АНИЗОТРОПИЯ РЕЛИКТОВОГО ИЗЛУЧЕНИЯ, ИНДУЦИРОВАННАЯ ТАХИОННЫМИ ФЛУКТУАЦИЯМИ ТЕМНОЙ ЭНЕРГИИ

М. В. Либанов^а, В. А. Рубаков^а, О. С. Сажина^{b*}, М. В. Сажин^{b**}

^а Институт ядерных исследований Российской академии наук 117312, Москва, Россия

^b Государственный астрономический институт им. П. К. Штернберга, Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

Поступила в редакцию 17 октября 2008 г.

Рассматривается влияние возможных тахионных флуктуаций темной энергии на анизотропию реликтового излучения. Такие флуктуации имеются, в частности, в моделях с фантомной темной энергией, нарушающей лоренц-инвариантность. В связи с этим обсуждаются тахионные флуктуации с лоренцнарушающим дисперсионным соотношением. Показано, что соответствующий вклад в анизотропию может иметь заметную амплитуду, а угловой спектр имеет четко выраженный максимум. Проведено сравнение этих предсказаний с данными наблюдений. Тахионный вклад несколько улучшает согласие теории с наблюдениями, однако это улучшение статистически незначимо, и анализ приводит к ограничениям на амплитуду тахионных флуктуаций.

PACS: 98.80.-k, 95.36.+x

1. ВВЕДЕНИЕ

В последнее время было выдвинуто немало гипотез, призванных объяснить наблюдаемое ускоренное расширение современной Вселенной. Среди них существование космологической постоянной, модификация гравитации на сверхбольших масштабах и временах, наличие новых легких полей (см., например, обзоры [1–5]). В последнем случае темную энергию можно характеризовать уравнением состояния $p = w\rho$, где параметр w отличен от -1 и, вообще говоря, зависит от времени. В простом варианте, когда в качестве темной энергии выступает скалярное поле с положительной энергией (квинтэссенция), параметр w удовлетворяет ограничению w > -1, в то время как космологической постоянной соответствует w = -1. Однако уравнение состояния может быть и сильно отрицательным, w < -1; темную энергию с таким уравнением состояния называют фантомной. Современные космологические наблюдения

не исключают и возможности того, что при сравнительно больших красных смещениях z уравнение состояния соответствовало квинтэссенции с w > -1, а в более поздние эпохи — фантомной энергии с w < -1 [6–8].

Фантомная энергия нарушает слабое условие энергодоминантности, что обычно свидетельствует о присутствии в теории нестабильностей. Так, например, в спектре простейшей модели скалярного поля с отрицательной энергией [9] существует дух (состояние с отрицательной энергией) со сколь угодно большими импульсами, что означает катастрофическую нестабильность вакуума. Однако в теориях с фантомными полями, нарушающими лоренц-инвариантность, невыполнение слабого условия энергодоминантности на космологических масштабах (что соответствует w < -1 для однородного фантомного поля) не обязательно ведет к появлению опасных неустойчивостей на более мелких масштабах. Это означает, что такие теории могут быть приемлемы с феноменологической точки зрения. И действительно, такие модели были предложены в

^{*}E-mail: tedeshka@mail.ru

^{**}E-mail: moimaitre@mail.ru

работах [10–13]. Характерной чертой одной из этих моделей [12, 13] является то, что в спектре малых возмущений относительно однородного фантомного фона присутствует тахион. Пространственные импульсы, при которых имеется это тахионное состояние, достаточно малы, так что время развития тахионной нестабильности сравнимо с возрастом Вселенной, хотя может быть и несколько меньше его. При бо́льших импульсах тахионная мода переходит в нормальную осциллирующую моду.

Представляется, что существование тахионной моды при малых пространственных импульсах может быть довольно общим свойством, характерным для некоторого класса моделей фантомной энергии, в которых нарушение слабого условия энергодоминантности проявляется именно как тахионная неустойчивость. Поэтому представляет интерес сравнить данные наблюдений и результаты, полученные с помощью такого рода моделей. В данной работе мы рассмотрим одно из таких следствий, а именно, влияние тахионных мод на анизотропию температуры реликтового излучения. При этом мы будем использовать феноменологический подход, т. е. вместо того, чтобы использовать результаты, полученные в рамках какой-либо конкретной модели, будем параметризовать эффекты тахионной неустойчивости небольшим набором параметров.

Для определенности будем считать, что дисперсионное соотношение для тахионной моды может быть параметризовано следующим образом:

$$\omega^2 = \alpha |\mathbf{p}| (P_0 - |\mathbf{p}|), \tag{1}$$

где α и P_0 — константы, характеризующие свойства тахионной моды, \mathbf{p} — физический импульс. Заметим, что в определении (1) положительные значения квадрата «частоты» ω^2 соответствуют экспоненциальному росту амплитуды тахионной моды, а отрицательные — обычным осциллирующим модам. Таким образом, величина P_0 имеет смысл физического импульса, меньше которого начинает развиваться тахионная неустойчивость. Параметризация (1) подсказана результатами работ [12,13]; она явно нарушает лоренц-инвариантность при малых $|\mathbf{p}|$. Приведенный в данной работе анализ нетрудно обобщить на случай других форм дисперсионных соотношений.

В космологическом контексте дисперсионное соотношение (1) принимает вид

$$\omega^{2}(t) = \alpha \frac{k}{a(t)} \left(P_{0} - \frac{k}{a(t)} \right),$$

где k — не зависящий от времени конформный импульс, a(t) — масштабный фактор.

При $P_0 > H_0$, где H_0 — современное значение параметра Хаббла, тахионная мода начинает испытывать экспоненциальный рост в космологическую эпоху, предшествующую современной [13]. Рост амплитуды флуктуаций фантома сопровождается экспоненциальным ростом гравитационного потенциала, генерируемого этими флуктуациями [14]:

$$\Phi(t, \mathbf{x}) = \frac{1}{(2\pi)^{3/2}} \int d\mathbf{k} \Phi(t, \mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}} + \text{H.c.},$$

$$\Phi(t, \mathbf{k}) = A(\mathbf{k}) \exp\left(\int_{t_k}^t \omega(t') dt'\right), \qquad (2)$$

где $A(\mathbf{k})$ — амплитуда вакуумных флуктуаций на моде \mathbf{k} в момент t_k начала усиления этой моды, $\omega(t)$ — частота соответствующей моды. Оценку амплитуды $A(\mathbf{k})$ мы приведем ниже. Подчеркнем, что такой гравитационный потенциал связан не с распределением видимого вещества, а с распределением флуктуаций темной энергии.

В нашей работе мы вычисляем величины мультиполей реликтового излучения, генерируемых гравитационными потенциалами (2). Рассматриваемый механизм приводит к вкладу в спектр анизотропии, резко отличающемуся от стандартного спектра, который образуется за счет адиабатических начальных возмущений, генерируемых, например, на инфляционной стадии (см., например, [15–17]). Следствием этого, как мы увидим в дальнейшем, являются особенности в спектре анизотропии реликтового излучения в области низких мультиполей, и эти особенности могут быть наблюдаемыми. С другой стороны, имеются указания на то, что в наблюдаемом спектре [6, 18] есть отклонения от предсказаний, основанных на стандартном представлении об адиабатических начальных возмущениях со спектром, близким к спектру Харрисона-Зельдовича. Модели с тахионной неустойчивостью можно было бы попытаться использовать для объяснения этих отклонений, что было бы альтернативой другим возможным объяснениям. Мы проводим сравнение полученных амплитуд с данными наблюдений с целью обнаружения возможного вклада тахионных флуктуаций в наблюдаемый спектр анизотропии наряду с адиабатическими скалярными возмущениями. Мы показываем, что этот вклад несколько улучшает согласие между теорией и наблюдениями, однако это улучшение статистически незначимо. Таким образом, наш анализ приводит к верхним ограничениям на амплитуду тахионных возмущений, которые и являются основным результатом данной работы.

2. ФОНОВАЯ КОСМОЛОГИЧЕСКАЯ МОДЕЛЬ

Рассматривая фоновое пространство-время, ограничимся «почти» стандартной моделью расширяющейся Вселенной, заполненной нерелятивистским веществом, с единственным отличием в том, что в качестве источника ускоренного космологического расширения мы будем рассматривать не Λ -член, а фантомную энергию. Метрика стандартной модели — это метрика пространственно-плоской Вселенной:

$$ds^2 = dt^2 - a^2(t) \, d\mathbf{x}^2$$

Масштабный фактор a(t) определяется из уравнения Фридмана, которое можно записать в виде

$$\left(\frac{\dot{a}(t)}{a(t)}\right)^2 =$$

$$= H_0^2 \left[\Omega_m \left(\frac{a(t_0)}{a(t)}\right)^3 + \Omega_p \left(\frac{a(t)}{a(t_0)}\right)^{-3(1+w_p)}\right], \quad (3)$$

где $a(t_0) = a_0 = 1$ — значение масштабного фактора в современный момент времени, а точка обозначает дифференцирование по физическому времени t. В этой работе мы используем значения $\Omega_m = 0.27, \Omega_p = 0.73$. Параметр w_p определяет уравнение состояния фантомной энергии: $p_p = w_p \rho_p$, и, согласно наблюдениям [6], изменяется в интервале $-0.86 > w_p > -1.38$.

При вычислении амплитуд мультипольных коэффициентов удобнее работать не с физическим временем t, а с конформным временем η :

$$\eta(t) = \int_{0}^{t} \frac{d\hat{t}}{a(\hat{t})}.$$

В конформном времени уравнение (3) принимает вид

$$H_0 d\eta = \frac{da}{\sqrt{a}\sqrt{\Omega_m + \Omega_p a^{-3w_p}}}.$$

3. РОСТ ВОЗМУЩЕНИЙ

Поведение гравитационного потенциала дается выражением (2). Показатель экспоненты

$$N(t,k) = \int\limits_{t_k}^t d\hat{t}\,\omega(\hat{t})$$

определяет рост потенциала со временем. Эту функцию можно представить в виде интеграла по масштабному фактору:

$$N(a,k) = \sqrt{\alpha} \frac{P_0}{H_0} \sqrt{\nu} \int_{a_k}^a d\hat{a} \frac{\sqrt{\hat{a} - \nu}}{\sqrt{\hat{a}}\sqrt{\Omega_m + \Omega_p \hat{a}^{-3w_p}}}, \quad (4)$$

где для удобства мы ввели безразмерное волновое число в виде отношения абсолютного значения волнового вектора $k = |\mathbf{k}|$ к константе P_0 :

$$\nu = k/P_0.$$

Сделаем несколько замечаний, касающихся выражения (4). Во-первых, подынтегральное выражение в (4) чисто мнимое, если $\nu > a$. Это означает, что мода с волновым числом ν еще не вошла в тахионный режим и является обычной осциллирующей модой. По мере расширения Вселенной физический импульс k/a(t) уменьшается, частота осциллирующей моды также уменьшается и достигает нуля при $k/a(t) = P_0$, после чего мода переходит в тахионный режим. Таким образом, максимальное значение волнового числа тахионных мод равно $\nu = 1$, что соответствует тому, что мода с волновым числом $\nu = 1$ входит в тахионный режим только сейчас, т.е. при a = 1. В действительности, из-за наличия хаббловского трения тахионное усиление происходит несколько позже, чем начинает выполняться неравенство $k/a(t) < P_0$, а именно, в момент t_k , когда тахионная частота $\omega(t)$ сравнивается с параметром Хаббла:

$$\omega(t_k) = H(t_k). \tag{5}$$

Соответствующий масштабный фактор $a_k \equiv a(t_k)$ и является нижним пределом интегрирования в формуле (4).

Во-вторых, интеграл в правой части (4) представляет собой безразмерную гладкую функцию аргументов a, ν , не превышающих единицу. Поэтому этот интеграл не является параметрически большим или малым числом. С другой стороны, амплитуда вакуумных флуктуаций $A(\mathbf{k})$ мала (см. ниже) и для того, чтобы эффект от усиления тахионных мод был хоть сколько-нибудь заметен, необходимо, чтобы функция N(a, k) была достаточно велика. Для этого требуется выполнение условия

$$\sqrt{\alpha} P_0 > H_0. \tag{6}$$

В дальнейшем будем считать, что это неравенство выполняется.

Рис.1. Функция $\mathcal{N}(a,\nu)$ в зависимости от волнового числа ν при a = 0.8 (1), 0.9 (2), 1.0 (3). Вычисления проведены для случая $w_p = -1$

В-третьих, основное значение интеграл в (4) имеет, когда аргумент достигает верхнего предела, и при выполнении условия (6) практически нечувствителен к нижнему пределу интегрирования. Поэтому, не теряя точности, можно считать $a_k = \nu$, что соответствует значению масштабного фактора, при котором мода с волновым числом ν входит в тахионный режим. В действительности, результаты численного решения уравнения (5) показывают, что $a_k \approx \nu$ с точностью 10^{-5} в широкой области изменения волнового числа ν ($1 \geq \nu \geq 0.05$). Положив $a_k = \nu$ в (4) мы видим, что зависимость от параметров P_0 и α факторизуется:

$$N(a,\nu) = \sqrt{\alpha} \frac{P_0}{H_0} \mathcal{N}(a,\nu),$$
$$\mathcal{N}(a,\nu) = \sqrt{\nu} \int_{\nu}^{a} d\hat{a} \frac{\sqrt{\hat{a}-\nu}}{\sqrt{\hat{a}}\sqrt{\Omega_m + \Omega_p \hat{a}^{-3w_p}}}$$

В-четвертых, функция $\mathcal{N}(a,\nu)$ представляет собой растущую функцию масштабного фактора a. На рис. 1 показано поведение $\mathcal{N}(a,\nu)$ как функции ν при различных значениях масштабного фактора a. Такое поведение становится особенно важным, если принять во внимание то, что в выражение для гравитационного потенциала (2) функция N входит в виде ехр N. На рис. 2 показана зависимость функции ехр $N(a,\nu)$ от масштабного фактора при $\nu = 0.2$, график построен при таких значениях параметров, что $\sqrt{\alpha}P_0/H_0 = 100$. Видно, что функция ехр $N(a,\nu)$ значительно увеличивается только при значениях масштабного фактора, больших a = 0.9. До этого

Рис.2. Функция $\exp N(a, \nu)$ в зависимости от масштабного фактора a при $\nu = 0.2$, что соответствует максимуму функции $\mathcal{N}(a, \nu)$ (см. рис. 1). Вычисления проведены для случая $w_p = -1$, $\sqrt{\alpha}P_0/H_0 = 100$

Рис. 3. Функция $\mathcal{N}(a,\nu)$ при a=1 и различных значениях параметра $w_p=-1.0$ (1), -1.17 (2), -1.33 (3)

величина $\exp N(a, \nu)$ мала. Таким образом, основной эффект от экспоненциального усиления тахионных мод происходит при поздних временах.

Наконец, обсудим поведение $\mathcal{N}(a,\nu)$ как функции ν и параметра w_p . На рис. З приведена функция $\mathcal{N}(a,\nu)$ при значении масштабного фактора a = 1 и различных значениях параметра w_p . Видно, что зависимость от w_p слабая, и в дальнейшем мы будем считать $w_p = -1$.

Величина $\mathcal{N}(a,\nu)$ как функция переменной ν имеет довольно резкий пик при $\nu_{max} = 0.2$. То, что $\mathcal{N}(a,\nu)$ имеет максимум, является общей ситуацией и не зависит от параметризации (1). Действительно, мы предполагаем, что тахионный режим начинается при некотором ненулевом физическом импульсе $k/a(t) = P_0$. Это означает, что частота ω так же, как и функция $\mathcal{N}(a,\nu)$, обращается в нуль при $\nu = 1$. Если теперь предположить, что и при нулевом импульсе частота становится равной нулю, а значит, и $\mathcal{N}(a,\nu)$ при $\nu = 0$ обращается в нуль, то очевидно, что при некотором конечном импульсе у положительно определенной функции $\mathcal{N}(a,\nu)$ есть максимум. Другими словами, при малых конформных импульсах функция $\mathcal{N}(a,\nu)$ мала, поскольку тахионный режим $k/a(t) \sim P_0$ для них начинается слишком рано ($a \ll 1$). В это время масштабный фактор изменяется достаточно быстро, и для таких импульсов функция $\mathcal{N}(a,\nu)$ не успевает вырасти до того момента, когда физический импульс k/a(t) становится близким к нулю, и рост прекращается (существенно при этом, что частота стремится к нулю при исчезающем физическом импульсе). Моды же с большими импульсами $(k \gtrsim P_0)$ не успевают войти в тахионный режим. Следовательно, должна существовать промежуточная область импульсов $0 < k \leq P_0$, для которых функция $\mathcal{N}(a,\nu)$ максимальна.

Для вычисления наблюдаемых характеристик гравитационных потенциалов, генерируемых тахионными возмущениями, необходимо задать характеристики поля (2). Поскольку $A(\mathbf{k})$ — это амплитуда вакуумных флуктуаций, она является гауссовым случайным полем с нулевым средним, $\langle A(\mathbf{k}) \rangle = 0$. Это поле полностью определяется двухточечным коррелятором

$$\langle A(\mathbf{k})A^*(\mathbf{k}')\rangle = \frac{f(k)}{k^3} \frac{P_0^2}{M_{PL}^2} \delta\left(\mathbf{k} - \mathbf{k}'\right).$$
(7)

Поясним появление множителя перед δ -функцией. Начнем с фактора M_{PL}^{-2} . Вспомним, что обсуждаемый нами гравитационный потенциал генерируется флуктуациями фантомного поля, которое, в свою очередь, призвано решить проблему ускоренного расширения Вселенной. Это означает в частности, что плотность энергии однородного фантомного поля должна быть сравнима с критической плотностью:

$$\rho_p \sim M_{PL}^2 H_0^2. \tag{8}$$

С другой стороны, эту же плотность можно оценить как

$$\rho_p \sim M_X^2 X^2,\tag{9}$$

4 ЖЭТФ, вып.2

где M_X — массовый параметр фантомного поля, а X — его величина. Сравнивая (8) и (9), получаем оценку для величины однородного фантомного поля:

$$X \sim \frac{M_{PL}H_0}{M_X}$$

Будем считать, что все размерные параметры в фантомном лагранжиане имеют порядок P_0 , так что $M_X \sim P_0$. Амплитуду вакуумных флуктуаций с импульсом порядка P_0 можно оценить как $\delta X \sim P_0$. Поэтому

$$\delta \rho_p \sim M_X^2 X \delta X \sim P_0^2 M_{PL} H_0.$$

Далее, используя уравнение Пуассона для флуктуаций гравитационного потенциала

$$\Delta \Phi \sim \frac{\delta \rho_p}{M_{PL}^2},$$

получаем для импульса порядка P_0

$$\Phi \sim \frac{H_0}{M_{PL}},$$

что приводит к фактору M_{PL}^{-2} в правой части (7). Фактор P_0^2 введен из размерных соображений. Безразмерная функция f(k) в выражении (7) характеризует отклонение спектра флуктуаций от плоского и зависит от деталей модели. Однако, как мы увидим, в силу того, что $N(a, \nu)$ имеет пик, интеграл по импульсам при вычислении вклада гравитационного потенциала в анизотропию температуры носит седловой характер. Поэтому, если функция f(k) достаточно гладкая, окончательный результат не будет сильно зависеть от ее формы, т.е. можно считать, что f(k) = C, где C — константа. Заметим при этом, что постоянная С может несколько отличаться от единицы, например, она может содержать множитель H_0/P_0 , но она не может содержать степеней массы Планка. Мы увидим, однако, что зависимость окончательного результата от P₀ сильная (экспоненциальная), поэтому отличие C от единицы в конечном итоге несущественно. Кроме того, мы увидим, что форма спектра анизотропии (положение максимума и ширина) не зависит от P_0 — параметр P_0 определяет только амплитуду спектра. Поэтому постоянную С для наших целей можно положить равной единице переопределением P_0 . Таким образом, не теряя общности, мы приходим к следующему выражению для двухточечного коррелятора:

$$\langle A(\mathbf{k})A^*(\mathbf{k}')\rangle = \frac{P_0^2}{M_{PL}^2} \frac{1}{k^3} \delta\left(\mathbf{k} - \mathbf{k}'\right), \qquad (10)$$

которым мы и будем пользоваться в дальнейшем. Заметим, что благодаря множителю M_{PL}^{-2} амплитуда $A(\mathbf{k})$ очень мала, поэтому, несмотря на экспоненциальный рост флуктуаций полей, их рассмотрение в линейном режиме оправдано.

4. МУЛЬТИПОЛЬНЫЕ КОЭФФИЦИЕНТЫ АНИЗОТРОПИИ РЕЛИКТОВОГО ИЗЛУЧЕНИЯ

В нашем случае гравитационное поле генерируется возмущениями скалярного поля тахионного типа, которые нарастают в близкую к современному моменту времени эпоху — значительно позже эпохи рекомбинации. Поэтому единственный физический эффект, приводящий к обсуждаемому вкладу в анизотропию температуры реликтового излучения — это интегральный эффект Сакса – Вольфе. Как видно из рис. 2, гравитационные потенциалы, а следовательно, и вклад в анизотропию реликтового излучения, образуются в промежутке от $z \approx 0.1$ ($a \approx 0.9$) до современного момента времени z = 0.

Используем стандартное обозначение

$$\Theta(\mathbf{n}) = \frac{T(\mathbf{n}) - T_0 - \delta T_{dip}}{T_0},$$

характеризующее отклонение температуры $T(\mathbf{n})$ реликтового излучения, пришедшего с направления \mathbf{n} на небесной сфере, от среднего значения T_0 за вычетом дипольной составляющей δT_{dip} . Тогда интегральный эффект Сакса – Вольфе имеет вид (см., например, [19])

$$\Theta(\mathbf{n}) = 2 \int_{0}^{\eta_0} d\eta \left. \frac{\partial \Phi(\eta, \mathbf{x})}{\partial \eta} \right|_{\mathbf{x} = \mathbf{n}(\eta_0 - \eta)}, \qquad (11)$$

где η_0 — современный момент времени; с учетом сказанного выше мы положили нижний предел интегрирования равным нулю (на самом деле интегрирование идет от эпохи последнего рассеяния фотонов). Подынтегральная функция $\partial \Phi / \partial \eta$ экспоненциально растет во времени при приближении к современной эпохе.

Анизотропию реликтового излучения характеризуют величины

$$C_{l} = \frac{1}{2l+1} \sum_{m=-l}^{m=l} \langle |a_{lm}|^{2} \rangle,$$
 (12)

где a_{lm} — мультипольные коэффициенты в разложении анизотропии по сферическим функциям $Y_{lm}(\mathbf{n})$:

$$a_{lm} = \int d\mathbf{n} \,\Theta(\mathbf{n}) \,Y_{lm}(\mathbf{n}). \tag{13}$$

Из формул (2) и (11) после интегрирования по углам получаем значение *l*-го мультиполя в виде интеграла по волновым векторам:

$$C_{l} = \frac{8P_{0}^{2}}{\pi M_{PL}^{2}} \int_{0}^{1} \frac{d\nu}{\nu} \Delta_{l}^{2}(\nu).$$
(14)

Величина $\Delta_l^2(\nu)$ является аналогом спектра мощности. Функцию $\Delta_l(\nu)$ можно записать в виде интеграла по конформному времени:

$$\Delta_l(\nu) = \int_{\eta_k}^{\eta_0} d\tau \,\omega(\tau) \,a(\tau) j_l [P_0 \nu(\eta_0 - \tau)] \times \\ \times \exp N(a(\tau)) \quad (15)$$

или в эквивалентном виде

$$\Delta_{l}(\nu) = \sqrt{\alpha\nu} \frac{P_{0}}{H_{0}} \int_{a_{k}}^{1} \frac{da}{\sqrt{a}} \frac{\sqrt{a-\nu}}{\sqrt{\Omega_{m} + \Omega_{p}a^{-3w_{p}}}} \times j_{l}[k(\eta_{0} - \eta(a))] \exp N(a),$$

где

$$j_l(x) = \sqrt{\frac{\pi}{2x}} J_{l+\frac{1}{2}}(x)$$

— сферическая функция Бесселя. На рис. 4 показана зависимость величины

$$D_l \equiv \frac{l(l+1)}{2\pi} C_l$$

от мультипольного числа l. График на рис. 4a построен для параметров $\alpha = 1 \cdot 10^{-3}$ и $P_0/H_0 = 9770$. Как видно на рис. 4a, зависимость D_l от мультипольного числа l представляет собой функцию с достаточно узким максимумом при $l = l_{max}$. Положение максимума определяется только параметром α . Как будет показано ниже, значение l_{max} растет при уменьшении параметра α , см. (22).

Для случая $\alpha = 1$ зависимость D_l от l показана на рис. 46. Видно, что в случае достаточно больших значений параметра α тахионные флуктуации фантомного поля генерируют только относительно сильную дипольную и квадрупольную компоненты анизотропии. В то же время, отношение дипольной и квадрупольной компонент составляет всего один порядок величины, т. е. оно заметно меньше наблюдаемого. Поэтому мы не будем рассматривать вклад изучаемого эффекта в наблюдаемую дипольную компоненту анизотропии, которая практически

Рис.4. Вклад тахионных флуктуаций в спектр анизотропии реликтового излучения; $\alpha = 1 \cdot 10^{-3}$ (a), 1.0 (б); $P_0/H_0 = 9770$ (a), 315 (б)

целиком обусловлена движением Земли относительно реликтового излучения.

Значения мультипольных коэффициентов C_l можно представить в аналитическом виде с помощью простой приближенной формулы, к выводу которой мы и переходим.

Будем считать выполненным условие $\alpha (P_0/H_0)^2 \gg 1$, см. (6). Как уже обсуждалось, функция $N(a,\nu)$ быстро растет с ростом масштабного фактора и, как функция ν , имеет пик при $\nu_{max} \approx 0.2$. Следовательно, основной вклад в интеграл (15) дают поздние времена, а интеграл (14) насыщается при $\nu \approx \nu_{max}$ (важно, что ν_{max} отлична от нуля и единицы). Это означает, во-первых, что нижний предел интегрирования в правой части (15) можно положить равным нулю. Во-вторых, можно разложить функцию $N(a,\nu)$ в окрестности a = 1. Запишем

$$N(a(\eta), \nu) = N(1, \nu) - \omega(\nu)(\eta_0 - \eta),$$
(16)

при этом для $\nu_{max} = 0.2$ имеем

$$N(1,\nu_{max}) = 0.39\sqrt{\alpha} \frac{P_0}{H_0}.$$

В-третьих, с той же точностью можно положить множитель $\omega(\eta)a(\eta)$ в правой части (15) равным его значению при a = 1. Таким образом получаем

$$\Delta_{l}(\nu) = \sqrt{\alpha} \sqrt{\frac{1-\nu}{\nu}} \exp N(1,\nu) \times \\ \times \int_{0}^{\nu P_{0}\eta_{0}} dx \exp \left(-\sqrt{\alpha} \sqrt{\frac{1-\nu}{\nu}} x\right) j_{l}(x), \quad (17)$$

где сделана замена переменной интегрирования $x = \nu P_0 (\eta_0 - \eta)$. И наконец, учтем, что $\eta_0 \sim 1/H_0$. Тогда верхний предел интегрирования в формуле (17)

$$\nu P_0 \eta_0 \sim \nu_{max} P_0 / H_0 \gg 1$$

и интегрирование можно распространить до бесконечности. После этого интеграл в (17) вычисляется с помощью формулы [20]

$$\int_{0}^{\infty} dx \frac{J_{l+1/2}(x)}{\sqrt{x}} \exp(-\gamma x) =$$

$$= \frac{1}{(1+\gamma^{2})^{1/4}} \Gamma(l+1) P_{-1/2}^{-l-1/2} \left[\frac{\gamma}{\sqrt{1+\gamma^{2}}} \right] =$$

$$= \frac{1}{(1+\gamma^{2})^{1/4}} \frac{\Gamma(l+1)}{\Gamma(l+3/2)} \left[\frac{1-z}{1+z} \right]^{l/2+1/4} \times$$

$$\times F\left(\frac{1}{2}, \frac{1}{2}, l+\frac{3}{2}, \frac{1-z}{2} \right),$$

где $P_{-1/2}^{-l-1/2}$ — функция Лежандра, F — гипергеометрическая функция¹⁾, а

$$z = \frac{\gamma}{\sqrt{1+\gamma^2}} = \sqrt{\frac{\alpha(1-\nu)}{\nu+\alpha(1-\nu)}}$$

С учетом экспоненциальной зависимости от ν множителя $\exp N(1,\nu)$ в выражении (17) интеграл в (14) носит седловой характер, и мы получаем

¹⁾ Удобство второго представления заключается в том, что значение гипергеометрической функции практически не отличается от единицы при $0 \leq z \leq 1$, что соответствует $0 \leq \alpha < \infty$.

$$D_{l} = \frac{2P_{0}^{2}}{M_{PL}^{2}\nu_{max}} \sqrt{\frac{1}{\pi |N''(1,\nu_{max})|}} \times \\ \times \exp(2N(1,\nu_{max}))l(l+1) \left[\frac{\Gamma(l+1)}{\Gamma(l+3/2)}\right]^{2} \times \\ \times \frac{z^{2}}{\sqrt{1-z^{2}}} \left(\frac{1-z}{1+z}\right)^{l+1/2} F\left(\frac{1}{2},\frac{1}{2},l+\frac{3}{2},\frac{1-z}{2}\right)^{2}, \quad (18)$$

где $z = z(\nu_{max}), N''(1, \nu_{max})$ — вторая производная по ν . При $\nu_{max} = 0.2$

$$D_{l} = C_{0} \left[\frac{\Gamma(l+1)}{\Gamma(l+3/2)} \right]^{2} \frac{l(l+1)}{\sqrt{1+4\alpha}} \left(\frac{1-z}{1+z} \right)^{l+1/2} \times F^{2} \left(\frac{1}{2}, \frac{1}{2}, l+\frac{3}{2}, \frac{1-z}{2} \right), \quad (19)$$

$$z = \frac{2\sqrt{\alpha}}{\sqrt{1+4\alpha}},$$

$$C_{0} = 9.4 \left(\sqrt{\alpha} \frac{P_{0}}{H_{0}}\right)^{3/2} \left(\frac{H_{0}}{M_{PL}}\right)^{2} \times \exp\left(0.78\sqrt{\alpha} \frac{P_{0}}{H_{0}}\right). \quad (20)$$

Это и есть приближенное аналитическое выражение для мультиполей.

При малых α
и l > 1 выражение (18) упрощается и принимает вид

$$D_{l} = \frac{2\alpha P_{0}^{2}}{M_{PL}^{2}} \frac{1 - \nu_{max}}{\nu_{max}^{2}} \sqrt{\frac{1}{\pi |N''(1, \nu_{max})|}} \times \exp(2N(1, \nu_{max}))(l+1) \times \exp\left(-2l\sqrt{\alpha}\sqrt{\frac{1 - \nu_{max}}{\nu_{max}}}\right). \quad (21)$$

Поправки к этому выражению имеют порядок O(1/l) и численно малы даже при l = 2.

Сделаем несколько замечаний по поводу полученного результата. Во-первых, из выражения (19) видно, что зависимости от l и от P_0 факторизованы. Таким образом, положение максимума, так же как и ширина спектра, зависят только от параметра α и не зависят от второго параметра модели P_0 . В частности, при $\alpha \ll 1$ максимум функции (21) находится при

$$l_{max} = \frac{1}{2\sqrt{\alpha}}\sqrt{\frac{\nu_{max}}{1-\nu_{max}}} - 1 \approx \frac{1}{4\sqrt{\alpha}} - 1.$$
 (22)

Амплитуда же зависит как от α , так и от P_0 . При этом зависимость от P_0 имеет экспоненциальный вид, поскольку $N(1, \nu_{max}) \propto P_0$. Это оправдывает использование выражения (10) для двухточечного коррелятора амплитуд вакуумных флуктуаций.

Во-вторых, экспоненциальную зависимость C_l от l можно объяснить следующим образом. В рассматриваемой задаче присутствуют характерные масштабы времени и соответствующего ему расстояния:

$$\tau(k) \sim \frac{1}{\omega} = \frac{1}{\sqrt{\alpha}P_0\sqrt{\nu(1-\nu)}} \ll \frac{1}{H_0}$$

Этот масштаб характеризует время развития тахионной неустойчивости у моды с импульсом k. Благодаря тому, что $N(\nu)$ имеет максимум, в основном развивается мода с фиксированным импульсом $k_{max} = \nu_{max} P_0$. Поэтому амплитуда гравитационного потенциала на расстоянии $r \gg 1/\tau(k_{max})$ экспоненциально мала по сравнению с современной (тахионная нестабильность не успела развиться), на расстоянии же $r < 1/\tau(k_{max})$ амплитуду можно считать практически постоянной (в силу (6) расширением Вселенной можно пренебречь, а тахионная неустойчивость возрастает максимум в е раз). Другими словами, гравитационный потенциал на расстояниях $r < 1/\tau(k_{max})$ выглядит как суперпозиция случайных, не зависящих от времени волн с постоянной амплитудой и постоянной длиной волны 1/k_{max}. На расстояниях $r > 1/\tau(k_{max})$ амплитуда таких волн уменьшается по закону $\exp(-r/\tau(k_{max}))$ с ростом расстояния от наблюдателя г. Гребень одной такой волны, находящийся на расстоянии r, виден под углом $\Delta \theta_r \approx 1/rk_{max}$. Следовательно, для такого гребня в силу (13) отличными от нуля будут только мультипольные коэффициенты $a_{lm} \circ l \approx rk_{max}$. При этом величина этих коэффициентов не будет экспоненциально подавленной, если $r < 1/\tau(k_{max})$, и будет экспоненциально падать в противоположном случае. С учетом соотношения (12) такое поведение мультипольных коэффициентов дает экспоненциальную зависимость мультиполей от *l*:

$$C_l \propto \exp\left(-\frac{2l}{k_{max}\tau(k_{max})}\right) = \\ = \exp\left(-2l\sqrt{\alpha}\sqrt{\frac{1-\nu_{max}}{\nu_{max}}}\right),$$

что полностью соответствует (22).

То, что при не слишком малых α вклад получают только низшие мультиполи, можно увидеть сразу из формулы (11). Действительно, подставляя выражение (2) в (11), учитывая (16) и интегрируя по времени, мы приходим к следующему результату:

$$\Theta(\mathbf{n}) \sim \int d^3k f(k,\omega) A(\mathbf{k}) \frac{1}{\sqrt{\alpha} \sqrt{\frac{1-\nu}{\nu}} - i \frac{\mathbf{k} \cdot \mathbf{n}}{k}} + \text{H.c.},$$

где $f(k,\omega)$ — гладкая функция, не зависящая от направления вектора **k**. Учитывая, что $\nu \approx \nu_{max} = 0.2$, имеем $\sqrt{\alpha}\sqrt{(1-\nu)/\nu} > 1$ при не слишком малых α . В этом случае знаменатель можно разложить в ряд по степеням $\mathbf{k} \cdot \mathbf{n}$, что будет соответствовать разложению по мультиполям. При этом *l*-я гармоника будет подавлена фактором $\left(\sqrt{\alpha}\sqrt{(1-\nu)/\nu}\right)^{-l}$. В противоположном случае, когда $\sqrt{\alpha}\sqrt{(1-\nu)/\nu} < 1$, такое разложение применять нельзя и требуется другой анализ, приведенный выше.

5. СРАВНЕНИЕ С НАБЛЮДЕНИЯМИ

Нашей целью является оценка допустимых значений параметров фантомной энергии с тахионной неустойчивостью путем сравнения предсказаний теории фантомной энергии с наблюдениями анизотропии реликтового излучения. Мы рассматриваем широкий интервал значений параметра α, а именно

$$2.5 \cdot 10^{-7} < \alpha < 1.0. \tag{23}$$

Этот интервал является достаточно общим с точки зрения влияния тахионной неустойчивости на анизотропию реликтового излучения: при $\alpha \sim 1$ и выше основной вклад приходится на низшие мультиполи, в то время как при $\alpha = 2.5 \cdot 10^{-7}$ заметный вклад получают мультиполи с $l \sim l_{max} \approx 500$, см. (22). Как мы уже отмечали, дипольную компоненту анизотропии мы не рассматриваем, поскольку с учетом ограничений на квадрупольную компоненту эффект от фантомной энергии для дипольной компоненты мал по сравнению с эффектом от движения Земли.

Наблюдаемый спектр анизотропии реликтового излучения хорошо согласуется с представлением об адиабатических начальных возмущениях со степенным спектром, близким к спектру Харрисона-Зельдовича. Однако в нем, возможно, существуют отклонения невыясненной природы. Мы исходили из того, что одной из возможностей объяснения этих отклонений является присутствие наряду с вкладом в спектр анизотропии от обычных адиабатических флуктуаций небольшого эффекта, вызванного тахионными флуктуациями фантомного поля. Мы убедимся, что указанные отклонения не могут быть объяснены флуктуациями поля с тахионными свойствами; тем не менее мы обсудим сравнение предсказаний теории фантомного поля с наблюдениями и укажем верхний предел амплитуды флуктуаций этого поля.

Мы использовали значения коэффициентов C_l , полученные в результате обработки данных по анизотропии реликтового излучения [21], которые представлены для отдельных мультипольных коэффициентов, сведенных в таблицу вида « C_l в зависимости от l». Отметим, что для наглядного представления данных принято использовать спектр C_l , усредненный по нескольким мультипольным гармоникам (так называемым бинам). Однако для целей сравнения наблюдений с теоретической моделью лучше использовать величины индивидуальных гармоник, что мы и делали.

Анализ проводился следующим образом. С помощью программы CMBFast [22] был построен спектр адиабатических флуктуаций при различных значениях скалярного спектрального индекса n_s в рамках стандартной космологической модели со следующими значениями параметров: $H_0 = 72 \text{ км} \cdot \text{c}^{-1} \cdot \text{Мпк}^{-1}$ — постоянная Хаббла, $\Omega_m = 0.27$ — вклад барионов и холодной темной материи в общую плотность энергии во Вселенной, $\Omega_{hdm} = 0$ — вклад горячей темной материи в общую плотность, Y = 0.24 — доля He⁴, три сорта безмассовых нейтрино; кроме того, мы считали, что во Вселенной существуют только возмущения плотности, а тензорные возмущения отсутствуют.

В проверяемой нами модели коэффициент C_l представляет собой сумму двух членов, первый из которых дает основной вклад в анизотропию и генерируется адиабатическими скалярными возмущениями, а второй обусловлен флуктуациями тахионного типа:

$$C_l = C_l^{ad} + C_l^p.$$

Вклад C_l^{ad} адиабатических возмущений в мультипольные коэффициенты как функция числа l был рассчитан с использованием программы CMBFast. Индекс n_s менялся в интервале $0.8 \leq n_s \leq 1.5$. Таким образом была сформирована функция $C_l^{ad}(l, n_s)$, заданная таблично. Второе слагаемое C_l^p вычислялось по формуле (19).

Для сравнения модели с данными наблюдений мы рассмотрели распределение разности измеренного мультипольного коэффициента и вычисленного коэффициента:

$$\epsilon_l = C_l^{exp} - C_l^{ad} - C_l^p.$$

Построение гистограммы векторов ϵ_l и вычисление их моментов и корреляционных характеристик показало, что они независимы и равновелики, а их среднее незначимо отличается от нуля. Кроме того, оценка по критерию χ^2 показала, что с вероятностью 95% векторы ϵ_l являются нормально распределенными величинами.

Основной задачей является оценка параметров теоретического спектра, а именно, амплитуды и спектрального индекса адиабатических возмущений, а также амплитуды и параметра α тахионных флуктуаций. Мы использовали метод максимального правдоподобия, так как в случае гауссового распределения ошибки этого метода оказываются наименьшими. Функция правдоподобия имеет вид

$$F(\epsilon|\theta) = \prod_{l=2,600} f(\epsilon_l|\theta)$$

Здесь θ — набор четырех параметров, включающий в себя амплитуду и спектральный индекс адиабатических возмущений, а также амплитуду и параметр α тахионных флуктуаций; с учетом (23) мы ограничились мультиполями с $l \leq 600$. Для нормально распределенного случайного вектора функция правдоподобия f имеет вид

$$f(\epsilon_l|\theta) = \exp\left(-\frac{\epsilon_l^2(\theta)}{2\sigma_l^2}\right)$$

Обычно вводят логарифмическую функцию правдоподобия:

$$L = \sum_{l=2}^{600} \ln f(\epsilon_l | \theta)$$

Максимум функции правдоподобия был получен варырованием по амплитуде и спектральному индексу адиабатических флуктуаций, а также по амплитуде флуктуаций тахионного поля C_0 для каждого значения $\alpha \in [1.0, 2.5 \cdot 10^{-7}]$. При этом вариации отдельных гармоник вычислялись на основании ошибок мультипольных коэффициентов, приведенных в третьем столбце стандартной таблицы [21].

На рис. 5 показано оптимальное значение величины вклада тахионных флуктуаций в анизотропию реликтового излучения для каждого значения параметра α. В качестве характеристики этого вклада выбран максимум в спектре анизотропии, созданной тахионными флуктуациями,

$$D_{max} = \max_{l} \left[\frac{l(l+1)}{2\pi} C_{l}^{p} \right],$$

который приходится на гармонику номер l_{max} (на рис. 4*a* значение $l_{max} \approx 7$). Из рис. 5 видно, что при $\alpha > 10^{-4}$ оптимальное значение равно нулю, а при $\alpha < 10^{-4}$ оно довольно заметно отличается от нуля. Это означает, что использование модели

Рис.5. Оптимальное значение вклада тахионных флуктуаций в анизотропию, D_{max} , в зависимости от параметра фантомного поля α . Максимум величины D_{max} приходится на значение параметра $\alpha = 3.0 \cdot 10^{-6}$, что соответствует $l_{max} \approx 143$

адиабатических возмущений вместе с флуктуациями тахионного типа привело к тому, что статистическая характеристика χ^2 модели улучшилась. Отметим, что добавление члена C_l^p привело к тому, что спектральный индекс n_s стал больше стандартного значения $n_s = 0.96$ [23]; при некоторых значениях α спектральный индекс стал даже больше единицы.

Указанное улучшение, однако, статистически незначимо. На рис. 6 показан профиль функции правдоподобия в зависимости от D_{max} при $\alpha = 1.8 \cdot 10^{-6}$. Видно, что хотя оптимальное значение величины D_{max} отлично от нуля, функция правдоподобия при $D_{max} = 0$ близка к своему максимальному значению. Аналогичные результаты справедливы и при всех остальных значениях α в рассмотренном интервале, из чего следует, что вклад тахионных флуктуаций в общую анизотропию не обнаружен.

Таким образом, из данных наблюдений можно определить лишь верхний предел возможных значений амплитуды C_0 , а также более важный с точки зрения физической интерпретации верхний предел значений параметра P_0/H_0 . Эти пределы даются решением уравнения L = -1.96 относительно C_0 , что соответствует верхнему ограничению на C_0 на уровне 2σ , и пересчетом к параметру P_0/H_0 по формуле (20). На рис. 7, 8 показаны верхние пределы значений безразмерной амплитуды C_0 и параметра P_0/H_0 на уровне достоверности 95% (2σ). Из рисунков видно, что современные данные наблюдений

Рис. 6. Функция правдоподобия при оптимальных значениях амплитуды и наклона спектра адиабатических возмущений в зависимости от D_{max} при $\alpha = 1.8 \cdot 10^{-6}$. Вертикальной штриховой линией показано ограничение на уровне достоверности 95%. Пунктирная линия — оптимальное значение D_{max} . Максимальное значение функции правдоподобия $F_{max} = 0.577$

Рис. 7. Верхнее ограничение на амплитуду C_0 для $\alpha \in [1.0, 2.5 \cdot 10^{-7}]$ на уровне достоверности 95 %

накладывают сильные ограничения на возможность существования флуктуаций полей тахионного типа в нашей Вселенной.

6. ОБСУЖДЕНИЕ

В данной работе мы рассмотрели влияние возможных тахионных флуктуаций темной энергии на

Рис. 8. Верхнее ограничение на параметр фантомного поля P_0 в единицах параметра Хаббла H_0 на уровне достоверности 95 %

анизотропию температуры реликтового излучения. По сравнению с обычно рассматриваемыми флуктуациями темной энергии, не испытывающими экспоненциального роста, флуктуации тахионного типа приводят, вообще говоря, к бо́льшим значениям гравитационного потенциала Ф в эпоху, близкую к современной (и только в эту эпоху). В результате, как мы увидели в этой работе, может появляться заметный вклад в анизотропию, обусловленный интегральным эффектом Сакса-Вольфе. Подчеркнем, что обсуждавшиеся в этой работе скалярные возмущения не связаны с возмущениями плотности темной материи или барионов. Это означает, в частности, что корреляции между анизотропией реликтового излучения и структурами во Вселенной должны практически полностью отсутствовать.

Наш анализ был в основном мотивирован моделями фантомной темной энергии с нарушением лоренц-инвариантности. С этим связан выбор дисперсионного соотношения (1). Мы показали, что рассмотренный вклад в угловой спектр анизотропии имеет четко выраженный максимум, положение которого зависит только от параметра α и практически не зависит от другого параметра P_0 . Можно ожидать, что такая форма спектра характерна для широкого класса моделей с флуктуациями плотности темной энергии, имеющими тахионный характер, поскольку она связана с поздним нарастанием амплитуды этих флуктуаций.

Основной вывод нашей работы заключается в том, что флуктуации темной энергии тахионного типа, если и существуют во Вселенной, то их вклад в анизотропию реликтового излучения мал, ниже текущей точности наблюдений. Тем не менее, нельзя исключить возможности того, что повышение точности измерений и в особенности детальный анализ корреляций анизотропии реликтового излучения со структурами во Вселенной приведет к обнаружению возможного экзотического свойства темной энергии — тахионных флуктуаций.

Работа выполнена при поддержке РФФИ (гранты №№ 07-02-01034а (О. С. и М. С.), 08-02-00473 (М. Л. и В. Р.)), гранта Президента РФ для ведущих научных школ NS-1616.2008.2 (М. Л. и В. Р.), гранта Президента РФ МК-2503.2008.2 (О. С.) и гранта фонда некоммерческих программ «Династия» (М. Л.).

ЛИТЕРАТУРА

- T. Padmanabhan, Phys. Rep. 380, 235 (2003); arXiv:hep-th/0212290.
- V. Sahni, Lect. Notes Phys. 653, 141 (2004); arXiv:astro-ph/0403324.
- E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006); arXiv:hep-th/0603057.
- V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006); arXiv:astro-ph/0610026.
- 5. J. Frieman, M. Turner, and D. Huterer, arXiv:0803.0982 [astro-ph].
- E. Komatsu et al. [WMAP Collaboration], arXiv:0803.0547 [astro-ph].
- V. Sahni, A. Shafieloo, and A. A. Starobinsky, arXiv:0807.3548 [astro-ph].
- J. Q. Xia, H. Li, G. B. Zhao, and X. Zhang, arXiv:0807.3878 [astro-ph].
- 9. R. R. Caldwell, Phys. Lett. B 545, 23 (2002).

ЖЭТФ, том **135**, вып. 2, 2009

- 10. L. Senatore, Phys. Rev. D 71, 043512 (2005); arXiv;astro-ph/0406187.
- P. Creminelli, M. A. Luty, A. Nicolis, and L. Senatore, JHEP 0612, 080 (2006); arXiv:hep-th/0606090.
- 12. V. A. Rubakov, Theor. Math. Phys. 149, 1651 (2006); Teor. Mat. Fiz. 149, 409 (2006); arXiv:hep-th/0604153.
- M. Libanov, V. Rubakov, E. Papantonopoulos, M. Sami, and S. Tsujikawa, JCAP 0708, 010 (2007); arXiv:0704.1848 [hep-th].
- 14. A. Sergienko and V. Rubakov, arXiv:0803.3163 [hep-th].
- **15.** А. Д. Линде, Физика элементарных частиц и инфляционная космология, Наука, Москва (1981).
- 16. А. Д. Долгов, Я. Б. Зельдович, М. В. Сажин, Космология ранней Вселенной, Изд-во МГУ, Москва (1988).
- V. Mukhanov, *Physical Foundations of Cosmology*, Cambridge Univ. Press, Cambridge (2005).
- M. R. Nolta et al. [WMAP Collaboration], arXiv:0803.0593 [astro-ph].
- 19. M. Giovannini, Int. J. Mod. Phys. D 14, 363 (2005); arXiv:astro-ph/0412601.
- 20. И. С. Градштейн, И. М. Рыжик, Таблицы интегралов, сумм, рядов и произведений, Наука, Москва (1971); М. Абрамовиц, И. Стиган, Справочник по специальным функциям с формулами, графиками и математическими таблицами, Наука, Москва (1979).
- 21. http://lambda.gsfc.nasa.gov/product/map/dr3/pow______tt_spec_get.cfm
- 22. http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ _form.cfm
- J. Dunkley et al. [WMAP Collaboration], arXiv:0803.0586 [astro-ph].