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QUANTUM CONDUCTANCE OF ACHIRAL GRAPHENE RIBBONSAND CARBON TUBESL. I. Malysheva *, A. I. Onipko **Bogolyubov Institute for Theoreti
al Physi
s03680, Kiev, UkraineRe
eived July 6, 2008Expli
it expressions of the band spe
trum near the neutrality point are derived for arm
hair and zigzag grapheneribbons and 
arbon tubes. Several spe
tral features, whi
h were previously observed only in numeri
al 
al
u-lations, are given an adequate analyti
 des
ription in terms of elementary fun
tions. The obtained dispersionrelations are used for a 
omparison of 
ondu
tan
e ladders of graphene-based wires; these relations are alsobene�
ial for many other appli
ations.PACS: 73.22.-f 1. INTRODUCTIONFor ele
trons and holes, graphene ribbons and
arbon tubes are one-dimensional wires made ofone-atom-thi
k material. In 
omparison with thetwo-dimensional ele
tron gas 
ounterparts in semi-
ondu
tor heterostru
tures, the transport of 
harge
arriers in graphene [1℄ (in parti
ular, quantum
ondu
tan
e [2℄) demonstrates a number of unusualproperties. This paper gives a pre
ise analyti
 de-s
ription of the 
ondu
tan
e of four basi
 graphenewires and spe
i�
 features of ea
h member of the wirefamily represented in Fig. 1, a
hiral graphene ribbonsand 
arbon tubes. Formally, this problem 
an be
onsidered already �solved� by �nding two equationsthat des
ribe the spe
trum of a graphene sheet withtwo arm
hair- and two zigzag-shaped edges [3℄ (in the
enter of Fig. 1). But spe
trum pe
uliarities near theFermi energy [2�8℄ are far from being obvious fromthe general equations. Here, we show that (i) theband spe
trum of a metalli
 arm
hair (zigzag) ribbon(tube) is not the same as for zigzag (arm
hair) ribbon(tube); this di�eren
e is given an a

urate quantitativedes
ription; (ii) in moving away from the Fermi energy,the bottoms (tops) of 
ondu
tion (valen
e) bands inzigzag (arm
hair) ribbons (tubes) are shifted towardslarger wave ve
tors; and (iii) there exist three types*E-mail: malysh�bitp.kiev.ua**E-mail: aleon�ifm.liu.se

of spe
tra (
ondu
tan
e ladders) with equal, irregular,and alternating band spa
ing (ladder step width).By expressing ea
h of these features in elementaryfun
tions, the understanding a
hieved in previousstudies is 
onsiderably improved.2. BAND STRUCTUREFigure 1 illustrates the parent honey
omb N � Nlatti
e and its daughter wire-like stru
tures, arm
hairand zigzag graphene ribbons and 
arbon tubes, hen
e-forth abbreviated as GR and CT. The latti
e label in-di
ates that in the arm
hair dire
tion, graphene 
on-tains N hexagons in polyparaphenylene-like 
hains,whereas in the zigzag dire
tion, it has N hexagonsforming polya
ene-like 
hains. Hydrogen atoms alongthe edges are not shown and not taken into a

ount inthe nearest-neighbor tight-binding Hamiltonian [9, 10℄.The �-ele
tron spe
trum of this model is given by [3℄E� == �vuut1+4 
os2 aky2 �4 �����
os aky2 
os p3akx2 �����; (1)where the hopping integral is used as an energy unit, ais the minimal translation distan
e of the honey
omblatti
e, and one of the two dimensions, N or N , is sup-posed to be in�nite, implying the 
ontinuity of kx (forarm
hair GR and zigzag CT) or ky (for zigzag GR and139
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NFig. 1. Parent graphene N � N latti
e (
enter) and its daughter stru
tures, from lower-left 
lo
kwise: arm
hair ribbon(N = 1); (N ; 0) tube (N = 1, 1st = (N + 1)th polya
ene 
hain); (N;N) tube (N = 1, 1st = (N + 1)th polypara-phenylene 
hain); and zigzag ribbon (N =1). In all 
ases, the same k-
oordinates are used. The 
ross at (0; 2�=3a) andthe 
ir
le at (0; 4�=3a) indi
ate zero-energy points: � for an arm
hair GR, � and Æ for a zigzag metalli
 CT; the �lled 
ir
leat (2�=p3a; 2�=3a) indi
ates the se
ond spe
ial point for the arm
hair CT. For the zigzag GR, zero-energy point 
annotbe shown on the real kxky planearm
hair CT). The 
omplementary dis
rete quantumnumbers are respe
tively determined by open ends andperiodi
 boundary 
onditions for ribbons and tubes.Thus, for graphene ribbons, the k spa
e is (0��; 0��);for arm
hair and zigzag 
arbon tubes, the required ex-tensions of this spa
e are respe
tively (0 � 2�; 0 � �)and (0� �; 0� 2�).The spe
tra of arm
hair GR (aGR), arm
hair CT(aCT), and zigzag CT (zCT) are 
ompletely deter-mined by Eq. (1) and by the boundary 
onditions di
-tating values of the dis
rete quantum number. An ad-ditional equation, Eq. (6), 
omes into play in the dis-
ussion of zigzag graphene ribbons (zGR).We 
onsider related GR and CT pairs separately.The fo
us is on the energies not far away from thepoint of neutrality, whi
h 
oin
ides with zero energy,the Fermi energy. In this energy region, the spe
trumis des
ribed by the minus bran
h of Eq. (1) (the minus

sign in the radi
and). Be
ause of the spe
trum sym-metry, we refer only to the 
ondu
tion one-dimensionalbands, that is, to the E� bran
h with the plus sign infront of the root. The valen
e bands, having the sametransverse quantum numbers, are just the mirror re�e
-tion of the 
ondu
tion bands in the E = 0 plane. Theanalysis is performed for large N and N . This simpli-�
ation 
an easily be avoided, but even for N;N > 10,it is su�
iently good for reasonable estimates.Arm
hair ribbons and zigzag tubes. For bothtypes of stru
tures, aGR and zCT, kx is a 
ontinu-ous variable, 0 � p3akx � �. The wave-ve
tor trans-verse 
omponent takes the dis
rete values ky = �j=a,�j = �j=(N+1), j = 1; 2; : : : ;N and �j = 2�j=N ,j = 0; 1; : : : ;N�1 for ribbons and tubes, respe
tively.It is known (and also follows from Eq. (1)) that anaGR (zCT) is metalli
 if j� = 2(N + 1)=3 (j� = N=3)is an integer. In this 
ase, E�j=j� (kx=0) = 0. Oth-140
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ondu
tan
e of a
hiral graphene ribbons : : :erwise, aGR (zCT) is a semi
ondu
tor. The twofoldband degenera
y of ele
tron states in a metalli
 zCT o
-
urs be
ause there are two zero-energy points, (0; �j�)and (0; 2�j�); equivalently, (kx = 0; aky = 2�=3) and(kx = 0; aky = 4�=3). In Fig. 1, these points aremarked by a 
ross and an open 
ir
le. For a semi-
ondu
ting aGR (zCT), the index j� of the lowest 
on-du
tion band 
an be equal to (2N +1)=3 or (2N +3)=3[(N � 1)=3 or (N + 1)=3℄.The next 
on
lusion that follows from the analysisof Eq. (1) is that near the 
ross point for aGR and the
ross and open-
ir
le points for zCT, the band spe
-trum 
an be represented asE�j����aGR(zCT ) == 8>>>>><>>>>>: s�2�1� 16��aGR(zCT )�2 +X2;s���� 13�2 +X2; (2)where �zCT = 2�aGR = p3�=N , X == p3akx=2�aGR(zCT ), and � = 0; 1; : : :� N .The validity of these dispersion relations is ensured bythe 
ondition Nakx � � 6= 0.The upper and lower rows in Eq. (2) respe
tivelyrefer to the metalli
 and semi
ondu
ting aGR (zCT).Disregarding the term linear in � in the upper rowyields the previously suggested expression for the bandspe
trum of (N ; 0) zigzag 
arbon tubes [5℄ and arm-
hair graphene ribbons [6℄. However, as 
an be easily
he
ked by dire
t 
al
ulations of dispersion 
urves fromexa
t equation (1), this term 
onsiderably improves thequality of the approximate des
ription.Arm
hair tubes and zigzag ribbons. The spe
-tra of these stru
tures are to be 
onsidered separatelybe
ause the band spe
trum of the zigzag GR (zGR) isdetermined by two equations. An analyti
 des
riptionof the zGR spe
trum was repeatedly attempted beforebut never su

eeded.Arm
hair tubes. For arm
hair tubes, akx = ��=p3plays the role of the transverse quantum number,�� = 2��=N , � = 0; 1; : : : ; N�1, whereas 0 � aky � �is a 
ontinuous variable [3℄. Equation (1) 
an then berewritten asE�� =s1 + 4 
os2 aky2 � 4 ����
os aky2 
os ��N ����: (3)With an ex
eption of the � = 0 band, all other bandsare twofold degenerate. Close to the zero energy, that

is, for jqj � 1, q = aky � 2�=3, and ��=N � 1 or�(N � �)=N � 1, Eq. (3) is well approximated byE�� (q) = 12r3q2 + (2��aCT )2 �1�p3q=2�; (4)showing that the spe
trum 
onsists of a set of pseudo-paraboli
 bands with bottomsEb�� = ��aCT �1� 18(��aCT )2� ; ��aCT � 1; (5)at q = qaCT� = �2�2=p3N2; here, �aCT = �=N . Thelast quantity would be the band spa
ing if the termlinear in q in the radi
and in (4) were disregarded, e.g.,as in Ref. [5℄. Also worth noting is that for N = p3N ,�aCT = �zCT = 2�aGR.Hen
e, the spe
trum of an aCT 
ontains a nonde-generate band �=0 with a linear dispersion, followedby a manifold of degenerate � and N � � bands with apseudo-paraboli
 dispersion. This is similar to the 
aseof a metalli
 zCT. But an important distin
tion is thatin an aCT, there are two propagating states that havedi�erent wave ve
tors, q < qaCT� and q > qaCT� (bothvalues of ky are positive), but 
orrespond to the sameenergy. Another di�eren
e from a metalli
 zCT is thatthe obtained 
orre
tion to the band spa
ing,Eb��+1�Eb�� = �aCT �1�(�aCT )28 [3�(�+1)+1℄� ;is not linear but quadrati
 in �=N . This 
orre
tion issmall and 
an therefore be disregarded.Zigzag ribbons. Cutting an arm
hair 
arbon tubealong the zigzag dire
tion and �healing� damages ofthree-
oordinated 
p2 bonding by hydrogen atomsgives a zigzag graphene ribbon (zGR). An essentialfeature of zigzag ribbons is that dis
rete values of0 � akx = ��� =p3 � � are ky-dependent. These values
an be found by solving the equation [3℄sin��Nsin��(N + 1=2) = �2 
os aky2 ; (6)where the minus (plus) sign in the right-hand side 
or-responds to the plus (minus) bran
h in dispersion re-lation (1). By 
ombining Eqs. (1) and (6), ky 
an beeliminated. As a result, we obtainE� = � sin(��=2)sin��(N + 1=2) : (7)We re
all that only a half of the spe
trum with posi-tive energies is presented. This equation substantially141
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ture of a zGR. In par-ti
ular, the extrema of E�, as fun
tions of ��, are givenby solutions of the equationsin(��N)sin��(N + 1) = NN + 1 : (8)For any value of ky , the minus bran
h in Eq. (6)has N solutions. One of these solutions is imaginary,��0 = iÆ, if ky falls into the interval 2�=3+(p3N)�1 << aky � �. The energies of su
h states are within anarrow interval, E�0 (q) < (2N + 1)�1, and 
orrespondto states lo
alized near the zigzag edges. In this 
ase,and under the restri
tion NÆ � 1, exa
t equation (7)is well approximated byE�0 (q) = sh (� ln [2 sin(�=6� q=2)℄)sh (� ln [2 sin(�=6� q=2)℄ (2N + 1)) : (9)The inequality NÆ � 1 imposes severe restri
-tions on the allowed magnitude of ky. However,the above equation des
ribes the dispersion ofedge states within a half of the a
tual interval,�=6 < q � �=3. It 
an be shown that for small valuesof q, [p3(N + 1=2)℄�1 � q
 < q < 2q
, the edge-statedispersion is governed by E�0 = p3q exp ��p3Nq�.For the rest of the interval 2�=3��, exa
t equations (6)and (7) must be used. Di�eren
es between the exa
tsolution of the problem and the approximate des
rip-tion based on the Dira
 equation [6℄ are dis
ussed inRef. [8℄.For q < q
, the dispersion of the lowest energy bandin the zGR spe
trum is similar to that of the �=0 bandin aCT (see Fig. 2). To obtain an analyti
 expressionfor this part and for higher bands, we must use realsolutions of Eq. (8), ��� � (�+1=2)�=N , � = 0; 1; : : : ,� � N . A rather 
umbersome pro
edure of �ndingthese solutions and using them in Eq. (6) yieldsE�� (q) == 12vuut3q2 + [(2� + 1)�zGR℄2 1� p3q2 !: (10)For � = 0 and q > 0, this equation is to be repla
ed byEq. (9).From Eq. (10), the bottoms of the � > 0 bands aredetermined byEb�� = �� + 12����zGR 1� 18 ��� + 12��zGR�2! : (11)
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t 
al
ulations for aCT and zGR are pairedwith their (often indistinguishable) approximations in-di
ated by dotted lines. The linear dispersion and all
urves in the middle of shaded areas demonstrante theaCT band stru
ture (4). The dotted 
urves 
orrespondto Eqs. (4), (9), and (10). The band minima 
al
ulatedin a

ordan
e with Eqs. (5) and (11) are respe
tivelyshown by 
ir
les and trianglesThese energies are attained at q = qzGR� �� �2(� + 1=2)2=4p3N2, � = 1; 2; : : : We notethat the interband separation in zigzag GRs is well ap-proximated by�zGR =�aCT =2 = �(2N)�1, and hen
eEq. (11) 
an be repla
ed by Eb�� = (� + 1=2)�zGR.The ratio between �zGR and �aCT is exa
tly thesame as for zCT�aGR pairs. A 
omparison of theapproximations in (4), (9), and (10) with the exa
t 
al-
ulations (see Fig. 2) proves that these approximationsas highly a

urate.By disregarding the term linear in q in Eqs. (4)and (10) and by passing to the new energy s
alep3jtj=2, whi
h is more 
onvenient near the Fermi en-ergy, we 
an express the band stru
ture of grapheneribbons and 
arbon tubes in a single lineE�� (k) =p(m�� )2 + k2; (12)where k is the dimensionless wave ve
tor along the rib-bon (tube) and the index � spe
i�es the stru
ture andthe 
orresponding expression for m�� . Spe
i�
ally,142
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Fig. 3. Condu
tan
e ladders for zigzag metalli
 (left), semi
ondu
ting (middle), and arm
hair (right) 
arbon tubes withdi�erent 
ir
umferen
es; energy s
ale (from bottom up): p3�=999 � 1, 999=498, 999=99, 999=51 on the left panel andsimilarly on the middle and right panels. Markers indi
ating band opening (band bottom for ele
trons and band top forholes) are 
al
ulated from exa
t dispersion relation (1). For ea
h ladder, the straight line G(E)=G0 = g� + jEj representsan approximate dependen
e on energy in the limit as N !1 (zCT), N !1 (aCT). This provides a visual estimate of thea

ura
y of relativisti
 approximation (12), showing that graphene wires do have irregular (left), alternating (middle), andequidistant (right) spe
tra. Condu
tan
e ladders for graphene ribbons have pra
ti
ally the same appearan
e, ex
ept thatthe step height is two times smaller
m�� =

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
�(� + 1=2)p3N ; zGR;�j�jN �1 + ��4p3N � ; aGRm;�j� � 1=3jN ; aGRs;2�j�jp3N ; aCT;2�j�jN �1 + ��2p3N � ; zCTm;2�j� � 1=3jN ; zCTs;

(13)
where �m� and �s� extensions in labeling indi
ate metal-li
 and semi
ondu
ting aGR (zCT) and � = 0;�1; : : :for all stru
tures ex
ept zGR, where � = 0; 1; : : : andthe 
ase � = 0, k > 2�=3 is ex
eptional.Equation (12) has the form of a one-dimensionalrelativisti
 energy�momentum relation in its 
onven-tional representation with the speed of light equal tounity. This is not more than a formal analogy. In

this 
onne
tion, it is worth mentioning that alternantma
romole
ules su
h as polya
etilene, polya
ene, andso on, also have a one-dimensional relativisti
-like spe
-trum of � ele
trons near the Fermi energy.As follows from Eqs. (12) and (13), the spe
traof a
hiral graphene ribbons and 
arbon tubes 
anbe 
lassi�ed into three groups: (i) metalli
 spe
trawith equally spa
ed bands, as for the aCT and zGR;(ii) metalli
 spe
tra with a regularly irregular bandspa
ing, as for the zCT and aGR; and (iii) semi
on-du
ting spe
tra with the band spa
ing alternating be-tween �=3N and 2�=3N (between 2�=3N and 4�=3N ),as for semi
ondu
ting arm
hair ribbons (zigzag tubes).3. CONDUCTANCEIn the framework of the Landauer approa
h [11, 12℄,the zero-bias, zero-temperature 
ondu
tan
e of an idealwire is equal toG(E) = G0X� g�T�(E); (14)143
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ondu
tan
e quantum, g� isthe degenera
y of band states (spin degenera
y 2 is in-
luded into G0), and the transmission 
oe�
ient T� iszero or unity, depending on whether the �th band isopen for 
harge 
arriers or not.For the band stru
ture spe
i�ed in Eq. (12),T�(E) = �(E � m�� ) for 
ondu
tion bands andT�(E) = �(jE�m�� j) for valen
e bands, where �(x) isthe Heaviside step fun
tion. Thus, the quantum 
on-du
tan
e as a fun
tion of energy has the form of a lad-der, symmetri
ally as
ending with an in
rease in E forele
trons, and with a de
rease in the energy for holes.The height of the �th ladder step is determined by theband-state degenera
y g�=0 = 1 (2) for zGR (aCT),otherwise, g� = 2 (4) for GR (CT). Three types of theband spe
trum identi�ed above 
an be translated intothree 
orresponding types of 
ondu
tan
e ladders withregular (aCT and zGR), irregular (zCTm and aGRm),and alternating (zCTs and aGRs) width of steps.Needless to say, the appearan
e of G(E) illustratedin Fig. 3 depends on the energy s
ale determined by theribbon width (tube 
ir
umferen
e). It 
an vary froma ladder-shaped 
urve, as
ending with an in
rease injEj, to a straight line G = G0(g� + jEj). This lastdependen
e shows that metalli
 and semi
ondu
tinggraphene-based wires are indistinguishable as 
lassi

ondu
tors. Furthermore, if the irregularity of the stepwidth is resolved, the di�eren
e between 
ondu
tan
eladders of metalli
 zCT (aGR) and aCT (zGR) is notquestioned, but they look identi
ally in a larger energys
ale. This 
an be seen in Fig. 3, whi
h illustrates 
on-du
tan
e in di�erent energy s
ales.The above 
onsideration 
on
erns four basi
graphene wires as ideal 
harge 
ondu
tors. It providesa useful referen
e for 
al
ulations of ele
tron and hole
oherent transmission in various types of graphene 
on-ta
ts.
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