
s, Yerevan State University0025, Yerevan, ArmeniaRe
eived April 23, 2008The theoreti
al and numeri
al results on the nonlinear dynami
s of an atom in the �elds of two 
ounter-propagating radiation beams of di�erent frequen
ies are presented. Both resonant and nonresonant intera
tionregimes are investigated. The atom 
enter-of-mass energy dependen
e on the �eld amplitudes manifests thenonlinear threshold e�e
t of an atom re�e
tion in the interferen
e �eld. This phenomenon leads to the atoma

eleration or de
eleration depending on its initial state. This a

eleration/de
eleration is of a sho
k 
hara
terbe
ause of the impa
t with the moving potential barrier; it o

urs at ultrashort distan
es of the order of radiation�eld wavelengths. Furthermore, the role of initial 
onditions is dis
ussed and analyzed numeri
ally.PACS: 37.10.Vz, 37.10.De, 37.10.Gh1. INTRODUCTIONLaser manipulation of atom 
enter-of-mass motionhas been extensively studied both theoreti
ally and ex-perimentally with the appearan
e of lasers [1, 2℄. Sin
ethe �rst theoreti
al works [3�7℄, a 
ontinuous experi-mental progress in storing and 
ontrolling of ultra
oldatoms has led to a variety of spe
ta
ular results in thelast de
ades (see, e.g., [8�13℄ for a review and the ref-eren
es therein). The growing interest in this subje
t
an be largely attributed to the problems of quantuminformati
s, a variety of atomi
 and laser spe
tros
opi
issues, espe
ially at very low temperatures (it is worthnoting the unique experiments with the trapping ofseparate atoms or Bose 
ondensation of super
ooledatomi
 gas in opti
al-dipole or magneti
 traps).Nevertheless, the spe
trum of probable me
hanismsfor laser a

eleration of atoms with respe
t to 
hargedparti
les is very restri
ted, and the main reason is theneutrality of atom for dire
t ele
tromagneti
 intera
-tion. It is 
lear that in this 
ase, a

eleration of atomsby laser �elds is possible due to the intera
tion of the in-du
ed dipole moment of an atom with laser radiation.In the s
ope of the latter, there are two a

elerationme
hanisms, i.e., two types of radiative for
es, dissi-*E-mail: mkrt
hian�ysu.am

pative and dispersive, a
ting on an atom intera
tingwith laser �elds [3�7℄. The atom is then represented asa 
lassi
al obje
t � a 
omplex parti
le with internaldegrees of freedom.The �rst-type for
e, also 
alled the radiation pres-sure for
e, results from the transfer of momentum fromthe light beam to the atom at the resonant s
atteringand is proportional to the s
attering rate �. The 
or-responding a

eleration/de
eleration of an atom withmass m is � ~k�=m, where ~k is the momentum ofthe absorbed photon. With su
h a for
e, an atom atrest 
an be a

elerated up to thermal velo
ities, or thethermal atomi
 beam 
an be stopped at the distan
eof the order of one meter during a few millise
onds.The se
ond-type, dispersive for
e, also 
alled thedipole or gradient for
e, arises from the dispersive in-tera
tion of the indu
ed atomi
 dipole moment withthe intensity gradient of the laser beam:F � rI (r) ;where I (r) is the intensity envelope of the in
ident laserbeam. Be
ause of its 
onservative 
hara
ter, this for
e
an serve as an opti
al trap for neutral atoms [8�10℄. Asa great a
hievement, the opti
al dipole traps of atomshave been su

essfully realized [14�16℄.Interesting e�e
ts 
an also be obtained in the �eldof two 
ounter-propagating light beams. As a signi�-867 2*



G. F. Mkrt
hian ÆÝÒÔ, òîì 134, âûï. 5 (11), 2008
ant appli
ation of radiation pressure for
es, Doppler
ooling of neutral atoms [17℄ and trapped ions [18℄have been realized. The latter results from a Doppler-indu
ed imbalan
e between two opposite radiationpressure for
es 
aused by the laser beams of the samefrequen
y. This allows damping the atomi
 velo
ity ina few mi
rose
onds, a
hieving what is 
alled an �opti
almolasses� [19℄.We do not attempt to review the extensive liter-ature on the laser manipulation of atoms by the 
o-unter-propagating light beams, apart from mentioningworks [20, 21℄, whi
h 
onsider the a

eleration of atomsin a moving periodi
 potential trap. This relies on the�
onveyor belt� provided by a frequen
y-
hirped opti
allatti
e formed by two 
ounter-propagating laser beams.Another regime of atom a

eleration has been reportedin [22℄ for the far-o�-resonant waves. It has been foundin [22℄ that in the �eld of two 
ounter-propagating lightbeams of di�erent frequen
ies, a 
riti
al intensity of ra-diation �eld exists, above whi
h the atom �re�e
tion�from the slowed interferen
e wave o

urs. The 
om-bined wave �eld be
omes a moving potential barrierwith respe
t to the atom, resulting in the atom a

el-eration or de
eleration depending on its initial velo
ity.This is a sho
k a

eleration/de
eleration, whi
h is in-dependent of the intera
tion length.In this paper, the results obtained in Ref. [22℄ aredeveloped further. The theoreti
al and numeri
al re-sults on the nonlinear dynami
s of an atom in the �eldsof 
ounter-propagating radiation beams of the di�erentfrequen
ies are presented. Both resonant and far-o�-re-sonant regimes of intera
tion are investigated and therole of initial 
onditions is dis
ussed and analyzed bynumeri
al simulations.The organization of the paper is as follows. InSe
. 2, we derive the basi
 equations of motion andbrie�y review distin
t regimes of intera
tion. In Se
. 3,we present some numeri
al 
al
ulations and 
omparethem with analyti
 results. Finally, 
on
lusions aregiven in Se
. 4.2. BASIC MODEL AND THEORYWe study the dynami
s of intera
tion of a two-le-vel atom with the two quasi-mono
hromati
 
ounter-propagating plane waves of di�erent frequen
ies inthe given-�eld approximation (the magnitudes of thewave �elds are assumed so strong that the radia-tion/absorption pro
esses 
annot 
hange the given val-ues). In the a
tual 
ases of strong wave pulses, thisapproximation is satis�ed with great a

ura
y.

The Hamiltonian of the two-level atom in the �eldof two quasi-mono
hromati
 
ounter-propagating planeele
tromagneti
 waves 
an be represented in the formbH = bp22m + "1j1ih1j+ "2j2ih2j+ bV ; (1)wherebV = �d12 (E1 
os'1 (t; r) ++ E2 
os'2 (t; r)) j1ih2j+H:
: (2)is the intera
tion Hamiltonian.The operator jsihsj (s = 1; 2) proje
ts onto the statejsi with an energy "s. The operators j1ih2j and j2ih1jdes
ribe the transitions in the atomi
 system that aredriven by the 
ounter-propagating waves with the 
ar-rier frequen
ies !1 and !2 (let !1 > !2), wave numbersk1 and k2, and slowly varying amplitudes E1 and E2.The 
orresponding phases are'1;2 (t; r) = !1;2t� k1;2 � r:The �elds of both pulses are assumed to be linearly po-larized along the same dire
tion; d12 is the proje
tionof the atomi
 transition dipole moment on the polariza-tion dire
tion of the waves (we assume d12 to be real).Here, r and bp are the operators of the position andmomentum of the atom 
enter-of-mass (m).In the pro
ess of emitting and absorbing photons,atoms 
hange not only their internal states but alsotheir external translational states, due to photon re-
oil. If the atomi
 momentum 
hange is large 
om-pared to the photon momenta ~k1;2, the atom 
enter-of-mass motion 
an be des
ribed 
lassi
ally. In this 
ase,the position and momentum of the atom 
enter-of-massobey the Hamilton 
anoni
al equations of motiondrdt = pm; dpdt = �rVeff (r; t); (3)with the e�e
tive potentialVeff (r; t) = Sp�b�bV � : (4)Here, b� is the density matrix 
orresponding to the in-ternal degrees of freedom of the atomi
 system. Thedensity matrix b� 
an be written in the formb� = �11j1ih1j+�22j2ih2j+ ��12ei!0tj1ih2j+H:
:� ; (5)where !0 = ("2 � "1) =~ is the frequen
y of the atomi
transition. The dynami
s of the density matrix b� inthe intera
tion pi
ture are determined by the von Neu-mann equation i~�b��t = hbV ; b�i : (6)868
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tion of a two-level atom : : :The resulting equations for the density matrix elementsared�11dt = �i�21e�i!0t ���
12 ei'1(t;r) + 
22 ei'2(t;r)�+ 
:
:; (7a)d�22dt = i�21e�i!0t ���
12 ei'1(t;r) + 
22 ei'2(t;r)�+ 
:
:; (7b)d�12dt = ie�i!0t ���
12 ei'1(t;r) + 
22 ei'2(t;r)� (�11 � �22) ; (7
)d�21dt = �iei!0t ���
12 e�i'1(t;r) + 
22 e�i'2(t;r)� (�11 � �22) : (7d)Using Eqs. (2), (4), and (5), we 
an obtain the followingexpression for the e�e
tive potential of intera
tion:Veff (r; t) == �~
12 e�i'1(t;r)+~
22 e�i'2(t;r)� ei!0t�12+
:
: (8)Here, 
1;2 = E1;2d12=~ are the Rabi frequen
ies.To be more pre
ise, we should add the terms de-s
ribing spontaneous transitions and other relaxationpro
esses in the set of equations (7). Sin
e we have nottaken the relaxation pro
esses into a

ount, our 
onsid-eration is 
orre
t only for the times T < �min, where�min is the minimum of all relaxation times. Therefore,full dynami
s in the absen
e of any losses are governedby Eqs. (3), (7), and (8). These equations are a non-linear set of equations with the atomi
 internal (b�) andtranslational (r, p) variables de�ned self-
onsistently.However, in some 
ases, it is possible to de
ouple thetranslational variables and to identify the nonlinear dy-nami
s of an atom 
enter-of-mass motion.The 
ase of large resonan
e detunings was 
onsid-ered in Ref. [22℄. We brie�y repeat the simple re-sults for the sake of self-
onsisten
y. For large reso-nan
e detunings (or not very strong wave �elds), whenj�1;2j � j
1;2j (�1;2 = !1;2 � !0 are the resonan
edetunings for atomi
 internal transitions), and if theatom is initially in the ground state, the ex
ited state

population remains small and 
an be negle
ted. Then,setting �11 � 1 and �22 � 0 in Eq. (7
), we obtain�12 � e�i!0t� 
12�1 ei'1(t;r) + 
22�2 ei'2(t;r)� ; (9)and, 
orrespondingly, e�e
tive potential (8) is redu
edtoVeff (r; t) = ~
1
22 � 1�1 + 1�2 ��� 
os�Æ!�t� zvph�� : (10)In Eq. (10), only the time dependent terms aredropped, Æ! = !1 � !2 > 0, and it is assumed thatthe waves propagate along the z axis. As we see, theatomi
 translational motion is governed by the slowedinterferen
e wave. This wave propagates with the phasevelo
ity vph = 
=n < 
 (
 is the speed of light in va
-uum). The quantityn = !1 + !2!1 � !2 > 1 (11)is the �e�e
tive refra
tive index� for a slowed inter-feren
e wave. Hen
e, the resonant intera
tion of anatom with two traveling va
uum waves a�e
ts the atom
enter-of-mass translational motion in the slowed wave�eld, whi
h is of a nonlinear-threshold nature over theinterferen
e wave intensity, as we show in that follows.Next, we 
onsider the nonlinear dynami
s of trans-lational motion of the atom 
enter-of-mass in the�eld of the slowed traveling wave (10), at the near-resonant transitions between the atomi
 internal quan-tum states: j�1;2j � j
1;2j. In this 
ase, the internaland translational variables are also separated, whi
h al-lows integrating the redu
ed equations of motion. Thisis 
lear if the resonan
e 
ondition for two waves!0 = !2 + !12 (12)holds, whi
h requires inverse symmetri
 detun-ings �1 = ��2. For simpli
ity, we also assume
1 = 
2 � 
. The set of equations (7) 
an then berewritten asd�12dt = i

os�Æ!2 �t� zvph���� exp��i Æ!z2
 � (�11 � �22) ; (13a)d�11dt = i

os�Æ!2 �t� zvph���� �exp�i Æ!z2
 � �12 � 
:
:� ; (13b)869
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)and e�e
tive potential (8) is redu
ed toVeff (r; t) = ~

os�Æ!2 �t� zvph���� �exp��i Æ!z2
 � �21 + 
:
:� : (14)If vph � 
, whi
h is satis�ed with great a

ura
y for the
onsidered setup, the slow os
illations of the exponen-tial fun
tion exp [�iÆ!z=2
℄ 
an be ignored in Eqs. (13)and (14). This is justi�ed if the 
onditionjzj � 2
Æ! � n 
!0 (15)is satis�ed, whi
h pra
ti
ally does not limit the inter-a
tion length for a
tual pulses be
ause of very largevalues of the e�e
tive refra
tive index n � 1 (this isequivalent to the 
ondition vph � 
).Then, these equations 
an be solved exa
tly subje
tto 
ertain initial 
onditions. The general solution forthe density matrix elements is�11 = 12 + Im [�12 (0)℄sin#0 
os# (t) ; (16)Im [�12 (t)℄ = Im [�12 (0)℄sin#0 sin# (t) ; (17)Re [�12 (t)℄ = 
onst; (18)where# (t) = 2 tZ0 
 (t0) 
os�Æ!2 �t0 � z (t0)vph �� dt0 + #0 (19)and tg #0 = Im [�12 (0)℄�11 (0)� 1=2 : (20)This solution represents Rabi os
illations with a mod-ulated Rabi frequen
y. For the e�e
tive potential, weobtainVeff (r; t) = 2~
Re [�12 (0)℄�� 
os�Æ!2 �t� zvph�� : (21)As 
an be seen from Eqs. (10) and (21) in thesetwo distin
t 
ases, translational motion of an atom is

governed by the slowed interferen
e wave. For the near-resonant intera
tion, in 
ontrast to the far-o�-resonant
ase, the amplitude of the e�e
tive intera
tion poten-tial depends on the initial internal atomi
 state. For anonvanishing intera
tion, the atom must be prepared ina superposition state, and to maximize the intera
tionpotential, the equal superposition of the states j1i andj2imust be a
hieved. For the same wave intensities, theamplitude of e�e
tive intera
tion potential (21) is thenat least one order of magnitude larger than the ampli-tude expe
ted in the nonresonant intera
tion regime.We now turn to the solution of the equation of mo-tion for the 
enter-of-mass motion of an atom. Equa-tions (3) imply the 
onservation of transversal momen-tum of the atom: px;y = 
onst. Then, with the depen-den
e of the e�e
tive potential on time and 
oordinatetaken into a

ount in both resonant and nonresonant
ases for the mono
hromati
 waves in Eqs. (3), we 
an�nd the integral of motionE � vphpz = 
onst = E0 � vphp0z; (22)where E0 and p0z are the initial energy and the lon-gitudinal momentum of the atom. For the quasi-mono
hromati
 waves with slowly varying envelopes,Eq. (22) represents an adiabati
 integral, when thewaves are turned on and o� adiabati
ally.Using Eq. (22), we 
an obtain the velo
ity of theatom in the �eldvz = vph 241�s�1� v0zvph�2 � Veff (z; t)Eph 35 ; (23)vx = v0x; vy = v0y; (24)where v0 = (v0x; v0y; v0z) is the initial velo
ity of theatom and Eph = mv2ph=2 is the kineti
 energy of a par-ti
le 
orresponding to the velo
ity vph.As 
an be seen from Eq. (23), when the maximalvalue of the intera
tion potential Veff (z; t)max = jV0j islarger than the value (whi
h is 
alled 
riti
al in whatfollows) V
r = Eph�1� v0zvph�2 ; (25)expression (23) for the atom velo
ity may be
ome 
om-plex. This 
omplexity is bypassed in the 
omplex planeby 
ontinuously passing from one Riemann sheet to an-other, at whi
h the root 
hanges its sign. Hen
e, theatom velo
ity remains real everywhere and the multi-valuedness of expression (23) also disappears. Indeed,870
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tion of a two-level atom : : :if jV0j < V
r, we should take the root with the sign��� in the Eq. (23) if v0z � vph and with the sign �+�if v0z � vph, to satisfy the initial 
ondition vz = v0zat Veff (z; t = �1) = 0: Then, after the intera
tion(Veff (z; t = +1) = 0), the energy of the atom re-mains un
hanged. However, when jV0j > V
r, the valueVeff (z(t0); t0) = V
r (where z(t0) is the atom 
oordi-nate at the instant t = t0) be
omes a turning point,and we should 
hange the sign of the root for t > t0
ompared with the instants t � t0.We now 
onsider the behavior of the atom in the�eld in this situation. As we see, the atom 
annot pen-etrate the region of the �eld Veff (z; t) > V
r, whereexpression (23) be
omes 
omplex. The slowed inter-feren
e wave then be
omes a potential barrier for theatom and the re�e
tion of the atom from su
h a mov-ing barrier o

urs. To explain the physi
s of this phe-nomenon, it is ne
essary to 
larify the meaning of the
riti
al �eld.This is an essentially nonlinear phenomenon ofthreshold nature, and the 
riti
al intensity of the in-terferen
e wave is the threshold value for this pro
ess.Namely, Eq. (23) shows that the 
riti
al value V
r isthe value of the potential at whi
h the longitudinalvelo
ity of the atom in the �eld vz(t) be
omes equalto the phase velo
ity of the slowed interferen
e wave:vz(t) = vph, irrespe
tive of the atom initial velo
ityv0z : The last formula is the 
ondition of resonan
ewith the Doppler-shifted waves frequen
ies, at whi
hthe 
oherent s
attering, that is, the indu
ed s
atteringof 
ounter-propagating waves on an atom o

urs:!1�1� vz(t)
 � = !2�1 + vz(t)
 � : (26)Under this 
ondition, the nonlinear resonan
e o

ursbe
ause the resonant velo
ity of the atom vz(t) = vphis a
quired in the �eld at the value Veff = V
r (due tothe wave intensity e�e
t).We note that the existen
e of a 
riti
al intensity in
oherent wave �elds is the feature of indu
ed 
oherentpro
esses, su
h as Cherenkov and Compton pro
esses(as well as in an undulator), where nonlinear resonantphenomena have been revealed [23℄. Then, at the 
riti-
al point, the resonant absorption of photons from onewave and re-emission into the other wave o

urs, re-sulting in a break of the syn
hronism vz(t) = vph be-tween the atom and the slowed interferen
e wave (ei-ther vz(t) > vph or vz(t) < vph), and the atom aban-dons it: the re�e
tion of the atom from the movingbarrier o

urs.We note that this is a
tually a re�e
tion in theframe of referen
e moving with the velo
ity V = vph,

whi
h is the rest frame of the slowed interferen
e wave.In this frame, the atom with the velo
ity v00z swoops onthe motionless barrier and, as is seen from Eq. ( 23),an elasti
 re�e
tion of the atom o

urs: v0z = � v00z .Thus, if the maximal value of the intera
tion potentialjV0j > V
r, then the atom velo
ity after the intera
tionis given by vzf = 2vph � v0z : (27)As we see from Eq. (27), if the slowed interferen
ewave pulse initially overtakes the atom (v0z < vph ),then vzf > v0z and the atom is a

elerated. But ifthe atom initially overtakes the wave (v0z > vph), thenvzf < v0z and the de
eleration of the atom o

urs. Forthe resonant atoms (v0z = vph), V
r = 0 and 
onse-quently the atom velo
ity does not 
hange (vzf = v0z).For the kineti
 energy 
hange of the atom 
enter ofmass, we have �E = 4Eph�1� v0zvph� : (28)It follows from this formula that the a

eleration of theatom depends neither on the �eld magnitude (on
e it isabove the threshold �eld) nor on the intera
tion length.Formulas (27) and (28) show that a

eleration or de
el-eration of the atom is de�ned by the key parameters ofthis pro
ess � the atom initial velo
ity and the phasevelo
ity of the slowed interferen
e wave vph.3. NUMERICAL TREATMENTIn this se
tion, we present some numeri
al simula-tions that illustrate the nonlinear pi
ture of intera
tionof the atom with the two 
ounter-propagating waves.The time evolution of the system of equations (3), (7)is found with a Runge�Kutta method. The 
al
ula-tions were made for a quasi-mono
hromati
 wave �eldsproviding the adiabati
 turn on/o� of the intera
tion.This is a
hieved by des
ribing the envelopes with theGaussian fun
tions
1;2(t) = 
0 exp ��(t� 3�)2=2�2� ;where � and
0 
hara
terize the pulse duration and am-plitudes. We 
onsider the resonant intera
tion regimeassuming the atom initially to be in an equal super-position of the states j1i and j2i (�12 (0) = 1=2). Forall 
al
ulations, we took 
0=Æ! = 103. We note thatthe qualitative pi
ture of an atom 
enter-of-mass mo-tion pra
ti
ally is independent of this ratio. The pulseduration has been 
hosen as Æ!� = 20 (the pulse dura-tion should be larger than the period of the interferen
e871
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δωtFig. 1. The solid 
urve displays the temporal evolutionof the atom s
aled velo
ity vz=vph. The dashed 
urveshows the variation of the s
aled intera
tion potentialVeff=V
r, sensed by the atom along the traje
tory. Theinitial 
onditions are v0 = 0 and z0 = 0, the intensitybelow the 
riti
al point is V0 = 0:9V
rwave). At t = 0, the wave intensities are redu
ed by thefa
tor 1=e9 relative to their maximal values, providingthe adiabati
 swit
h on of the intera
tion. Then, toa

entuate this a

eleration me
hanism 
aused by thenonlinear resonan
e in the �elds, we present the atomdynami
s in the 
ase where the initial velo
ity of theatom is very far from the indu
ed resonan
e in Eq. (26).Figure 1 illustrates the temporal evolution of theatom 
enter-of-mass velo
ity (solid 
urve) in the 
asewhere v0 = 0 and the intensity is below the 
riti
alpoint: V0 = 0:9V
r. The dashed 
urve shows the vari-ation of the s
aled potential Veff=V
r along the atomtraje
tory. We see that the a

eleration is negligiblysmall.In Fig. 2, the atom dynami
s is displayed in the
ase where the intensity is above the 
riti
al point:V0 = 1:3V
r. Figure 2a illustrates the a

elerationof an atom at rest (v0 = 0). The solid 
urve showsthe temporal evolution of the atom velo
ity. Thedashed 
urve is the variation of the s
aled potentialVeff=V
r along the atom traje
tory. Figure 2b illus-trates the de
eleration in the 
ase where v0 = 2vph.It is 
learly seen from these �gures that at the 
riti
alpoint Veff � V
r, the longitudinal velo
ity of the atombe
omes equal to the phase velo
ity of the interferen
ewave: vz(t) = vph = 
=n, and it is a turning point forthe solid 
urves. This 
orresponds to formulas (23),where the root 
hanges its sign and the further evolu-tion of the velo
ity pro
eeds along the se
ond brun
h ofthe root with the reversed sign. In the resonan
e range,the velo
ity of the atom stri
tly in
reases if v0 < vph

�1:0�0:5�1:500:51:01:52:02:5

0 10 20 30 40 50 60 70Æ!t

0 10 20 30 40 50 60 70Æ!t
3:0 a

b
�1:5
2:52:01:51:00:50�0:5�1:0Fig. 2. Atom a

eleration/de
eleration. The inten-sity is above the 
riti
al point: V0 = 1:3V
r. a) Thesolid 
urve displays the temporal evolution of the atoms
aled velo
ity vz=vph with v0 = 0 and z0 = 0.The dashed 
urve is the s
aled intera
tion potentialVeff=V
r, sensed by the atom along the traje
tory.b) Atom de
eleration for v0 = 2vph and z0 = 0(Fig. 2a) or de
reases if v0 > vph (Fig. 2b) due to thegenuinely nonlinear 
hara
ter of the resonan
e in the�eld. Then, after leaving the resonan
e range, the �nalvelo
ity of the atom be
omes vzf = 2vph (a

eleration)and vzf = 0 (de
eleration), in a

ordan
e with the an-alyti
 results (see Eqs. (23) and (27)).To illustrate the physi
al pi
ture of the atom re�e
-tion from the interferen
e wave and the sho
k 
hara
terof a

eleration/de
eleration, we present the atom phasetraje
tory, velo
ity versus the 
oordinate z0(t) (in unitsof the redu
ed wavelength � = 2�1�2=(�1 + �2)), inthe rest frame of the slowed interferen
e wave. In thisframe, the a
tual re�e
tion o

urs. The 
orrespond-ing pi
ture is given in Fig. 3 at v0 = 0 (the symmet-ri
 pi
ture o

urs at v0 = 2vph). In this frame, theatom swoops on the motionless barrier with the velo
-ity v00z = �vph and, as is seen from Fig. 3, the re�e
tionof the atom o

urs. Figure 3 also shows that the re�e
-872
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�4:0 �3:5 �3:0 �2:5 �2:0 �1:5 �1:0 �0:5 0�2:0�1:5�1:0�0:500:51:01:52:0v0z=vph

z0=�Fig. 3. Atom phase traje
tory (velo
ity versus the 
o-ordinate z0(t), in units of the redu
ed wavelength) inthe rest frame of the slowed interferen
e wave for thesetup in Fig. 2a

�3 �2 �1 0 1 2 3

�3 �2 �1 0 1 2 3010�6

0
4321

a

bEf=Eph

Ef=Eph2:0�10�6
0:5�10�61:5�10�6

z0=�

z0=�Fig. 4. The �nal s
aled energy versus the initial po-sition of the atom z0 (in units of the redu
ed wave-length), when v0 = 0. a) The intensity is below the
riti
al point: V0 = 0:9V
r. b) The intensity is abovethe 
riti
al point: V0 = 1:3V
r

tion o

urs at the distan
es smaller than the radiationwavelength, 
on�rming the sho
k 
hara
ter of a

eler-ation. This is also 
on�rmed in the laboratory frame,whi
h is well seen from Fig. 4, whi
h displays the roleof initial 
onditions, showing the �nal energy versusthe initial position z0 of the atom. We see that thea

eleration is negligibly small below the nonlinear res-onan
e threshold (Fig. 4a). The net gain is de�ned bythe initial phase, whi
h is in a

ordan
e with the per-turbation theory. When the amplitude of the slowedinterferen
e wave is above the 
riti
al point (Fig. 4b),the �nal energy for re�e
ted parti
les is almost 
onstant(Ef = 4Eph).We make some estimations. Best suited systems forthe near-resonant intera
tion regime are the Rydbergatoms, i.e., the highly ex
ited states of hydrogen or al-kali metal atoms [24℄. Here, we are mainly interestedin 
ir
ular Rydberg states. These are the states withthe highest allowed angular momentum l = n0 � 1 fora given prin
ipal quantum number n0 (with jm0j = l,where m0 is the magneti
 quantum number). For thesestates, only one resonant dipole transition is allowed:n0 $ n0 + 1;and therefore su
h states 
losely approximate a two-level system with an extremely long lifetime and arewidely used in the mi
rowave 
avity quantum ele
tro-dynami
s experiments [25℄. Hen
e, with our notation,we set j1i � jn0; l = n0 � 1;m0 = n0 � 1iand j2i � jn0 + 1; l = n0;m0 = n0 � 1i:For a Rydberg atom state with a large n0 and�n0 = 1,the transition frequen
y is!0 � "0~n30 = 1n30 at:u:;where "0 is the atomi
 unit of energy (27:2 eV). Here,we have taken into a

ount that the quantum defe
tthat 
orre
ts for the deviation of the binding potentialfrom a purely hydrogeni
 situation is small for highorbital moments l. The transition dipole moment be-tween neighboring Rydberg states [26℄ is estimated asd12 = p2ea0 22n0+2nn0+30 (n0 + 1)n0+2(2n0 + 1)2n0+3 � n20p2 at:u:;where a0 is the Bohr radius (e is the elementary
harge). The rate of spontaneous emission is given by873
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hian ÆÝÒÔ, òîì 134, âûï. 5 (11), 2008� = �0n50 ;where �0 = 2�4
3a0 � 1010 s�1is the 
hara
teristi
 rate and � is the �ne-stru
ture 
on-stant. Then, the pulse duration of the waves is assumedto be � � 1=10�, whi
h gives Æ! � 2 � 102� in a

or-dan
e with the 
ondition Æ!� = 20. For the e�e
tiverefra
tive index, we then obtainn � 2!0Æ! = 10�2 "0~�0n20 � 4 � 104n20:For an atom initially at rest (with an atomi
 weightA), the 
riti
al �eld and, 
onsequently, Rabi frequen
yis given byV
r = ~
min = m 
22n2 � 1: 2 � 10�2 An40 at:u:This value should be mu
h smaller than the frequen
ydi�eren
e between the main resonant and nonresonanttransitions (n0 $ n0 � 1, n0 + 1 $ n0 + 2), whi
h isof the order of 3=n40 at:u: This 
ondition is satis�ed forthe hydrogen atom as well as for the light alkali atoms(lithium, sodium), and the model of supposed two-levelatom is su�
iently well justi�ed. We note that the re-quired �elds for this e�e
t should beE & 2 � 10�2 An60 at:u:;whi
h are mu
h smaller than the atomi
 �eldsE0 = 116n40 at:u:for the Rydberg atoms in the state with a large n0.In parti
ular, for the prin
ipal quantum numbern0 = 40 and !0=2� � 103 GHz (with the 
orrespond-ing e�e
tive refra
tive index given by n � 6:4 � 107),an atom initially at rest 
an be a

elerated up to thevelo
ities 103 
m=s. The required �elds for this e�e
tare E & 2:5 � 10�2A V/
m, whi
h 
orresponds to waveintensities I � 4 � 10�5 W/
m2, for lithium atoms withA = 7. In the inverse regime of de
eleration, su
h anatomi
 beam 
an be stopped with the same �elds.4. CONCLUSIONWe have presented a theoreti
al treatment of non-linear dynami
s of the two-level atom intera
ting with


ounter-propagating radiation �elds of di�erent fre-quen
ies. We have shown that in this indu
ed 
oher-ent pro
ess, a 
riti
al intensity of the wave �elds ex-ists above whi
h a nonlinear phenomenon of a neutralatom re�e
tion from the slowed interferen
e wave o
-
urs. This results in the atom a

eleration or de
el-eration depending on its initial velo
ity. We have ex-amined various limits of atomi
 dynami
s dependingon the resonan
e detuning. For the near-resonant in-tera
tion, in 
ontrast to the far-o�-resonant 
ase, theamplitude of the slowed interferen
e wave depends onthe initial internal atomi
 state. The role of initial 
on-ditions has been dis
ussed and analyzed by numeri
al
al
ulations. The numeri
al simulations are in goodagreement with the analyti
 results.In the 
onsidered s
heme, a

eleration/de
elerationdepends neither on the �eld magnitude (on
e it is abovethe threshold �eld) nor on the intera
tion length, andit may serve as a promising way for e�
ient manip-ulation of ultra
old atoms. The threshold 
hara
terof su
h an a

eleration may be used for separation ofatoms by velo
ities.The author a
knowledges helpful dis
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