ИССЛЕДОВАНИЕ ОСОБЕННОСТЕЙ КИНЕТИКИ ТЕПЛОВЫХ ФОНОНОВ И СТРУКТУРЫ НАНОДИСПЕРСНЫХ ЖЕЛЕЗОСОДЕРЖАЩИХ КЕРМЕТОВ НА ОСНОВЕ КОРУНДА В ОБЛАСТИ ГЕЛИЕВЫХ ТЕМПЕРАТУР

0. В. Карбань^{a,b*}, Е. И. Саламатов^a, А. В. Таранов^b, Е. Н. Хазанов^b, О. Л. Хасанов^c

^а Физико-технический институт Уральского отделения Российской академии наук 426000, Ижевск, Россия

^b Институт радиотехники и электроники им. В. А. Котельникова Российской академии наук 125009, Москва, Россия

^с НИЦ перспективных технологий «Спектр» Томского политехнического университета 620219, Томск, Россия

Поступила в редакцию 7 ноября 2008 г.

Изучены особенности кинетики слабонеравновесных тепловых фононов субтерагерцевого диапазона в нанодисперсных железосодержащих керметах на основе корунда в области гелиевых температур. Показано, что при выбранном способе приготовления керметов, ограничивающем рост зерен железа, включения железа можно описывать как точечные центры захвата фононов. Изучены особенности транспорта неравновесных фононов в керамической матрице с центрами захвата металлической природы.

PACS: 61.46.-w

1. ВВЕДЕНИЕ

Интерес к материалам, синтезированным из нанопорошков, обусловлен широким спектром их физических и конструкционных свойств. Более высокая температура плавления, твердость, износостойкость, химическая инертность, малый удельный вес — те свойства, по которым керамики могут превосходить металлы. В то же время отсутствие пластичности (хрупкость), низкие значения ударной вязкости ограничивают применение керамики как конструкционного материала. Введение металлической фракции в диэлектрическую керамическую матрицу позволило создать композиционные материалы (керметы), совмещающие достоинства керамик и металлов. В качестве включений пластичного металла, как правило, использовались Ag, Al, Ni, Fe [1-4].

Важное требование, предъявляемое к керметам, — металлические включения должны плотно связывать керамическую матрицу, а их характерные размеры не должны превышать критический размер, при котором термические напряжения могли бы индуцировать трещины вокруг зерен металла. Чем меньше размер зерен металла в диэлектрической керамической матрице, тем большими могут быть различия в коэффициентах теплового расширения металла и материала матрицы, поскольку термические напряжения пропорциональны $R_{\rm Fe}^3$ [5], где R — средний размер фрагментов структуры керамики, в данном случае железа.

При переходе в ультрадисперсное состояние физические и конструкционные свойства материала могут существенно изменяться. В работе [6] было показано, что теплофизические свойства нанодисперсных композитов ($ZrO_2:Y_2O_3$) + 14% Al_2O_3 в области гелиевых температур резко меняются в результате образования «щели» в фононном спектре.

^{*}E-mail: ocsa123@yahoo.com

Рис.1. АСМ-изображения поверхности сколов образцов с 15 вес. % Fe, скомпактированных при W = 0 кВт и спеченных при T = 1400 °С и выдержке t = 0.5 ч (*a*) и T = 1450 °С, t = 2 ч (*б*)

Этот эффект связан с соразмерностью части фрагментов структуры и длины волны тепловых фононов. Наличие фракции металла в наноструктурных композитах может существенно изменять транспортные свойства фононов субтерагерцевого диапазона не только по причине резонансного рассеяния на фрагментах структуры, но и из-за эффективного электрон-фононного взаимодействия в зернах металла в условиях низких температур, когда $ql_{el} \gg 1$ (q — волновой вектор фонона, l_{el} — длина свободного пробега электрона в металле).

Цель работы — изучение транспортных свойств фононов субтерагерцевого диапазона, особенностей фононного спектра и структуры нанодисперсных железосодержащих керметов на основе матрицы Al₂O₃.

2. ОПИСАНИЕ СТРУКТУРЫ ИССЛЕДУЕМЫХ ОБРАЗЦОВ

Смеси исходных порошков для создания образцов керметов с нанодисперсной фракцией железа (5, 10, 15 вес. %) подвергались предварительной механической активации. Технологические детали обработки исходных порошков карбонильного железа и оксидов Al₂O₃ приведены в работе [7]. Компактирование порошков осуществлялось методом сухого изостатического прессования при одновременном воздействии ультразвуковых волн [8]. Мощность воз-

действия составляла W = 0, 1, 3 кВт. Отжиг образцов проводился в резистивной печи в вакууме $1.33 \cdot 10^2$ Па при T = 1400 °C. Согласно данным рентгеноструктурного и рентгенофазового анализа, в системе наблюдается фазовый переход метастабильных оксидов алюминия в высокотемпературную а-фазу и формирование шпинельной фазы FeAl₂O₄ с одновременным уменьшением ширины структурных рефлексов а-Fe вследствие процесса рекристаллизации. Размер областей когерентного рассеяния Al₂O₃ составлял 60-160 нм и слабо зависел от мощности ультразвукового воздействия (таблица). Содержание шпинельной фазы не превышало 3 вес. %. По данным исследований методом атомно-молекулярной спектроскопии (АСМ) поверхности скола образцов в режиме топографии, кристаллиты Al₂O₃ объединены в зерна, размер которых определяется температурой и временем выдержки и не зависит от содержания железа. На рис. 1а показана типичная для всех концентраций морфология поверхности сколов образцов, отожженных при температуре 1400 °C, а на рис. 16 - для образца, отожженного при температуре 1450°С с двухчасовой выдержкой.

В режиме фазового контраста (рис. 2) на общем фоне поликристаллического ансамбля зерна металла видны в виде гранул размером $R_{\rm Fe} = 30-80$ нм, которые распределены по поверхности скола равномерно и не образуют кластеров или перемычек. Форма гранул близка к сферической.

N⁰	Состав фаз, вес. %	<i>W</i> , кВт	Темп./время спекания, T/t , °С/ч	$R_{Al_2O_3}$, нм	$D, \ \mathrm{cm}^2/\mathrm{c}, \ T = 3.86 \ \mathrm{K}$	h
1	$\mathrm{Al}_2\mathrm{O}_3$:5 % Fe	0	1400/0.5	155	$4.24 \cdot 10^{-2}$	3
2	$Al_2O_3{:}10~\%~Fe$	0	1400/0.5	94	$3.26 \cdot 10^{-2}$	2
3	$\mathrm{Al_2O_3:}15~\%~\mathrm{Fe}$	0	1400/0.5	79	$2.30 \cdot 10^{-2}$	1
4	$Al_2O_3{:}15~\%~Fe$	0	1450/2	> 300	$2.27 \cdot 10^{-1}$	1
5	$\mathrm{Al}_2\mathrm{O}_3$:5 % Fe	1	1400/0.5	74	$3.2 \cdot 10^{-2}$	3
6	$\mathrm{Al_2O_3:}10~\%~\mathrm{Fe}$	1	1400/0.5	68	$2.86 \cdot 10^{-2}$	2
7	$\mathrm{Al_2O_3:}15~\%~\mathrm{Fe}$	1	1400/0.5	65	$2.65 \cdot 10^{-2}$	1
8	$\mathrm{Al}_2\mathrm{O}_3$:5 % Fe	3	1400/0.5	93	$5.60 \cdot 10^{-2}$	3
9	$Al_2O_3{:}10~\%~Fe$	3	1400/0.5	87	$3.38 \cdot 10^{-2}$	2

Таблица

Рис.2. АСМ-изображение образца в режиме фазового контраста с 10 вес. % Fe. Светлые участки соответствуют более мягкой металлической фазе

3. МЕТОД ИССЛЕДОВАНИЯ КИНЕТИЧЕСКИХ ХАРАКТЕРИСТИК ТЕПЛОВЫХ ФОНОНОВ В ОБЛАСТИ ГЕЛИЕВЫХ ТЕМПЕРАТУР И АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

В работе анализировалось распространение слабонеравновесных тепловых фононов, создаваемых импульсным нагревом пленки металла (золота), нанесенной на один из торцов исследуемого образца. Образцы керметов $Al_2O_3 + xFe$ (x = 5, 10, 15 вес. %) представляли собой тонкие пластины толщиной (1.3–1.5) \cdot 10^{-2} см и площадью около 0.5 см².

Прошедший через исследуемый образец импульс фононной неравновесности в режиме диффузии регистрировался на противоположном торце широкополосным приемником — болометром на основе сверхпроводящей пленки олова. Измерения проводились при гелиевых температурах, что позволяло пренебречь неупругим фонон-фононным рассеянием за время регистрации сигнала. Температура термостата T₀ могла меняться в интервале 1.5–3.8 К путем откачки паров гелия. Рабочая точка болометра смещалась по температуре полем сверхпроводящего магнита, расположенного в непосредственной близости от болометра. Плотности мощности, выделяемые в пленке металла, составляли 10^{-2} - 10^{-1} Br/mm^2 (длительность импульса около 100 нс). При этом пленка нагревалась до температуры T_h , такой что $\Delta T = T_h - T_0 \ll T_0$. Это позволяло считать, что распределение термализованных в пленке инжектора фононов имело температуру термостата, а проведение измерений при различных T_0 — получать температурные характеристики рассеяния неравновесных фононов (НФ) тепловых частот. Диффузионный характер распространения НФ описывается уравнением

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{D} \frac{\partial T}{\partial t},\tag{1}$$

где $D = \kappa/c_v$ — коэффициент диффузии фононов, κ и c_v — соответственно теплопроводность и теплоем-кость материала.

Измеряемой в экспериментах величиной является время t_m прихода на болометр максимума диф-

Рис. 3. Зависимость коэффициента диффузии от среднего размера зерна R в керамике Al_2O_3 при T = 3.86 K [9]

фузионного сигнала: $t_m = L^2/2D$, где D = lv/3, l - длина свободного пробега НФ, <math>v - средняя по поляризациям скорость фононов, L - размер образца в направлении распространения НФ.

На рис. 3 представлена зависимость D(R) при T = 3.86 К ($q \approx 1 \cdot 10^6$ см⁻¹) в базовой керамике Al₂O₃ из работы [9]. Видно, что при $qR \ge 20$ (для Al₂O₃ $v = 7.5 \cdot 10^5$ см/с) $D(R) \propto R$. Если qR < 10, что характерно для среднего размера зерна Al₂O₃ в исследуемых керамиках, то помимо геометрического рассеяния достаточно четко начинает проявляться резонансное рассеяние НФ.

Структурные параметры образцов, условия технологических режимов, измеренные значения коэффициента диффузии при T = 3.86 K, показатели температурных зависимостей $D(T) \propto T^h$ в интервале температур 2.3–3.86 K приведены в таблице.

Из анализа экспериментальных результатов необходимо отметить три главные особенности.

 Уменьшение коэффициентов диффузии при T = 3.86 К по мере роста доли металлической фазы.

2. Очень малые значения коэффициента диффузии (на два порядка меньше, чем получаемые на основании зависимости $D(R) \propto R$) в области геометрического рассеяния НФ (рис. 3).

3. Температурная зависимость имеет вид $D(T) \propto T^h$ с показателем степени h = 1-3, который уменьшается по мере увеличения количества металлической фазы.

Казалось бы, с увеличением доли металлической фазы, теплопроводность которой при гелиевых тем-

Рис.4. Коэффициент диффузии D(x), рассчитанный для значений резонансной частоты $x_r = 0.5$, 1.0, 1.5 [6]. Верхняя кривая — случай абсолютно твердых сфер

пературах больше теплопроводности корунда, должна возрастать теплопроводность композита, а следовательно, и коэффициент диффузии фононов в макроскопическом диэлектрическом образце [10]. Однако в наших исследованиях наблюдается уменьшение коэффициента диффузии НФ по мере увеличения фракции металла.

С другой стороны, в нашей предыдущей работе [6] была представлена теоретическая модель, описывающая транспорт НФ в наноструктурных керамиках, основанная на концепции случайно распределенных в пространстве сферических оболочек, моделирующих межзеренные границы, с упругими свойствами, отличными от упругих свойств зерен. Было показано, что перестройка фононного спектра керамики за счет рассеяния фононов на наноструктурных объектах в области $qR \sim 1$ может приводить к различным температурным зависимостям коэффициента диффузии НФ и значительному уменьшению его абсолютных значений. Но для исследуемых в работе керметов данная модель не применима. Поясним это на простом примере.

На рис. 4 из работы [6] представлены зависимости коэффициента диффузии от параметра $x = qR_{Al_2O_3} \propto T$ при различных значениях параметра $x_r = \omega_r R_{Al_2O_3}/v$, где ω_r — резонансная частота рассеяния НФ на оболочках радиуса R. Параметр x_r является основным параметром модели, при изменении которого можно получить широкий спектр значений коэффициента диффузии и его температурной зависимости в области qR порядка нескольких единиц, что и демонстрирует рис. 4. Тем не менее измеренные в данной работе значения коэффициента диффузии $D \leq 0.05 \text{ см}^2/\text{с}$ при T = 3.86 К могут реализоваться только у края щели, где коэффициент диффузии растет с температурой экспоненциально, что не соответствует наблюдаемым температурным зависимостям $D(T) \propto T^h$, h = 1–3. Наличие в системе более мелких включений (металлическая фракция), изменяя положение щели (минимума), качественно не может изменить характер поведения зависимости D(T), т. е. для объяснения полученных результатов необходимо привлечь дополнительный механизм — например, рассмотреть зерна металла как центры захвата НФ.

Тот факт, что фрагменты нанодисперсной фракции металла могут являться «ловушками» НФ, следует из соотношения времени τ_{e-ph} электрон-фононного взаимодействия и времени τ_R баллистического пробега НФ в объеме зерна железа, $\tau_R = R_{\rm Fe}/vc$ (c-коэффициент выхода НФ из зерна, $10^{-2} < c < 1$). Если

$$\tau_{e-ph} \ll \tau_R, \tag{2}$$

то зерна металла могут являться ловушками для
 НФ. При $ql_{el}\gg 1~[11]$

$$\tau_{e-ph} = \frac{6\rho v}{\pi n m v_F} \frac{1}{\omega},$$

где n и ρ — концентрация и плотность железа, m — масса электрона, v_F — скорость Ферми. Оценки показывают, что неравенство (2) в условиях эксперимента выполняется для $\omega \ge 10^{12}$ (c = 0.1). В то же время $\omega = kT/\hbar = 5 \cdot 10^{11}$ с⁻¹ при T = 4 К. Таким образом НФ с частотой $\omega > (2-3)kT/\hbar$ из области фононного спектра, соответствующей максимуму спектральной плотности планковского распределения, при $T \ge 4$ К успевают провзаимодействовать с электронами металла.

О наличии факторов, затрудняющих выход $H\Phi$ из зерен металла может свидетельствовать тот факт, что акустические импедансы металла и корунда существенно различны. Если вокруг зерен металлической фазы имеется прослойка шпинели FeAl₂O₄, то соотношение акустических импедансов железа и шпинели составляет примерно 2:1, что должно затруднить выход $H\Phi$ из зерна в поликристаллическую матрицу Al₂O₃.

Детальный анализ влияния структуры межзеренных границ на рассеяние НФ остался за пределами рассмотрения в данной работе. Определить корректно вклад рассеяния НФ на межзеренных границах в условиях нашего эксперимента можно только в области геометрического рассеяния $qR \gg 1$, когда в плотных диэлектрических керамиках $D \propto Rvf_{\omega}$,

где f_{ω} — вероятность рассеяния НФ частоты ω при прохождении через межзеренные границы [12]. В этом случае граница моделируется как плоский слой между фрагментами материала (зернами). В случае $qR \sim 1$ рассмотрение этого вопроса в многофазной системе требует привлечения большого количества взаимозависимых параметров [6]. В работе [9] показано, что при уменьшении температуры и времени спекания керамик с целью получения материала с меньшим размером зерна, увеличивается толщина межзеренной границы, уменьшаются ее акустический импеданс и упругость, что приводит к уменьшению абсолютных значений коэффициента диффузии и изменению температурной зависимости D(T). Уменьшение упругости материала границы по сравнению с материалом зерна матрицы увеличивает эффективность резонансного рассеяния НФ в области $qR \sim 1$ [6], о чем, в частности, свидетельствует «ослабление» зависимости D(R) уже при $qR_{\rm Al_2O_3} < 20$ (см. рис. 3).

Как следует из результатов проведенных измерений, коэффициент диффузии НФ в условиях эффективного электрон-фононного взаимодействия («пленения» НФ на металлических включениях) имеет значения на один-два порядка величины меньше, чем в аналогичной поликристаллической матрице Al_2O_3 , что, в основном, и определяет транспортные свойства НФ в условиях нашего эксперимента.

Модель процесса распространения НФ в присутствии центров захвата рассмотрена в работах [13, 14] при анализе экспериментальных результатов по распространению НФ в твердых растворах с парамагнитными центрами Y_{3-x} (Er,Ho)_xAl₅O₁₂. Согласно полученным результатам, процесс распространения δ -образного теплового импульса в бесконечной одномерной среде описывается двумя коэффициентами диффузии, характеризующими «быстрый» и «медленный» процессы.

Для пространственного фурье-образа распределения температуры в момент времени t было получено следующее выражение [13, 14]:

$$S(t,k) = S(0) \{A_1(k) \exp \left[-k^2 D_1(k)t\right] + A_2(k) \exp \left[-k^2 D_2(k)t\right]\}, \quad (3)$$

в котором коэффициенты диффузии определяются согласно формуле

Рис. 5. Дисперсия коэффициентов диффузии D(T) согласно расчету по формулам (3) и (4)

$$\frac{D_{1,2}(k')}{D_0} k'^2 = \frac{1}{2} \left[k_0^2 + k^2 \pm \sqrt{(k_0^2 + k'^2)^2 - 4k'^2 k_0^2 C} \right].$$
 (4)

Здесь k' = kL, где L — координата точки измерения температуры (длина образца); D_0 — коэффициент диффузии, определяемый только упругим рассеянием фононов в материале матрицы.

Дисперсия коэффициентов диффузии показана на рис. 5. Из рисунка следует, что важнейшим параметром задачи является величина k_0 . При $k' < k_0$ (для определенности будем считать, что $D_1 > D_2$) вклад в распределение температурного поля дают только медленные процессы, характеризующиеся эффективным коэффициентом диффузии $D_2 = CD_0$. Величины C и k_0 являются физическими параметрами системы: C определяет долю вклада фононной подсистемы (c_{ph}) в общую теплоемкость образца,

$$C = c_{ph} / (c_{ph} + c_{tr}) < 1,$$

где c_{tr} — теплоемкость центров захвата, а величина

$$k_0 = \sqrt{2t_0/\tau_{e-ph}} = \sqrt{L^2/D_0\tau_{e-ph}}$$

пропорциональна числу фононов, успевших неупруго провзаимодействовать с центрами захвата (попасть в ловушку) за время прохождения по образцу расстояния L. Так как условие $k_0 \gg 1$ выполняется, быстрыми процессами с характерным коэффициентом диффузии $D_1 = D_0$ можно пренебречь, а эффективный коэффициент диффузии процесса удобно представить в виде

$$D_{eff} = \frac{D_0}{1 + c_{tr}/c_{ph}} \,. \tag{5}$$

В рассматриваемых керметах центрами захвата являются металлические включения, поскольку в процессе прохождения волнового пакета фононов по образцу выполняется условие (2). С учетом удельной теплоемкости матрицы и металлических включений зависимость D_{eff} от весовой концентрации p железа в этом случае имеет вид

$$D_{eff} = \frac{D_0}{1 + \frac{pc_{\rm Fe}}{(1 - p)c_{\rm Al_2O_3}}} \,. \tag{6}$$

Так как электронная теплоемкость железа при концентрации порядка 10 вес. % при гелиевых температурах примерно на два порядка превышает теплоемкость $c_{Al_2O_3}$ фононной подсистемы, из представленного выражения следует, что с ростом концентрации железа величина D_{eff} будет уменьшаться, $D \propto 1/p$. При гелиевых температурах $c_{el}/c_{ph} \propto T^{-2}$, поэтому $D_{eff} \propto D_0 T^2$. В диэлектрических керамиках величина D_0 определяется упругим рассеянием фононов на границах зерен, т. е. ведет себя согласно модели из работы [6], и из рис. 4 видно, что наблюдаемую температурную зависимость $D \propto T^h$ (h = 1-3) можно получить для фононов с qR порядка нескольких единиц (справа от щели в фононном спектре), что соответствует эксперименту.

На рис. 6 приведены экспериментальные и теоретические зависимости D(T) под номерами, указанными в таблице. Цифрами со штрихами указаны теоретические зависимости коэффициентов диффузии в структуре поликристаллической матрицы Al₂O₃, рассчитанные согласно [6] без учета захвата Н Φ мелкими включениями фракции железа. Теоретические зависимости, описывающие эксперимент, получены с учетом выражения (6), учитывающего отношение теплоемкостей в данной области температур. При этом наблюдается уменьшение абсолютных значений D при T = 3.86 К и ослабление температурной зависимости D(T) по мере роста концентрации фракции железа, что, согласно [6], свидетельствует об увеличении резонансной частоты ω_r , обусловленной рассеянием НФ на фрагментах структуры исследуемого образца. Зависимости 4' и 4 на рис. 6 соответствуют образцу с более крупным размером зерен поликристаллической матрицы (T/t = 1450/2,t — время спекания) и той же, что и для кривых 3' и 3 нанодисперсной фракцией железа, составляющей 15 вес. %. Значения коэффициента диффузии при этом возросли на порядок величины за счет ослабления резонансного характера рассеяния НФ на увеличившихся в размерах зернах фракции Al₂O₃.

Хорошо известно, что ультразвуковое воздействие приводит к изменению дисперсности керамической матрицы [15, 16]. Как следует из результатов,

Рис. 6. Температурные зависимости D(T) для образцов керметов, синтезированных без ультразвукового воздействия на стадии компактирования: кривые 1'-4' — теоретические зависимости $D_0(T)$ в структуре поликристаллической матрицы, рассчитанные без учета фракции железа, согласно [6]; кривые 1-4 — теоретические зависимости, рассчитанные из выражения (6); квадраты — экспериментальные данные (номера кривых соответствуют номерам в таблице)

представленных на рис. 7, 8, эти изменения в структуре оказывают влияние и на коэффициент диффузии образцов. Так, ультразвуковое воздействие мощностью W = 3 кВт инициирует процесс рекристаллизации во время спекания образцов, что приводит к уменьшению дефектности границ при одновременном увеличении размеров зерен, что и находит свое отражение на рис. 7 в поведении коэффициента диффузии, который описывается большими значениями x_r и R. При W = 1 кВт, наоборот, усиливается диспергирование в структуре зерен Al_2O_3 по сравнению со случаем отсутствия W = 0 на стадии компактирования, что приводит к уменьшению x_r . Результаты таких изменений в структуре композита с содержанием 5 вес. % Fe отражены на рис. 8.

Таким образом, методом фононной спектроскопии в субтерагерцевом диапазоне изучены особенности фононного транспорта в нанодисперсных композитах $Al_2O_3 + xFe$ (x = 5, 10, 15 вес. %) при различных условиях синтеза. Использование механоактивированной смеси оксида алюминия и наноструктурного железа позволяет сохранять наноразмерный характер зерен железа в образ-

Рис.7. Температурные зависимости D(T) для образцов керметов, синтезированных при воздействии ультразвука мощностью 3 кВт: кривые 8', 9' — теоретические зависимости $D_0(T)$ в структуре поликристаллической матрицы, рассчитанные без учета фракции железа, согласно [6]; кривые 8, 9 — теоретические зависимости, рассчитанные из выражения (6); квадраты — экспериментальные данные (номера кривых соответствуют номерам в таблице)

Рис. 8. Температурные зависимости D(T) для образцов керметов с 5 вес. % Fe, синтезированных при воздействии ультразвуком мощностью 0 кВт (1, 1'); 1 кВт (5, 5'); 3 кВт (8, 8'), значки — экспериментальные данные (номера кривых соответствуют номерам в таблице)

цах. Показано, что из-за малого размера зерен железа (30–80 нм) они не являются эффективными переносчиками температуры, а, обладая высокой теплоемкостью, служат центрами захвата для тепловых фононов субтерагерцевых частот в поликристаллической диэлектрической матрице Al₂O₃, что и определяет теплофизические свойства исследуемого материала.

Работа выполнена при поддержке РФФИ (гранты №№ 07-02-00391, 06-08-00512, 06-08-96932) и Международного научно-технического центра (проект № 3719).

ЛИТЕРАТУРА

- 1. П. С. Кислый, Н. И. Бондарук, М. С. Боровикова и др., *Керметы*, Наук. думка, Киев (1985).
- S. Schicker, T. Erny, D. E. Garcia et al., J. Eur. Ceram. Soc. 19, 2455 (1999).
- J. L. Guichard, O. Tillement, and A. Mocellin, J. Eur. Ceram. Soc. 18, 1743 (1998).
- 4. Y. Ji and J. A. Yeomans, J. Eur. Ceram. Soc. 22, 1927 (2002).

- D.-M. Liu, W. H. Tuan, and Ch.-Ch. Chiu, Meter. Sci. Engin. B 31, 287 (1995).
- 6. В. В. Иванов, Е. И. Саламатов, А. В. Таранов, Е. Н. Хазанов, ЖЭТФ 133, 339 (2008).
- A. A. Abramovich, O. V. Karban, V. V. Ivanov et al., Glass Phys. Chem. **31**, 709 (2005).
- 8. О. Л. Хасанов, В. М. Соколов, Э. С. Двилис и др., Перспективные материалы 1, 76 (2002).
- Ю. Н. Барабаненков, В. В. Иванов, С. Н. Иванов и др., ЖЭТФ 129, 131 (2006).
- 10. D. V. Liu and W. Y. Tuan, Acta Mater. 44, 813 (1996).
- 11. A. B. Pippard, Phil. Mag. 46, 1104 (1955).
- 12. Ю. Н. Барабаненков, В. В. Иванов, С. Н. Иванов и др., ЖЭТФ 119, 546 (2001).
- 13. Е. И. Саламатов, ФТТ 44, 935 (2002).
- 14. Е. И. Саламатов, ФТТ 45, 691 (2003).
- **15**. О. Л. Хасанов, Ю. П. Похолков, В. М. Соколов и др., Стекло и керамика **7**, 15 (1995).
- О. В. Карбань, О. Л. Хасанов, О. М. Канунникова, Ж. структурной химии 45, 149 (2004).