ИЗМЕНЕНИЕ СПЕКТРА КОСМИЧЕСКИХ ЛУЧЕЙ ИЗ-ЗА РОЖДЕНИЯ ЭЛЕКТРОН-ПОЗИТРОННЫХ ПАР (АНАЛИТИЧЕСКИЙ ПОДХОД)

В. П. Власов^{*}, Б. А. Трубников^{**}

Российский научный центр «Курчатовский институт» 123182, Москва, Россия

Поступила в редакцию 6 мая 2009 г.

Рассмотрено изменение первичного спектра космических лучей из-за рождения электрон-позитронных пар в столкновениях с фотонами реликтового излучения. Предлагается использовать эти результаты для оценки расстояний до источников космических лучей.

PACS: 98.70.Sa, 98.58.Fd, 98.62.En

1. ВВЕДЕНИЕ

В 1965 г. было открыто реликтовое излучение (РИ) Вселенной [1], а уже в следующем году опубликованы статьи Грейзена [2], Зацепина и Кузьмина [3]. Они рассмотрели рождение пионов при столкновениях протонов космических лучей (КЛ) с фотонами реликтового излучения (РИ-фотонами). Эта реакция проходит при энергии протона выше порогового значения порядка 10²⁰ эВ. Авторы пришли к выводу, что если источники КЛ находятся от Земли на расстояниях, превышающих 50 Мпк (отметим, что среднее расстояние между галактиками масштаба 1 Мпк), то КЛ-протоны с энергией более 10²⁰ эВ рождают пионы; при этом их энергия уменьшается до порогового значения. Поэтому регистрируемый на Земле энергетический спектр КЛ должен обрываться при энергии порядка 10²⁰ эВ. Этот обрыв получил название порога (cutoff) ГЗК (по первым буквам фамилий авторов).

Изучение спектра вблизи и за порогом ГЗК даст информацию об источниках КЛ ультравысоких энергий и о возможных механизмах их генерации. Однако сегодня нет ясности относительно наблюдения порога ГЗК: результаты одних станций по изучению КЛ указывают на его наличие, а результаты других — на его отсутствие [4]. Эта неопределенность связана как с малой статистикой событий (регистрируется в среднем одна частица с энергией выше 10²⁰ эВ на площади детектора 1 км² за год работы), так и с крайней сложностью калибровки детекторов для этих энергий. Поэтому вопрос о расстояниях до источников КЛ ультравысоких энергий остается открытым.

В этой работе мы хотели бы обратить внимание на то, что о расстояниях до источников КЛ можно судить по обнаружению «горбика» в энергетическом спектре КЛ при энергии порядка 10¹⁸ эВ, который должен образовываться из-за рождения электрон-позитронных пар в столкновениях КЛ-протонов с РИ-фотонами. Эта реакция имеет порог при энергии протонов $E_{ee} \sim 10^{18}$ эВ. Поэтому если расстояние от источников КЛ до Земли велико, то протоны потеряют энергию вплоть до порогового значения *E_{ee}*. Это приведет к накоплению в регистрируемом на Земле спектре КЛ частиц с энергией близкой к пороговой, т.е. к образованию горбика в спектре в этой области энергий. Так как его образование в спектре КЛ связано с рождением пар, в последующем тексте этот горбик для конкретности будем называть *p*-горбиком, подчеркивая его происхождение символом *p* от слова pair. Его появление аналогично образованию порога ГЗК. Ниже будет построена зависимость высоты *p*-горбика от расстояний до источников КЛ.

Потери энергии частицами КЛ в процессе рождения пар при столкновениях с РИ-фотонами описы-

^{*}E-mail: vlasov@nfi.kiae.ru

^{**}E-mail: batrub@nfi.kiae.ru

ваются формулой [5]

$$\frac{dE}{dx} = -\frac{\alpha r_e^2 Q^2 (mc^2 T)^2}{\pi^2 \hbar^3 c^3} f(\nu), \qquad (1.1)$$

где $\alpha = e^2/\hbar c \approx 1/137$ — постоянная тонкой структуры, $r_e = e^2/mc^2 \approx 3 \cdot 10^{-13}$ см — классический радиус электрона, е и т — заряд и масса электрона, c — скорость света, T — температура РИ-фотонов, $\nu = (mc^2/2T)Mc^2/E$, Q, E и M — заряд (нормированный на заряд протона), энергия и масса ядра. Функция $f(\nu)$, ввиду сложности выражения для сечения этого процесса, находилась численно; ее график приведен в работе [5]. Эту формулу полезно, на наш взгляд, переписать в виде

$$\frac{dE}{dx} = -\frac{2\varepsilon_a}{r_a} \left(\frac{T}{mc^2}\right)^2 \left(\frac{Q}{\pi}\right)^2 f(\nu), \qquad (1.2)$$

где ε_a и r_a — энергия и радиус атома водорода. Эта запись легко запоминается и позволяет просто оценивать порядок правой части уравнения (1.2), приближенное аналитическое выражение для функции $f(\nu)$ получено в разд. 3. Для его вывода и полноты изложения приведем упрощенный вывод уравнения (1.2).

2. РОЖДЕНИЕ ЭЛЕКТРОН-ПОЗИТРОННЫХ ПАР В СТОЛКНОВЕНИЯХ ЧАСТИЦ КОСМИЧЕСКИХ ЛУЧЕЙ С ФОТОНАМИ РЕЛИКТОВОГО ИЗЛУЧЕНИЯ (ВБЛИЗИ ПОРОГА РОЖДЕНИЯ)

Мы будем использовать две системы координат. В первой — лабораторной системе координат (ЛСК) — Земля неподвижна. Во второй — системе K' — неподвижна частица КЛ (ядро). Физические величины в системе K' и в ЛСК будут обозначаться, как это принято, со штрихом и без него.

Далее считаем, что все частицы — ядро, фотон, электрон и позитрон — движутся в одной плоскости. При этом ядро и фотон летят (в ЛСК) вдоль одной прямой, а образовавшиеся (при столкновении ядра с фотоном) электрон и позитрон имеют одинаковые энергии и движутся под углами θ и $-\theta$ к этой прямой. Выпишем законы сохранения энергии и импульса в системе K':

$$\hbar\omega' = 2mc^2\gamma'_e + (E' - Mc^2), \qquad (2.1)$$

$$\hbar\omega'/c = 2mu'\gamma'_e\cos\theta' + p', \qquad (2.2)$$

где $\hbar\omega'$ — энергия фотона, $\gamma'_e = (1 - u'^2/c^2)^{-1/2}$ — фактор Лоренца для электрона, u' — скорость элект-

рона, E' и p' — энергия и импульс ядра после столкновения с фотоном. Вблизи порога рождения электрон-позитронных пар $\hbar\omega' \approx 2mc^2$, так что $u' \ll c$ и $\gamma'_e \approx 1$. Пренебрежем в выражении (2.1) кинетической энергией ядра — величиной $E' - Mc^2$. Тогда из (2.2) получим $p' = \hbar\omega'/c$, так что это пренебрежение справедливо, так как $p'^2/2M \ll \hbar\omega'$. Запишем преобразование Лоренца для энергии фотона:

$$\varepsilon' = \gamma \varepsilon (1 - V/c),$$

где V — скорость ядра, $\gamma = (1 - V^2/c^2)^{-1/2}$ — его фактор Лоренца в ЛСК, и получим оценки. В ЛСК энергия реликтового фотона $\varepsilon \approx 3 \text{ K} \approx 3 \cdot 10^{-4}$ эВ, а в системе K' вблизи порога $\varepsilon' \approx 2mc^2 = 10^6$ эВ, так что $\varepsilon'/\varepsilon \approx 3 \cdot 10^9 \gg 1$. Следовательно, $\gamma \gg 1$, $V \approx c$ и для рождения пар необходимо, чтобы ядро и фотон летели навстречу друг другу (V < 0). Поэтому

$$\hbar\omega' \approx 2\gamma\hbar\omega, \qquad (2.3)$$

и рождение пар начинается, если энергия ядра $E = \gamma M c^2 = M c^2 (mc^2/\hbar\omega);$ для протона эта пороговая энергия $E_{ee} \sim 10^{18}$ эВ. В системе K' полная энергия ядра равна $M c^2 + p'^2/2M$, а в ЛСК

$$E = \gamma \left(Mc^2 + \frac{p'^2}{2M} - \frac{|V|}{c} p'c \right) \approx \\ \approx \gamma Mc^2 \left(1 - \frac{p'}{Mc} \right), \quad (2.4)$$

что получается из преобразования Лоренца для ядра. В последнем равенстве мы пренебрегли кинетической энергией, отношение которой к третьему слагаемому является малой величиной, равной m/M (учли, что $V \approx c$, $\hbar\omega' \approx 2mc^2$). Из формул (2.4) и (2.3) получаем, что после одного столкновения с фотоном энергия ядра $E = \gamma M c^2$ изменяется на величину

$$dE = -2\gamma E \frac{\hbar\omega}{Mc^2},\tag{2.5}$$

 $dE/E \sim m/M$. За время τ одного столкновения между ядром и фотоном эти частицы, двигаясь навстречу друг другу, проходят расстояния $V\tau$ и $c\tau$, поэтому их общий путь примерно равен $2c\tau$. На этом пути в объеме $2c\tau\sigma$, где σ — сечение рождения пар, находится один фотон: $2c\tau\sigma n = 1$, где n — плотность РИ-фотонов. Поэтому длина пробега ядра за одно столкновение с фотоном равна $dx = V\tau \approx (2n\sigma)^{-1}$. Разделив соотношение (2.5) на это выражение, получим

$$\frac{1}{E}\frac{dE}{dx} = -4\gamma \frac{\hbar\omega}{Mc^2} n\sigma.$$
(2.6)

$$\sigma = \frac{\pi}{12} \alpha r_e^2 Q^2 \left(\frac{\hbar\omega' - 2mc^2}{mc^2}\right)^3 =$$
$$= \frac{2\pi}{3} \alpha r_e^2 Q^2 \left(\frac{\hbar\omega}{mc^2}\gamma - 1\right)^3. \quad (2.7)$$

Введем функцию

$$\mu = \frac{\hbar \omega}{mc^2} \, \gamma \sim \omega E.$$

Тогда выражение (2.6) примет вид

$$\frac{1}{E} \frac{dE}{dx} = -4 \frac{m}{M} Q^2 \mu (\mu - 1)^3 n \sigma_* \approx \\ \approx -4 \frac{m}{M} Q^2 (\mu - 1)^3 n \sigma_*, \quad (2.8)$$

где $\sigma_* = (2\pi/3)\alpha r_e^2 \approx 1.4 \cdot 10^{-27}$ см² и учтено, что $\mu \approx 1$. Уравнение описывает изменение энергии ядра около порога рождения пар.

3. СТОЛКНОВЕНИЯ ЧАСТИЦ КОСМИЧЕСКИХ ЛУЧЕЙ С ФОТОНАМИ РЕЛИКТОВОГО ИЗЛУЧЕНИЯ ВДАЛИ ОТ ПОРОГА РОЖДЕНИЯ ЭЛЕКТРОН-ПОЗИТРОННЫХ ПАР

Обратимся к законам сохранения энергии и импульса, (2.1) и (2.2), и вновь пренебрежем кинетической энергией ядра. Вдали от порога рождения пар $\hbar\omega' \gg 2mc^2$, так что $\gamma'_e \gg 1$, $u'/c \approx 1 - (2\gamma'_e)^{-1}$, а угол θ' мал: $\theta' \sim 2mc^2/\hbar\omega' \ll 1$ [6]. Отметим, что $\gamma'_e \approx \hbar\omega'/2mc^2$ (см. (2.1)), поэтому γ'_e и $1/\theta'$ — величины одного масштаба. Положим $\gamma'_e = 1/\theta'$, из дальнейшего будет ясно (вводится корректирующий множитель B), что это не скажется на конечном результате. С учетом этих замечаний из уравнений (2.1) и (2.2) получаем

$$p' = mc \frac{4mc^2}{\hbar\omega'}.$$
 (3.1)

Из этого видно, что после столкновения с фотоном ядро в системе K' движется с нерелятивистской скоростью. Следовательно, пренебрежение в уравнении (2.1) кинетической энергией ядра оправдано, поскольку $p' \ll mc$, следовательно, $p'^2/M \ll mc^2$. Учитывая (2.3), формулу (3.1) перепишем в виде $p'/mc = 2mc^2/\gamma\hbar\omega$, а далее, по аналогии с выводом формул (2.5) и (2.6), получаем

$$dE = -2mc^2 \frac{mc^2}{\hbar\omega}, \quad \frac{1}{E} \frac{dE}{dx} = -4\frac{m}{M} \frac{n\sigma}{\mu}.$$
 (3.2)

Из (3.2) видно, что при одном столкновении с фотоном ядро теряет энергию порядка 10¹⁵ эВ, что существенно меньше ранее полученного значения порядка 10¹⁸ эВ для порога рождения пар. Следовательно, ядро «подходит» к порогу, теряя относительно небольшие порции энергии в каждом столкновении с РИ-фотоном.

В ультрарелятивистском случае ($\hbar\omega' \gg 2mc^2$) формула для полного сечения рождения пар имеет вид [6]

$$\sigma = \sigma_0 Q^2 \ln \frac{2\hbar\omega'}{mc^2 A} = \sigma_0 Q^2 \ln \frac{4\mu}{A}, \qquad (3.3)$$

где $\sigma_0 = (28/9)\alpha r_e^2$, $A = \exp(109/42) \approx 13.4$; последнее равенство в (3.3) записано с учетом соотношения (2.3) и определения функции μ . Подставляя выражение (3.3) в (3.2), получаем

$$\frac{1}{E}\frac{dE}{dx} = -4\frac{m}{M}Q^2\frac{n\sigma_0}{\mu}\ln\frac{4\mu}{A}.$$
(3.4)

Рассмотрим это уравнение более подробно. Оно получено для случая, когда ядро и фотон в ЛСК летят навстречу друг другу вдоль оси x. При этом все фотоны имеют одинаковую частоту ω . Роль «боковых» столкновений фотонов с ядром в ЛСК учтем, добавив в правую часть выражения (3.4) дополнительный множитель $B \approx 5$ (один фотон летит вдоль оси x, по два фотона летит со сторон y и z, получается пять фотонов). Уравнению (3.4) можно придать вид уравнения (1.2). Сделаем формальные замены $\hbar\omega \rightarrow T$, $n \rightarrow 0.244(T/\hbar c)^3$, где n — плотность фотонов, имеющих планковский спектр [7]. В результате этих замен уравнение (3.4) принимает вид уравнения (1.2), в котором вместо функции $f(\nu)$ стоит функция

$$f_1(\nu) = 30B \ln \frac{2}{\nu A}.$$
 (3.5)

Рассмотрим интервал энергий ядра от 10^{19} эВ до 10^{21} эВ (в ЛСК), соответствующий значениям ν от 10^{-1} до 10^{-3} (при температуре фотонов $T \approx 3 \text{ K} \approx 3 \cdot 10^{-4}$ эВ). Он находится вдали от порога рождения пар, и поэтому для этих энергий применима функция $f_1(\nu)$. Также этот интервал примечателен тем, что для него в работе [5] приведен график функции $f(\nu)$. Функция $f_1(\nu)$ содержит два параметра, B и A (хотя в (3.4) A = 13.4, но при формальном получении выражения (3.5) параметр A следует рассматривать как варьируемую величину). Определим эти параметры так, чтобы при $\nu = 10^{-1}$ и $\nu = 10^{-3}$ функции f_1 и f совпадали. Это дает $B \approx 5$ (как это предполагалось ранее) и $A \approx 17$ (что близко к значению A = 13.4). С этими параметрами

значение f_1 при $\nu = 10^{-2}$ ($E = 10^{20}$ эВ) больше f примерно на тридцать процентов, что и определяет точность приближения $f_1 \kappa f$.

В заключение раздела полезно для этого интервала энергий проделать численные оценки. В этом интервале логарифм, входящий в функцию $f_1(\nu)$, изменяется примерно от 0.1 до 4. Заменив его «средним» значением, равным единице, получим приближенное решение уравнения (1.2):

$$\frac{E_0 - E}{\mathrm{sB}} \approx 3.3 \cdot 10^{-8} \frac{x}{\mathrm{cM}},\tag{3.6}$$

где х — расстояние от источника КЛ до Земли. Радиус нашей Галактики $r_G \approx 5 \cdot 10^{22}$ см, расстояние между соседними галактиками $r_{GG} \sim 10^2 r_G$, расстояние до ближайшего квазара $r_{qu} \sim 10^3 r_{GG}$. Обозначим правую часть уравнения (3.6) через L. Тогда если источник КЛ находится внутри нашей Галактики, то для протона $L \leq 10^{15}$, если в соседней, то $L \sim 10^{17}$, а если вблизи квазара, то $L \sim 10^{20}$. Следовательно, если источник КЛ находится внутри Галактики или в соседних от нее галактиках, то потери энергии протоном на этих расстояниях до Земли невелики, а потому наблюдаемый на Земле спектр КЛ незначительно отличается от спектра в самом источнике КЛ. Это различие будет возрастать с увеличением расстояния от источника до Земли. Так, если источники находятся вблизи квазара, то это приведет к заметному увеличению в спектре числа частиц с энергиями близкими к пороговому значению Е_{ее}.

4. ЗАВИСИМОСТЬ ВЫСОТЫ *р*-ГОРБИКА ОТ РАССТОЯНИЙ ДО ИСТОЧНИКОВ КЛ

Найдем зависимость высоты *p*-горбика от расстояний до источников КЛ. Для этого рассмотрим модель однородной и изотропной Вселенной с плотностью 10^{-29} г/см³ равной критической (что соответствует примерно пяти протонам в кубическом метре) и с нулевой пространственной кривизной, так что пространство является евклидовым. Приведем известные сведения из космологии [8]. Из-за расширения Вселенной расстояние *R* между двумя удаленными объектами увеличивается со временем по закону R(t) = ra(t), где a(t) — масштабный множитель. Для настоящей эпохи $t = t_*$ этот множитель равен единице, $a_* = a(t_*) = 1$, так что величина r — расстояние между объектами в настоящую эпоху. Это расширение приводит к увеличению длины волны фотона, испущенного в прошлом. Как и все расстояния, эта длина волны растет пропорционально величине a(t). В результате фотон испытывает

ЖЭТФ, том **136**, вып. 6 (12), 2009

красное смещение (эффект Доплера), характеризующееся параметром $z = (\lambda_* - \lambda_t)/\lambda_t$, где $\lambda_* - дли-$ на волны фотона в настоящую эпоху, а λ_t — в предшествующую, соответствующую моменту времени t. Для настоящей эпохи z = 0. Запишем z через масштабный множитель:

 $z = \frac{a_* - a(t)}{a(t)},$

$$a(z) = (1+z)^{-1},$$
 (4.1)

при этом учли равенство $a_* = 1$.

так что

Теперь перейдем к вычислению высоты *p*-горбика. Частицы КЛ на своем пути до Земли, взаимодействуя с РИ-фотонами, теряют энергию на рождение электрон-позитронных пар и пионов. Вклад в высоту *p*-горбика частиц КЛ с энергиями выше порога рождения пионов (порядка 10^{20} эВ) мал, так как этих частиц существенно меньше, чем частиц с энергиями выше порога рождения пар (порядка 10^{18} эВ). Так, для дифференциального спектра КЛ по энергиям, имеющего степенной вид с показателем 2.75, это отношение порядка 10^{-3} . По этой причине будем рассматривать лишь протоны КЛ с энергиями меньше порога рождения пионов.

Далее будем следовать работам [9,10]. В момент генерации КЛ, который соответствует красному смещению z, температура фотонов T была больше своего настоящего значения T_* в 1 + z раз [8], так что уравнение (1.2) следует переписать в виде

$$\begin{split} \frac{dE}{dt} &= -\frac{2\varepsilon_a}{r_a/c} \left(\frac{T_*}{mc^2}\right)^2 \left(\frac{Q}{\pi}\right)^2 (1+z)^2 \times \\ &\times f\left(\frac{\nu_*}{1+z}\right), \quad (4.2) \end{split}$$

где переменная ν записана в виде $\nu = \nu_*/(1+z)$, $\nu_* = (mc^2/2T_*)Mc^2/E$ и учтено, что скорость частицы близка к скорости света. В рассматриваемый момент генерации КЛ плотность фотонов также больше своего настоящего значения. Это различие уже учтено в выражении (4.2), так как при переходе от (3.4) к формуле (1.2) плотность фотонов была выражена через температуру ($n \propto T^3$ для фотонов, имеющих планковский спектр).

Частицы также теряют энергию из-за расширения Вселенной. Причина этих потерь — эффект Доплера, который для фотонов описывается выражением [8]

$$\frac{1}{E}\frac{dE}{dt} = -H(t), \qquad (4.3)$$

где $H(t) = a^{-1}da/dt$ — параметр Хаббла, $E = \hbar \omega$, ω — частота фотона. Поскольку ультрарелятивистская частица имеет ту же связь между энергией и импульсом, что и фотон, формула (4.3) применима и для этих частиц, так как эффект Доплера следует из преобразований Лоренца. Общие потери энергии для частицы КЛ описываются суммой правых частей уравнений (4.2) и (4.3). Эти суммарные потери удобно записать в виде

$$\frac{dE'}{d(H_*t)} = -k_*Q^2(1+z)^2 f\left(\frac{\nu_*}{1+z}\right) - \frac{H(t)}{H_*}E',\quad(4.4)$$

где H_* — параметр Хаббла для настоящей эпохи, а для энергии введен масштаб $E_* = Mc^2(mc^2/T_*)$, так что $E = E_*E'$; при этом $\nu_* = 1/2E'$. Постоянная величина k_* равна

$$k_* = \frac{2\varepsilon_a}{Mc^2} \frac{c}{r_a H_*} \left(\frac{T_*}{mc^2}\right)^3 \frac{1}{\pi^2}.$$
 (4.5)

Она образована из атомных и космологических величин. Для протонов $E_* \approx 1.6 \cdot 10^{18}$ эВ, $k_* \approx 1$ при $T_* \approx 3 \text{ K} \approx 3 \cdot 10^{-4}$ эВ и $H_* \approx (4 \cdot 10^{17} \text{ c})^{-1}$.

Дифференцируя соотношение (4.1), получаем

$$\frac{H}{H_*} = -\frac{1}{1+z} \frac{dz}{d(H_*t)} \,. \tag{4.6}$$

Подставляя это выражение в (4.4), получаем

$$\frac{dE'}{dz} = \left[k_*Q^2(1+z)f\left(\frac{\nu_*}{1+z}\right)\right]\frac{H_*}{H(z)} + \frac{1}{1+z}E'.$$
 (4.7)

Рассмотрим две модели Вселенной [11]. В первой модели Вселенная заполнена нерелятивистским веществом с нулевым давлением («пыль»); для нее $H(z) = (1+z)^{3/2}H_*$. При этом Вселенная расширяется с замедлением: $d^2a/dt^2 < 0$, что не согласуется с наблюдениями, показывающими, что в современную эпоху расширение происходит с ускорением.

По этой причине далее будем рассматривать более реалистичную модель ACDM [11] (A — космологическая постоянная, a CDM — cold dark matter). Эта модель является современной стандартной космологической моделью, в которой плоская Вселенная заполнена темной энергией и холодной темной материей. Она учитывает, что в современную эпоху расширение Вселенной определяется в значительной степени темной энергией и в меньшей степени темной материей. При этом темная энергия увеличивает темп расширения Вселенной, а темная материя его уменьшает. Из модели следует, что при больших значениях z Вселенная расширяется с замедлением, а при малых z — с ускорением. Переход от замедления к ускорению происходит при $z \approx 0.85$. При меньших значениях z в уравнении Фридмана приближенно можно не учитывать темную материю, тогда $H(z) = \text{const} = H_*$. При этом темная энергия рассматривается как энергия вакуума, который характеризуется постоянной плотностью энергии $\rho_{vac}c^2$ и давлением $p = -\rho_{vac}c^2$. Таким образом, для этого случая уравнение (4.7) принимает вид

$$\frac{dE'}{dz} = k_* Q^2 (1+z) f\left(\frac{\nu_*}{1+z}\right) + \frac{1}{1+z} E'.$$
(4.8)

Ниже потребуется связь между t и z. Интегрируя выражение (4.6) при $H(z) = H_*$, получаем

$$t = t_* - H_*^{-1} \ln(1+z). \tag{4.9}$$

Наблюдаемая на Земле плотность потока частиц, F'(E) dE, от элемента объема $dV = a^3(z)r^2 dr d\Omega$ (используем сферическую систему координат, в которой Ω — телесный угол) равна

$$F'(E) dE = F(E_0, z) dE_0 \frac{n_{cr}(z) dV}{4\pi r^2} \frac{1}{1+z}, \quad (4.10)$$

где $n_{cr}(z)$ — плотность источников ΚЛ, $F(E_0, z) dE_0$ — поток частиц из источника; источник считается изотропным. Здесь учтено, что в момент вылета частиц из источника расстояние от него до Земли было a(z)r, а в момент их прихода на Землю оно равно *г*. Величины *Е* и *E*₀ — энергии частицы КЛ на Земле и в источнике. Задавая Е и решая уравнение (4.8), находим для данного красного смещения z величину E_0 . Далее будем рассматривать только протоны, для которых Q = 1, а значение константы k_* берется равным единице. Множитель 1 + z в знаменателе выражения (4.10) появляется из-за того, что частицы, вылетевшие из источника с интервалом в одну секунду, приходят на Землю с интервалом 1 + z секунд, что приводит к уменьшению потока. Это увеличение интервала имеет следующее объяснение. Допустим, что из источника КЛ излучается электромагнитная волна с частотой ω_z и вылетают частицы КЛ, «привязанные» к гребням этой волны. Тогда временной интервал между соседними частицами, вылетающими из источника КЛ, равен $(\delta t)_z = 2\pi/\omega_z$. Если частицы ультрарелятивистские, то они не отстают от «своих» гребней и приходят на Землю вместе с ними. Частота ω_* пришедшей волны из-за эффекта Доплера меньше ω_z (красное смещение):

 $\omega_* = \omega_z/(1+z)$ [8]. Поэтому период этой волны и, следовательно, временной интервал $(\delta t)_*$ между соседними частицами, регистрируемыми на Земле, будет больше:

$$(\delta t)_* = (\delta t)_z (1+z).$$

Плотность источников КЛ запишем в виде [10]

$$n_{cr}(z) = n_{cr}(0)(1+z)^{3+q}.$$
 (4.11)

Значение q = 0 отвечает случаю, когда источники КЛ равномерно распределены во Вселенной (как и РИ-фотоны), q = 3 — источники распределены подобно формирующимся звездам, q = 3.6 — подобно источникам космических гамма-всплесков — GRBs (γ -ray bursts). Учитывая, что a(z) dr = c dt (это уравнение движения фотона), и что $dt \propto (1+z)^{-1} dz$ (см. (4.9)), из выражения (4.10) получаем

$$F'(E) \propto \int_{z=0}^{z_{max}} (1+z)^{q-1} F(E_0, z) \frac{dE_0}{dE} dz, \qquad (4.12)$$

где интегрирование ведется по всем источникам КЛ от z = 0 до максимального значения z_{max} . Для вычисления интеграла надо знать спектр частиц в источнике.

По одной из наших гипотез ускорение частиц КЛ происходит в космических токовых плазменных пинчах [12], которые могут образовываться и при рождении GRBs. Для этого импульсного механизма ускорения частиц

$$F(E_0) \propto E_0^{-(1+\sqrt{3})}$$
. (4.13)

В недавней нашей работе [13] был рассмотрен иной, стационарный, механизм ускорения частиц КЛ в космических джетах (плазменных струях), выходящих из черных дыр. Этот механизм, связанный с униполярной индукцией, дает спектр

$$F(\varepsilon_0) \propto \left[(\varepsilon_0^2 + k) \sqrt{\varepsilon_0^2 + k^2} \right]^{-1},$$
 (4.14)

где ε_0 — безразмерная энергия, а положительная константа k < 1; частицы могут ускоряться до бесконечно больших значений энергии.

На рис. 1 приведен спектр КЛ, построенный по формуле (4.12), который будет наблюдаться на Земле, если спектр в источнике имеет степенной вид (4.13) ($z_{max} = 0.5, q = 3$). Если бы частицы на пути к Земле не теряли энергию, то наблюдаемый спектр был бы прямой линией, параллельной оси

Рис.1. Спектр КЛ по энергиям, построенный по формуле (4.12) в предположении их степенного спектра (4.13) в источнике; q = 3, $z_{max} = 0.5$; энергия выражена в электронвольтах

абсцисс. Из-за потерь энергии на спектре образуется *p*-горбик, который для функции lg $\left(E^{1+\sqrt{3}}F'(E)\right)$ выглядит как «склон», высоту которого (т.е. расстояние вдоль оси ординат от максимума кривой до ее минимума) будем обозначать как h_q , где q—параметр, входящий в распределение (4.11); отметим, что h_q — безразмерная величина. Для значений q = 0, 3, 3.6 на рис. 2 приведены зависимости $h_q(z_{max})$. Возможно, используя эти зависимости, удастся оценить расстояние до источников КЛ.

Хотя высота *p*-горбика мала (на рис. 3 из работы [4] он не виден), статистика наблюдений здесь существенно выше, чем в области порога ГЗК (что следует как из самих наблюдений, так и из спектра (4.12)). Так что более детальное изучение спектра в этой области энергий, возможно, позволит выделить *p*-горбик, строя, например, зависимость производной $d \lg \left(E^{1+\sqrt{3}} F'(E) \right) / d \lg E$ от $\lg E$. Значение производной в области *p*-горбика заметно больше, чем за ее пределами, что видно из рис. 1.

Исходя из данных, полученных на японской станции AGASA по изучению КЛ, энергетический спектр частиц КЛ не имеет обрыва в области порога ГЗК (рис. 3). Это означает, что источники этих частиц находятся на расстояниях от Земли существенно меньше 50 Мпк. Поэтому наблюдаемый спектр должен совпадать со спектром частиц в их источнике, так как потери энергии частиц на рождение пионов и пар незначительны на этих расстояниях. Согласно этим данным, поведение спектра в области энергий

Рис.2. Зависимость высоты h_q *p*-горбика, возникающего на спектре КЛ из-за рождения пар, от величины z_{max} для q = 0 (1), 3 (2), 3.6 (3)

Рис. 3. Наблюдаемые спектры КЛ [4]: данные флуоресцентных детекторов HiRes-1 (■), HiRes-2 (●) и установки AGASA (♥); сплошная кривая — ожидаемый спектр с обрывом при пороге ГЗК

от 10¹⁹ эВ до примерно 10²¹ эВ хорошо описывается спадающим степенным спектром с показателем $\beta = 2.75$ [4,10], который близок к нашему «пинчевому» спектру (4.13) с $\beta = 1 + \sqrt{3} \approx 2.73$. Впрочем, в этой области энергий и второй наш спектр — «униполярный» (4.14) — согласуется с наблюдаемыми величинами (рис. 4). При его построении энергия нормировалась на величину $1.6 \cdot 10^{18}$ эВ, а значе-

Рис.4. Спектры КЛ: 1 — спектр, полученный на установке AGASA; 2 и 3 — построенные соответственно по формулам (4.13) и (4.14); энергия выражена в электронвольтах

ние константы k полагалось равным 0.1. Однако при больших энергиях спектр (4.14) должен выходить на асимптотику $F(E) \propto E^{-3}$, так что приведенный на рис. 4 спектр должен стремиться к константе.

5. ЗАКЛЮЧЕНИЕ

В статье дан аналитический вывод приближенной формулы, описывающей потери частицами КЛ энергии (в зависимости от пройденного пути) из-за рождения электрон-позитронных пар в столкновениях с РИ-фотонами. Эта формула для энергий от 10^{19} эВ до 10^{21} эВ хорошо согласуется (с точностью примерно 30%) с численными результатами работы [5].

Реакция рождения электрон-позитронных пар в столкновениях КЛ с РИ-фотонами имеет порог при энергии протонов $E_{ee} \sim 10^{18}$ эВ. Поэтому если расстояние от источников КЛ до Земли велико, то протоны потеряют энергию вплоть до порогового значения E_{ee} . Это должно привести к накоплению в регистрируемом на Земле спектре КЛ частиц с энергией, близкой к пороговой, т.е. к образованию горбика в спектре КЛ в этой области энергий. В статье построена зависимость высоты этого горбика от величины красного смещения, которую предлагается использовать для оценки расстояний до источников КЛ.

Работа выполнена при поддержке гранта Инициативных проектов в области фундаментальных исследований РНЦ «Курчатовский институт» и гранта Президента РФ в рамках Программы поддержки ведущих научных школ РФ (№ НШ-9878.2006.2).

ЛИТЕРАТУРА

- A. A. Penzias and R. W. Wilson, Astrophys. J. 142, 419 (1965).
- 2. K. Greisen, Phys. Rev. Lett. 16, 748 (1966).
- Г. Т. Зацепин, В. А. Кузьмин, Письма в ЖЭТФ 4, 78 (1966).
- 4. Б. А. Хренов, М. И. Панасюк, Природа 2, 17 (2006).
- 5. E. R. Blumenthal, Phys. Rev. D 1, 1596 (1970).
- 6. В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский, *Квантовая электродинамика*, Наука, Москва (1989).

- 7. Л. Д. Ландау, Е. М. Лифшиц, *Статистическая физика*, Наука, Москва (1964).
- 8. Я. Б. Зельдович, И. Д. Новиков, *Строение и эволю*ция Вселенной, Наука, Москва (1975).
- 9. V. S. Berezinsky and S. I. Grigor'eva, Astron. Astrophys. **199**, 1 (1988).
- 10. S. T. Scully and F. W. Stecker, Astropart. Phys. 16, 271 (2002).
- 11. Д. С. Горбунов, В. А. Рубаков, Введение в теорию ранней Вселенной. Теория горячего Большого взрыва, URSS, Москва (2008).
- **12**. В. П. Власов, С. К. Жданов, Б. А. Трубников, Письма в ЖЭТФ **49**, 581 (1989).
- **13**. Б. А. Трубников, В. П. Власов, ЖЭТФ **134**, 902 (2008).