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The theoretical and numerical results on the nonlinear dynamics of an atom in the fields of two counter-
propagating radiation beams of different frequencies are presented. Both resonant and nonresonant interaction
regimes are investigated. The atom center-of-mass energy dependence on the field amplitudes manifests the
nonlinear threshold effect of an atom reflection in the interference field. This phenomenon leads to the atom
acceleration or deceleration depending on its initial state. This acceleration/deceleration is of a shock character
because of the impact with the moving potential barrier; it occurs at ultrashort distances of the order of radiation
field wavelengths. Furthermore, the role of initial conditions is discussed and analyzed numerically.
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1. INTRODUCTION

Laser manipulation of atom center-of-mass motion
has been extensively studied both theoretically and ex-
perimentally with the appearance of lasers [1, 2]. Since
the first theoretical works [3-7], a continuous experi-
mental progress in storing and controlling of ultracold
atoms has led to a variety of spectacular results in the
last decades (see, e.g., [8-13] for a review and the ref-
erences therein). The growing interest in this subject
can be largely attributed to the problems of quantum
informatics, a variety of atomic and laser spectroscopic
issues, especially at very low temperatures (it is worth
noting the unique experiments with the trapping of
separate atoms or Bose condensation of supercooled
atomic gas in optical-dipole or magnetic traps).

Nevertheless, the spectrum of probable mechanisms
for laser acceleration of atoms with respect to charged
particles is very restricted, and the main reason is the
neutrality of atom for direct electromagnetic interac-
tion. It is clear that in this case, acceleration of atoms
by laser fields is possible due to the interaction of the in-
duced dipole moment of an atom with laser radiation.
In the scope of the latter, there are two acceleration
mechanisms, i.e., two types of radiative forces, dissi-
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pative and dispersive, acting on an atom interacting
with laser fields [3—7]. The atom is then represented as
a classical object — a complex particle with internal
degrees of freedom.

The first-type force, also called the radiation pres-
sure force, results from the transfer of momentum from
the light beam to the atom at the resonant scattering
and is proportional to the scattering rate I'. The cor-
responding acceleration/deceleration of an atom with
mass m is ~ hkT'/m, where hk is the momentum of
the absorbed photon. With such a force, an atom at
rest can be accelerated up to thermal velocities, or the
thermal atomic beam can be stopped at the distance
of the order of one meter during a few milliseconds.

The second-type, dispersive force, also called the
dipole or gradient force, arises from the dispersive in-
teraction of the induced atomic dipole moment with
the intensity gradient of the laser beam:

F ~VI(r)

3

where I (r) is the intensity envelope of the incident laser
beam. Because of its conservative character, this force
can serve as an optical trap for neutral atoms [8-10]. As
a great achievement, the optical dipole traps of atoms
have been successtully realized [14-16].

Interesting effects can also be obtained in the field
of two counter-propagating light beams. As a signifi-
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cant application of radiation pressure forces, Doppler
cooling of neutral atoms [17] and trapped ions [1§]
have been realized. The latter results from a Doppler-
induced imbalance between two opposite radiation
pressure forces caused by the laser beams of the same
frequency. This allows damping the atomic velocity in
a few microseconds, achieving what is called an “optical
molasses” [19].

We do not attempt to review the extensive liter-
ature on the laser manipulation of atoms by the co-
unter-propagating light beams, apart from mentioning
works [20, 21], which consider the acceleration of atoms
in a moving periodic potential trap. This relies on the
“conveyor belt” provided by a frequency-chirped optical
lattice formed by two counter-propagating laser beams.
Another regime of atom acceleration has been reported
in [22] for the far-off-resonant waves. It has been found
in [22] that in the field of two counter-propagating light
beams of different frequencies, a critical intensity of ra-
diation field exists, above which the atom “reflection”
from the slowed interference wave occurs. The com-
bined wave field becomes a moving potential barrier
with respect to the atom, resulting in the atom accel-
eration or deceleration depending on its initial velocity.
This is a shock acceleration/deceleration, which is in-
dependent of the interaction length.

In this paper, the results obtained in Ref. [22] are
developed further. The theoretical and numerical re-
sults on the nonlinear dynamics of an atom in the fields
of counter-propagating radiation beams of the different
frequencies are presented. Both resonant and far-off-re-
sonant regimes of interaction are investigated and the
role of initial conditions is discussed and analyzed by
numerical simulations.

The organization of the paper is as follows. In
Sec. 2, we derive the basic equations of motion and
briefly review distinct regimes of interaction. In Sec. 3,
we present some numerical calculations and compare
them with analytic results. Finally, conclusions are
given in Sec. 4.

2. BASIC MODEL AND THEORY

We study the dynamics of interaction of a two-le-
vel atom with the two quasi-monochromatic counter-
propagating plane waves of different frequencies in
the given-field approximation (the magnitudes of the
wave fields are assumed so strong that the radia-
tion/absorption processes cannot change the given val-
ues). In the actual cases of strong wave pulses, this
approximation is satisfied with great accuracy.
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The Hamiltonian of the two-level atom in the field
of two quasi-monochromatic counter-propagating plane
electromagnetic waves can be represented in the form

=2

~ p ~
H=— 1H(1 2)2[+V
Pyl + el + 7,

(1)
where

V= —dy2 (Ey cos gy (t,r) +

+ By cosps (t,1)) [1)(2] + Hee.  (2)

is the interaction Hamiltonian.

The operator |s)(s| (s = 1,2) projects onto the state
|s) with an energy 5. The operators |1)(2| and |2)(1]
describe the transitions in the atomic system that are
driven by the counter-propagating waves with the car-
rier frequencies wy and wy (let wy > wo), wave numbers
k; and k-, and slowly varying amplitudes F; and Fj.
The corresponding phases are

(,91,2 (t./ I') = w1’2t — k1’2 T,

The fields of both pulses are assumed to be linearly po-
larized along the same direction; d;» is the projection
of the atomic transition dipole moment on the polariza-
tion direction of the waves (we assume dq» to be real).
Here, r and p are the operators of the position and
momentum of the atom center-of-mass (m).

In the process of emitting and absorbing photons,
atoms change not only their internal states but also
their external translational states, due to photon re-
coil. If the atomic momentum change is large com-
pared to the photon momenta hk; 2, the atom center-of-
mass motion can be described classically. In this case,
the position and momentum of the atom center-of-mass
obey the Hamilton canonical equations of motion

P

dr_
dt — m’ i

with the effective potential
Vags (e,t) = Sp (57 ). (4)

Here, p is the density matrix corresponding to the in-
ternal degrees of freedom of the atomic system. The
density matrix p can be written in the form

p = pur|1) (1 +p22|2)(2|+ (pr2e"°![1)(2]+H.c.) ,

dp

Vngf (I‘, t)v (3)

(5)

where wg = (e2 — 1) /h is the frequency of the atomic
transition. The dynamics of the density matrix p in
the interaction picture are determined by the von Neu-

7.
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The resulting equations for the density matrix elements
are

d )
Zil — _Z.p21672w0t %
X &ei“’l(t’r) + &ewg(“) +cc., (7a)
2 2
d .
Ziz _ imleﬂwot >
X &ewl(“) + &ewz(t’r) +c.c., (7b)
2 2
d .
—Z;Z = je ol x
[ [
x (716“"1(“) + 726“"2“71")) (p11 — p22), (7c)
d .
—Zil = —jetwot x
Q0 . [9) .
% <716—w1(t7r) + %e—wg(tm)) (/J11 - p22). (7d)

Using Eqgs. (2), (4), and (5), we can obtain the following
expression for the effective potential of interaction:

Vepr (r,t) =
- <%Qle—w1(t7”)+h7%e‘w2(t7‘”)> et piatec.  (8)

Here, Oy » = Ej 2di2/h are the Rabi frequencies.

To be more precise, we should add the terms de-
scribing spontaneous transitions and other relaxation
processes in the set of equations (7). Since we have not
taken the relaxation processes into account, our consid-
eration is correct only for the times T < 7y, Where
Tmin 18 the minimum of all relaxation times. Therefore,
full dynamics in the absence of any losses are governed
by Egs. (3), (7), and (8). These equations are a non-
linear set of equations with the atomic internal (p) and
translational (r, p) variables defined self-consistently.
However, in some cases, it is possible to decouple the
translational variables and to identify the nonlinear dy-
namics of an atom center-of-mass motion.

The case of large resonance detunings was consid-
ered in Ref. [22]. We briefly repeat the simple re-
sults for the sake of self-consistency. For large reso-
nance detunings (or not very strong wave fields), when
A1 > [Q15] (A12 = w12 — wp are the resonance
detunings for atomic internal transitions), and if the

3

atom is initially in the ground state, the excited state

population remains small and can be neglected. Then,
setting p11 ~ 1 and pas ~ 0 in Eq. (7c), we obtain

. 0 Dy
P12 = e*l&)ot (ﬁeupﬂt,l‘) + réesz(t’r)> ) (9)

and, correspondingly, effective potential (8) is reduced
to

Vegr (r,t) = 5 AR,

X COS {&J <t - ﬁ)] . (10)

In Eq. (10), only the time dependent terms are
dropped, dw = wy — wy > 0, and it is assumed that
the waves propagate along the z axis. As we see, the
atomic translational motion is governed by the slowed
interference wave. This wave propagates with the phase
velocity vpn, = ¢/n < ¢ (c is the speed of light in vac-
uum). The quantity

hQ1 Qs [ 1 1 }
X

R - B (11)
W1 — W2

is the “effective refractive index” for a slowed inter-
ference wave. Hence, the resonant interaction of an
atom with two traveling vacuum waves affects the atom
center-of-mass translational motion in the slowed wave
field, which is of a nonlinear-threshold nature over the
interference wave intensity, as we show in that follows.
Next, we consider the nonlinear dynamics of trans-
lational motion of the atom center-of-mass in the
field of the slowed traveling wave (10), at the near-
resonant transitions between the atomic internal quan-
tum states: [Aq 2| < [Qq2]|. In this case, the internal
and translational variables are also separated, which al-
lows integrating the reduced equations of motion. This
is clear if the resonance condition for two waves

wa + w1

Wo = D) (12)
holds, which requires inverse symmetric detun-
ings Ay = —A,. For simplicity, we also assume

Q) = Qs = Q. The set of equations (7) can then be
rewritten as

@:iﬂcos 5_w t—i X
dt 2 Uph

Owz

X exp <—12—C> (p11 — pa2), (13a)

—dpll = i) cos 5_w t— = X
dt 2 Uph

Owz
X [exp <z%> P12 — C.C.:| , (13b)
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p22 =1—pi1,  pa1 = pis, (13¢c)

and effective potential (8) is reduced to

2

Z) po1 + c.c} . (14)

z

ow
Vep(r,t) = hQ) cos [7 <t - o

If vy, < ¢, which is satisfied with great accuracy for the
considered setup, the slow oscillations of the exponen-
tial function exp [+idwz/2¢] can be ignored in Eqs. (13)
and (14). This is justified if the condition

2¢c

2c c

— a~n—

z
2] < 5~

(15)
is satisfied, which practically does not limit the inter-
action length for actual pulses because of very large
values of the effective refractive index n > 1 (this is
equivalent to the condition vy, < c).

Then, these equations can be solved exactly subject
to certain initial conditions. The general solution for
the density matrix elements is

1 Im[pis (0)]

=gt g, cosvw, 0)
tmfpra (0] = L2 o),
Re [p12 (t)] = const, (18)
where
0 (t) = Q/Q(t’)cos [%” <t’ - ny}?)] dt' + 9o (19)
and
tg o = %ﬂ. (20)

This solution represents Rabi oscillations with a mod-
ulated Rabi frequency. For the effective potential, we
obtain

Vesr (r,t) = 202 Re [p12 (0)] x
X cos {%w <t— ﬁ)} . (21)

As can be seen from Eqs. (10) and (21) in these
two distinct cases, translational motion of an atom is
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governed by the slowed interference wave. For the near-
resonant interaction, in contrast to the far-off-resonant
case, the amplitude of the effective interaction poten-
tial depends on the initial internal atomic state. For a
nonvanishing interaction, the atom must be prepared in
a superposition state, and to maximize the interaction
potential, the equal superposition of the states |1) and
|2) must be achieved. For the same wave intensities, the
amplitude of effective interaction potential (21) is then
at least one order of magnitude larger than the ampli-
tude expected in the nonresonant interaction regime.

We now turn to the solution of the equation of mo-
tion for the center-of-mass motion of an atom. Equa-
tions (3) imply the conservation of transversal momen-
tum of the atom: p, , = const. Then, with the depen-
dence of the effective potential on time and coordinate
taken into account in both resonant and nonresonant
cases for the monochromatic waves in Egs. (3), we can
find the integral of motion

E — vpnp, = const = & — VprPoz, (22)

where & and pg. are the initial energy and the lon-
gitudinal momentum of the atom. For the quasi-
monochromatic waves with slowly varying envelopes,
Eq. (22) represents an adiabatic integral, when the
waves are turned on and off adiabatically.

Using Eq. (22), we can obtain the velocity of the
atom in the field

2
\% t
Uy = Upp 1:F\/<1—Uﬁ> _ eff(Z,) , (23)
Uph Eph
Uy = Vog, Uy = Voy, (24)

where v = (vog, Voy, Voz) is the initial velocity of the
atom and Eyp, = mvy, /2 is the kinetic energy of a par-
ticle corresponding to the velocity vpy.

As can be seen from Eq. (23), when the maximal
value of the interaction potential Verr (2, t)maz = |Vo| is
larger than the value (which is called critical in what

follows)
> 2

expression (23) for the atom velocity may become com-
plex. This complexity is bypassed in the complex plane
by continuously passing from one Riemann sheet to an-
other, at which the root changes its sign. Hence, the
atom velocity remains real everywhere and the multi-
valuedness of expression (23) also disappears. Indeed,

Vo2

Vo = £ (1 - (25)

Uph
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if |Vo| < Ver, we should take the root with the sign
“~"in the Eq. (23) if vg; < vpy, and with the sign “+”
if vg. > wvpp, to satisfy the initial condition v. = vp.
at Vepr(2,t = —o0) = 0. Then, after the interaction
(Vegr (2,6 = +00) = 0), the energy of the atom re-
mains unchanged. However, when |V5| > V,,, the value
Vepr (2(to), to) = Ve (where z(to) is the atom coordi-
nate at the instant ¢ = tq) becomes a turning point,
and we should change the sign of the root for ¢ > tg
compared with the instants t < ¢g.

We now consider the behavior of the atom in the
field in this situation. As we see, the atom cannot pen-
etrate the region of the field Vepr(z,t) > Ve, where
expression (23) becomes complex. The slowed inter-
ference wave then becomes a potential barrier for the
atom and the reflection of the atom from such a mov-
ing barrier occurs. To explain the physics of this phe-
nomenon, it is necessary to clarify the meaning of the
critical field.

This is an essentially nonlinear phenomenon of
threshold nature, and the critical intensity of the in-
terference wave is the threshold value for this process.
Namely, Eq. (23) shows that the critical value V,, is
the value of the potential at which the longitudinal
velocity of the atom in the field v,(t) becomes equal
to the phase velocity of the slowed interference wave:
v (t) = vpp, irrespective of the atom initial velocity
vg9». The last formula is the condition of resonance
with the Doppler-shifted waves frequencies, at which
the coherent scattering, that is, the induced scattering
of counter-propagating waves on an atom occurs:

(120 oy (1420,

Under this condition, the nonlinear resonance occurs
because the resonant velocity of the atom v, (t) = vy
is acquired in the field at the value Ve = Vor (due to
the wave intensity effect).

We note that the existence of a critical intensity in
coherent wave fields is the feature of induced coherent
processes, such as Cherenkov and Compton processes
(as well as in an undulator), where nonlinear resonant
phenomena have been revealed [23]. Then, at the criti-
cal point, the resonant absorption of photons from one
wave and re-emission into the other wave occurs, re-
sulting in a break of the synchronism v,(t) = vy, be-
tween the atom and the slowed interference wave (ei-
ther v.(t) > vpp or v.(t) < vpp), and the atom aban-
dons it: the reflection of the atom from the moving
barrier occurs.

We note that this is actually a reflection in the
frame of reference moving with the velocity V' = vy,

(26)
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which is the rest frame of the slowed interference wave.
In this frame, the atom with the velocity v}, swoops on
the motionless barrier and, as is seen from Eq. ( 23),
an elastic reflection of the atom occurs: v’
Thus, if the maximal value of the interaction potential
[Vo| > Ver, then the atom velocity after the interaction

is given by

/
— Ugy-

Vap = 20pp — Vos. (27)

As we see from Eq. (27), if the slowed interference
wave pulse initially overtakes the atom (vo, < vpn ),
then v,y > vp. and the atom is accelerated. But if
the atom initially overtakes the wave (vg, > vpp), then
v.p < vg. and the deceleration of the atom occurs. For
the resonant atoms (vo; = vpp), Ver = 0 and conse-
quently the atom velocity does not change (v.y = voz).

For the kinetic energy change of the atom center of
mass, we have

It follows from this formula that the acceleration of the
atom depends neither on the field magnitude (once it is
above the threshold field) nor on the interaction length.
Formulas (27) and (28) show that acceleration or decel-
eration of the atom is defined by the key parameters of
this process — the atom initial velocity and the phase
velocity of the slowed interference wave vpy,.

1 Yoz

(28)
Uph

AE = 4&,, <

3. NUMERICAL TREATMENT

In this section, we present some numerical simula-
tions that illustrate the nonlinear picture of interaction
of the atom with the two counter-propagating waves.
The time evolution of the system of equations (3), (7)
is found with a Runge-Kutta method. The calcula-
tions were made for a quasi-monochromatic wave fields
providing the adiabatic turn on/off of the interaction.
This is achieved by describing the envelopes with the
Gaussian functions

Qi 2(t) = Qoexp [—(t — 37)%/277],

where T and Qg characterize the pulse duration and am-
plitudes. We consider the resonant interaction regime
assuming the atom initially to be in an equal super-
position of the states |1) and |2) (pi2 (0) = 1/2). For
all calculations, we took Qg/dw = 103. We note that
the qualitative picture of an atom center-of-mass mo-
tion practically is independent of this ratio. The pulse
duration has been chosen as dwr = 20 (the pulse dura-
tion should be larger than the period of the interference
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Fig.1. The solid curve displays the temporal evolution

of the atom scaled velocity v. /vp,. The dashed curve

shows the variation of the scaled interaction potential

Vesr/Ver, sensed by the atom along the trajectory. The

initial conditions are vo = 0 and zp = 0, the intensity
below the critical point is V5 = 0.9V,

wave). At ¢t = 0, the wave intensities are reduced by the
factor 1/e” relative to their maximal values, providing
the adiabatic switch on of the interaction. Then, to
accentuate this acceleration mechanism caused by the
nonlinear resonance in the fields, we present the atom
dynamics in the case where the initial velocity of the
atom is very far from the induced resonance in Eq. (26).

Figure 1 illustrates the temporal evolution of the
atom center-of-mass velocity (solid curve) in the case
where vg = 0 and the intensity is below the critical
point: Vg = 0.9V,,.. The dashed curve shows the vari-
ation of the scaled potential Vst /Ve, along the atom
trajectory. We see that the acceleration is negligibly
small.

In Fig. 2, the atom dynamics is displayed in the
case where the intensity is above the critical point:
Vo 1.3V,,. Figure 2a illustrates the acceleration
of an atom at rest (v = 0). The solid curve shows
the temporal evolution of the atom velocity. The
dashed curve is the variation of the scaled potential
Vepr/Ver along the atom trajectory. Figure 2b illus-
trates the deceleration in the case where vy = 2uvp.
It is clearly seen from these figures that at the critical
point Ve = Vi, the longitudinal velocity of the atom
becomes equal to the phase velocity of the interference
wave: v, (t) = vpp, = ¢/n, and it is a turning point for
the solid curves. This corresponds to formulas (23),
where the root changes its sign and the further evolu-
tion of the velocity proceeds along the second brunch of
the root with the reversed sign. In the resonance range,
the velocity of the atom strictly increases if vy < vpp

872

10 20 30 40 50 60 70
dwt
Fig.2. Atom acceleration/deceleration. The inten-

sity is above the critical point: V5 = 1.3V,,. a) The

solid curve displays the temporal evolution of the atom

scaled velocity v /vp, with vg 0 and zo 0.

The dashed curve is the scaled interaction potential

Vesf/Ver, sensed by the atom along the trajectory.
b) Atom deceleration for vo = 2vp, and zp =0

(Fig. 2a) or decreases if vg > vy (Fig. 2b) due to the
genuinely nonlinear character of the resonance in the
field. Then, after leaving the resonance range, the final
velocity of the atom becomes v,y = 2vp;, (acceleration)
and v,y = 0 (deceleration), in accordance with the an-
alytic results (see Eqs. (23) and (27)).

To illustrate the physical picture of the atom reflec-
tion from the interference wave and the shock character
of acceleration /deceleration, we present the atom phase
trajectory, velocity versus the coordinate z'(t) (in units
of the reduced wavelength A = 2X\1\y/(M + A2)), in
the rest frame of the slowed interference wave. In this
frame, the actual reflection occurs. The correspond-
ing picture is given in Fig. 3 at vy = 0 (the symmet-
ric picture occurs at vg = 2vpy). In this frame, the
atom swoops on the motionless barrier with the veloc-
ity vy, = —vpn and, as is seen from Fig. 3, the reflection
of the atom occurs. Figure 3 also shows that the reflec-
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Fig.3. Atom phase trajectory (velocity versus the co-

ordinate z’(t), in units of the reduced wavelength) in

the rest frame of the slowed interference wave for the
setup in Fig. 2a
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Fig.4. The final scaled energy versus the initial po-

sition of the atom zo (in units of the reduced wave-

length), when vg = 0. a) The intensity is below the

critical point: Vo = 0.9V.,. b) The intensity is above
the critical point: Vo = 1.3V,

tion occurs at the distances smaller than the radiation
wavelength, confirming the shock character of acceler-
ation. This is also confirmed in the laboratory frame,
which is well seen from Fig. 4, which displays the role
of initial conditions, showing the final energy versus
the initial position zy of the atom. We see that the
acceleration is negligibly small below the nonlinear res-
onance threshold (Fig. 4a). The net gain is defined by
the initial phase, which is in accordance with the per-
turbation theory. When the amplitude of the slowed
interference wave is above the critical point (Fig. 4b),
the final energy for reflected particles is almost constant
(&r = 4&pn).

We make some estimations. Best suited systems for
the near-resonant interaction regime are the Rydberg
atoms, i.e., the highly excited states of hydrogen or al-
kali metal atoms [24]. Here, we are mainly interested
in circular Rydberg states. These are the states with
the highest allowed angular momentum [ = ng — 1 for
a given principal quantum number ng (with |mg| = [,
where my is the magnetic quantum number). For these
states, only one resonant dipole transition is allowed:

ng < ng + 1,

and therefore such states closely approximate a two-
level system with an extremely long lifetime and are
widely used in the microwave cavity quantum electro-
dynamics experiments [25]. Hence, with our notation,
we set

1)

‘77,0./12’&0 —].,mo =Ng —].>
and
|2> = |n0+1.,l:n0,m0 :n0—1>.

For a Rydberg atom state with a large ng and Ang = 1,
the transition frequency is

where ¢ is the atomic unit of energy (27.2 €V). Here,
we have taken into account that the quantum defect
that corrects for the deviation of the binding potential
from a purely hydrogenic situation is small for high
orbital moments /. The transition dipole moment be-
tween neighboring Rydberg states [26] is estimated as

. 9 .
22”0"'27161“3 (ng + 1)n°+ na

~ — at.u.,
(2ng + 1)*"0? ’

V2

where ag is the Bohr radius (e is the elementary
charge). The rate of spontaneous emission is given by

dia = V2ea
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r
r=—¢,
Mg
where
Ty = 20%c 1010 o1
3a0

is the characteristic rate and « is the fine-structure con-
stant. Then, the pulse duration of the waves is assumed
to be 7 &~ 1/10T, which gives dw ~ 2 - 10°T in accor-
dance with the condition dwr = 20. For the effective
refractive index, we then obtain

~

20.)0

_2 €0
=10"2=2
ow

Al

n~ ng ~4-10'n2.
For an atom initially at rest (with an atomic weight
A), the critical field and, consequently, Rabi frequency
is given by

2

A
—m— ~1.2.1072

Vcr = thzn 7
2n? ng

at.u.

This value should be much smaller than the frequency
difference between the main resonant and nonresonant
transitions (ng <> ng — 1, ng + 1 ¢ ng + 2), which is
of the order of 3/n3 at.u. This condition is satisfied for
the hydrogen atom as well as for the light alkali atoms
(lithium, sodium), and the model of supposed two-level
atom is sufficiently well justified. We note that the re-
quired fields for this effect should be

A
E>2-102

— at.u.
6 b)
ng

which are much smaller than the atomic fields

EO at.u.

= m
for the Rydberg atoms in the state with a large ng.

In particular, for the principal quantum number
ng = 40 and wy /27 ~ 103 GHz (with the correspond-
ing effective refractive index given by n ~ 6.4 - 107),
an atom initially at rest can be accelerated up to the
velocities 10% ¢cm/s. The required fields for this effect
are £ > 2.5-1072A V /em, which corresponds to wave
intensities I ~ 4-107° W /cm?, for lithium atoms with
A = 7. In the inverse regime of deceleration, such an
atomic beam can be stopped with the same fields.

4. CONCLUSION

We have presented a theoretical treatment of non-
linear dynamics of the two-level atom interacting with
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counter-propagating radiation fields of different fre-
quencies. We have shown that in this induced coher-
ent process, a critical intensity of the wave fields ex-
ists above which a nonlinear phenomenon of a neutral
atom reflection from the slowed interference wave oc-
curs. This results in the atom acceleration or decel-
eration depending on its initial velocity. We have ex-
amined various limits of atomic dynamics depending
on the resonance detuning. For the near-resonant in-
teraction, in contrast to the far-off-resonant case, the
amplitude of the slowed interference wave depends on
the initial internal atomic state. The role of initial con-
ditions has been discussed and analyzed by numerical
calculations. The numerical simulations are in good
agreement with the analytic results.

In the considered scheme, acceleration/deceleration
depends neither on the field magnitude (once it is above
the threshold field) nor on the interaction length, and
it may serve as a promising way for efficient manip-
ulation of ultracold atoms. The threshold character
of such an acceleration may be used for separation of
atoms by velocities.

The author acknowledges helpful discussions with
Prof. H. K. Avetissian. This work was supported by the
International Science and Technology Center (ISTC)
Project No. A-1307.

REFERENCES

1. V. G. Minogin and V. S. Letokhov, Laser Light Pres-
sure on Atoms, Gordon and Breach, New York (1987).

2. A. P. Kazantsev, G. J. Surdutovich, and V. P. Yakov-
lev, Mechanical Action of Light on Atoms, World Sci-
entific, Singapore (1990).

3. A. G. Askar’yan, Zh. Eksp. Teor. Fiz. 41, 616 (1962).

4. V. S. Letokhov, Pis'ma v Zh. Eksp. Teor. Fiz. 7, 272
(1968).

5. A. P. Kazantsev, Zh. Eksp. Teor. Fiz. 63, 1628 (1973);
ibid. 66, 1599 (1974).

6. R. J. Cook, Phys. Rev. A 20, 224 (1979); 4bid. 22, 1078
(1980).

7. J. P. Gordon and A. Ashkin, Phys. Rev. A 21, 1606
(1980).

8. S. Chu, Rev. Mod. Phys. 70, 686 (1998).

9. C. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998).

10. W. D. Phillips, Rev. Mod. Phys. 70, 721(1998).



MKIT®, Tom 134, Boin. 5 (11),

2008

Nonlinear interaction of a two-level atom ...

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Grimm, M. Weidemiiller and Y. B. Ovchinnikov,
Adv. At., Mol., Opt. Phys. 42, 95 (2000).

L. P. Pitaevskii, Usp. Fiz. Nauk 176, 345 (2006).

O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78,
179 (2006).

J. E. Bjorkholm, R. R. Freeman, A. Ashkin, and
D. B. Pearson, Phys. Rev. Lett. 41, 361 (1978).

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable,
Phys. Rev. Lett. 57, 314 (1986).

C. S. Adams, M. Sigel, and J. Mlaynek, Phys. Rep.
240, 143 (1994).

T. W. Héansch and A. L. Schawlow, Opt. Comm. 13,
68 (1975).

D. Wineland and H. Dehmelt, Bull. Am. Phys. Soc.
20, 637 (1975).

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and
A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).

875

20.

21.

22,

23.

24.

25.

26.

E. Peik, M. B. Dahan, I. Bonchoule, Y. Castin, and
C. Salomon, Phys. Rev. A 55, 2989 (1997).

S. Potting, M. Cramer, C. H. Schwalb, H. Pu, and
P. Meystre, Phys. Rev. A 64, 023604 (2001).

H. K. Avetissian, A. K. Avetissian, and G. F. Mkrt-
chian, Pis'ma v Zh. Eksp. Teor. Fiz. 78, 615 (2003).

H. K. Avetissian, Relativistic Nonlinear Electrodynam-
ics, Springer-Verlag, New York (2006).

T. F. Gallagher, Rydberg Atoms, Cambridge Univ.
Press, Cambridge (1994).

J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod.
Phys. 73, 565 (2003).

V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,
Quantum FElectrodynamics, Pergamon Press, Oxford
(1982).



