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The semiclassical correction to Moliére's formula for multiple scattering is derived. The consideration is based
on the scattering amplitude obtained with the first semiclassical correction taken into account for an arbitrary
localized but not spherically symmetric potential. Unlike the leading term, the correction to Moliére's formula
contains the target density n and thickness L not only in the combination nL (areal density). Therefore, this
correction can be referred to as the bulk density correction. It turns out that the bulk density correction is small
even for high density. This result explains the wide range of applicability of Moliére's formula.
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1. INTRODUCTION

Multiple scattering of high-energy particles in mat-
ter is a process that plays an important role in experi-
mental physics. The basis of the theoretical description
of this process goes back to Refs. [1-4]. The theory of
multiple scattering was further developed in numerous
publications (see, e.g., Refs. [5, 6] and the references
therein). Detailed experimental investigation of multi-
ple scattering has also been performed (see Refs. [7, 8]).

The celebrated Moliére’s formula describes the an-
gular distribution dWW /dS} for small-angle scattering. It
was shown by Bethe in Ref. [4] that the simplest way to
derive this formula is to use the transport equation. As
a consequence of this equation, the angular distribution
dW /dQ) depends on the thickness L and the density n
only in the combination nL, which is the areal density
of a target. It can be expected that the applicability
of Moliére’s formula is restricted to low densities. But
experimental results obtained for small scattering an-
gles show that the deviations from Moliére’s formula
are small for all data available. In the present paper,
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we explain such surprising behavior by calculating the
leading bulk-density correction to Moliére’s formula.

We start with the expression for the small-angle
scattering amplitude. This expression was obtained in
Ref. [9] in the semiclassical approximation with the first
correction taken into account. The applicability of this
approximation is provided by small scattering angles
and high energy e of the particle, ¢ > m (m is the
particle mass; the system of units with 7 = ¢ = 1 is
used). This amplitude has been obtained for an ar-
bitrary localized potential without the requirement of
its spherical symmetry. As is known, the semiclassical
wave function has a much wider range of applicability
than the eikonal wave function. However, as was shown
in Ref. [9], the scattering amplitude obtained with the
use of the semiclassical wave function coincides with
that obtained in the eikonal approximation (see also
Ref. [10]). Using the semiclassical scattering ampli-
tude with the first correction taken into account, we
calculate the corresponding cross section and average
it over the positions of atoms in the target. Dividing
this cross section by the area of the target, we arrive at
the angular distribution dW/dQ2. The leading term of
this distribution coincides with Moliére’s formula. The
correction depends not only on the areal density nL of
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the target but also on the bulk density n alone. We dis-
cuss the magnitude of the correction for different target
parameters and scattering angles.

2. DIFFERENTIAL PROBABILITY

We direct the z axis along the initial momentum p
of the particle such that

r=zp/p+¢§

The small-angle high-energy scattering amplitude in a
localized potential V' (z, &) has the form [9]

f=- ie 2ee zqﬁ{ K(&) _ 1 4 ¢—iK(&) «

2
X 1 fdxxA Vix 5)—£ fdxx
2 ¢ ' €
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— 00

where q = p’ — p, p’ is the final momentum,
Ve = 0/0¢, and A¢ = V. The second term in braces
in Eq. (1) corresponds to the correction. For q # 0,
the unity in the leading term can be omitted. The dif-
ferential cross section corresponding to the amplitude

f and having the same accuracy as Eq. (1) is given by

o 2
3—9 = 25—71_2R6/d€1 d€2 exp [—ZQ' (51 _62)] X
x exp {—i [K (&) — K (&)]} x
x Q1o [dredg Ve -1 [ dex

« / dyy (Ve,V (2,€)) - (Ve,V (5,6)) p . (2)

The total potential of atoms in the target has the form
V)= u(r—r), (3)

i
where u (r) is the potential of an individual atom, which

we assume to be spherically symmetric. We average
over the atom positions using the prescription

/H dac,dpl f. (@)

corresponding to the dilute gas approximation. As a
result, we obtain
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We next pass to the limit N, S — oo and N/S =nL =
= const. In this limit,

Here,

and hence

FY = (14 [ o (il (o1) -
-p)}— 1]>N — exp [—nL/dpl X

% (1—exp{—i[x (p1) — x (p1 — p)]}>] G

- x(p1

Substituting Eqs. (6) and (7) in Eq. (5), we finally ob-
tain
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In deriving this formula, we used integration by parts.
As a result, all terms proportional to L in F» and F3,
Eq. (6), vanish.

It is convenient to rewrite Eq. (8) in another form.
The differential in the momentum transfer Q cross sec-
tion do/dQ of high-energy scattering on one atom,
calculated in the semiclassical approximation with the
first correction taken into account, satisfies the rela-
tion [10, 9]

» d
/d2Q (1—e'QP) £ =

= /dp1 {1—(:05()((01) -x(p1—p)) +
+§ / dxsin (x (p1) —x (p1—p)) X

X pr-Vou? (x,p1) |- (9)

Using this relation, we obtain

dw g2 / »
— = —— [ dpe™"P x
dQ (gﬂ)2 P

X exp {—nL/d2Q (1 — eiQ"’) 5—8] X
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€
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dpi cos (x (p1) —x (P1—p)) P1X (P1) X

with the same accuracy as in Eq. (8). The leading
term dWys/dQ in Eq. (10), corresponding to unity in
braces, coincides with Moliére’s formula. The correc-
tion dWe /dSY describes the effect of the bulk density of
the target and has not been known so far.

3. DISCUSSION

We discuss the magnitude and the structure of the
correction obtained. At a fixed areal density nL (the
number of target atoms per unit area), the correction
behaves as n (or L™'), and increases as L decreases.
Estimations show that the relative magnitude of the
correction is the largest when the leading contribution
to the integral over p in Eq. (10) comes from the re-
gion p ~ a, where a is the screening radius of the atom,
a~agZ /3 ag is the Bohr radius, and Z is the nu-
clear charge number. This condition is satisfied when
q ~ nLa, where ¢ is the momentum transfer. In this
case, the correction has the relative order

5= AW\t dWe ZomaSR
L dn dQ ca (11)

R = (Za)’nLd?,

where av = 1/137 is the fine structure constant. Using
the estimates

(ea) ' < (ma) ' ~aZ'? « 1,
Zana® < Zaa]_?;3 (aBZ_1/3)3 a1,
we obtain
5 < 10*3R§.

The upper bound for § increases with R. However,
when R > 1, both the leading term and the correction
are suppressed by the factor exp[—bR], where b ~ 1
is some numerical constant. Therefore, in the whole
region interesting from the experimental standpoint, R
is not too big and hence 4 is very small.

To conclude, we have calculated the volume den-
sity correction to Moliére’s formula and estimated the
magnitude of the correction. It turns out to be very
small for all reasonable values of parameters. There-
fore, Moliére’s formula remains very accurate even for
a high density of the target.

The work was supported by the RFBR (grants
NeNe 08-02-91969, DFG GZ 436 RUS 113/769/0-2).

REFERENCES

1. S. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24
(1940).

2. S. Goudsmit and J. L. Saunderson, Phys. Rev. 58, 36
(1940).

1127



R. N. Lee, A. I. Milstein

MITP, Tom 135, BHII. 6, 2009

3. G. Moliére, Z. Naturforsch. A 3, 78 (1948).
4. H. A. Bethe, Phys. Rev. 89, 1256 (1953).

5. J. M. Fernandez-Varea, R. Mayol, J. Bary, and F. Sal-
vat, Nucl. Instr. and Meth. in Phys. Res. B 73, 447
(1993).

6. C. Negreanu, X. Llovet, R. Chawla, and F. Salvat, Rad.
Phys. and Chem. 74, 264 (2005).

7.

8.

10.

1128

A. O. Hanson, L. H. Lanzl, E. M. Lyman, and
M. B. Scott, Phys. Rev. 84, 634 (1951).

C. K. Ross, M. R. McEwen, A. F. McDonald, C. D. Co-
jocaru, and B. A. Faddegon, Med. Phys. 35, 4121
(2008).

. R. N. Lee, A. I. Milstein, and V. M. Strakhovenko, Zh.

Eksp. Teor. Fiz. 116, 78 (1999) [JETP 90, 66 (2000)].

A. 1. Akhiezer, V. F. Boldyshev, and N. F. Shul’ga,
Teor. Mat. Fiz. 23, 11 (1975).



