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STRONG SUPPRESSION OF COULOMB CORRECTIONSTO THE e+e� PAIR PRODUCTION CROSS SECTIONIN ULTRARELATIVISTIC NUCLEAR COLLISIONSR. N. Lee *, A. I. Milstein **Budker Institute of Nulear Physis, Siberian Brand of the Russian Aademy of Sienes630090, Novosibirsk, RussiaNovosibirsk State University630090, Novosibirsk, RussiaReeived July 6, 2009The Coulomb orretions to the e+e� pair prodution ross setion in ultrarelativisti nulear ollisions arealulated in the next-to-leading approximation with respet to the parameter L = ln AB, where A;B arethe Lorentz fators of olliding nulei. We �nd onsiderable redution of the Coulomb orretions even for largeAB due to the suppression of the e+e� pair prodution with the total energy of the order of a few eletronmasses in the rest frame of one of the nulei. Our result explains why the deviation from the Born result wasnot observed in the SPS experiment [1, 2℄.PACS: 25.75.Dw, 12.20.-m, 25.20.Lj, 34.90.+qEletron�positron pair prodution in ultrarelativis-ti nulear ollisions have been investigated intensivelyduring almost two deades (see reent reviews [3, 4℄).This proess is important in the problem of beam life-time and luminosity of hadron olliders. It is also aserious bakground for many experiments beause ofits large ross setion. For heavy nulei, the e�et ofhigher-order terms (Coulomb orretions) of the per-turbation theory with respet to the parameters ZA�and ZB� an be very important (ZA and ZB are theharge numbers of the nulei A and B, and � � 1=137is the �ne struture onstant). However, no evideneof the Coulomb orretions has been found in the ex-periments in [1, 2℄. This stimulated onsiderable the-oretial interest in this proess. In a series of theoret-ial works [5�7℄, it was found that the exat-in-ZA;B�ross setion oinides with that obtained in the Bornapproximation in the ultrarelativisti limit. This state-ment was regarded as an explanation of the experi-mental results [1, 2℄. However, this onlusion ontra-dited the result obtained in Ref. [8℄ with the help ofthe Weizsäker�Williams approximation in the leading*E-mail: R.N.Lee�inp.nsk.su**E-mail: A.I.Milstein�inp.nsk.su

logarithmi approximation. This ontradition was re-solved in Ref. [9℄. It was shown that the wrong onlu-sion in Refs. [5�7℄ regarding the absene of Coulomborretions was due to the bad treatment of onditio-nally onvergent integrals. The onsistent approah inRef. [9℄ results in the Coulomb orretions that oin-ide with those in Ref. [8℄. Hene, the absene of theCoulomb orretions in the experiments in [1, 2℄ hasremained unexplained.In this paper, we alulate the Coulomb orretionsto the e+e� pair prodution ross setion in ultrarela-tivisti nulear ollisions in the next-to-leading appro-ximation. We show that the aount of the next-to-lea-ding term leads to a strong suppression of the Coulomborretions, whih gives a natural explanation of the re-sults obtained in the experiments [1, 2℄.Beause the nulear mass is large ompared to theeletron mass, it is possible to treat the nulei assoures of an external �eld and alulate the probabilityPn(b) of n-pair prodution at a �xed impat parame-ter b. It is onvenient to introdue the average numberW (b) of produed pairs and the number-weighted rosssetion �T as6 ÆÝÒÔ, âûï. 6 (12) 1121



R. N. Lee, A. I. Milstein ÆÝÒÔ, òîì 136, âûï. 6 (12), 2009W (b) = 1Xn=1nPn(b);�T = Z d2bW (b) = 1Xn=1n�n; (1)where �n = Z d2b Pn(b)is the n-pair prodution ross setion. The ross setion�T an be represented as�T = �0 + �A + �B + �AB ; (2)where �0 / (ZA�)2(ZB�)2is the Born ross setion, �A and �B are the Coulomborretions with respet to nuleus A and B (on-taining the terms proportional to (ZB�)2(ZA�)2n and(ZB�)2n(ZA�)2, n > 2), and �AB is the Coulomborretion with respet to both nulei (ontaining theterms proportional to (ZB�)n(ZA�)l with n; l > 2).The ross setion �0 oinides with the Born ross se-tion of one-pair prodution, whih was alulated manyyears ago in Refs. [10, 11℄. In the leading logarithmiapproximation, the quantities �A;B / L2 and �AB / Lwere respetively obtained in Refs. [8, 9℄ and Ref. [12℄.The leading logarithmi approximation for W (b)provides the fatorization of Pn(b) [13�16℄, suh thatPn(b) = Wn(b)n! e�W (b): (3)The funtionW (b) was alulated in the Born approxi-mation in Refs. [17�21℄ and with the Coulomb orre-tions taken into aount in Refs. [22�25℄. Using Eq. (3),the ross setion �1 of one pair prodution an be rep-resented as a sum of �T and the unitarity orretion�unit �1 = �T + �unit;�unit = � Z d2bW (b)�1� e�W (b)� : (4)The existene of the unitarity orretion was �rst re-ognized in Ref. [26℄ (see also review [3℄). It was eva-luated numerially in Refs. [20, 27℄. The leading on-tribution to �1 is given by the term �0 in �T , Eq. (2),and is known with high auray [10, 11℄. The terms�A and �B in �T also give important ontributions to�1. In the leading logarithmi approximation, theseterms were derived in Refs. [8, 9℄. The last two on-tributions to �1, �AB and �unit, are rather small (seeRefs. [12, 20℄).

In this paper, we alulate the leading orretionsto �A;B (whih are also the orretions to �1). Weshow that these orretions essentially diminish themagnitude of �A;B even for the parameters of the LHC(A = B � 3000 and ZA = ZB = 82). It is onve-nient to alulate �A in the rest frame of the nuleus A,where the nuleus B has the Lorenz fator  = 2ABat A;B � 1. We note that �A, being proportional to(ZB�)2, an be diretly alulated as the Coulomb or-retions to �1 with respet to the parameter ZA�, andan therefore be represented as�A = 1Z2m d! 1Z(!=)2 dQ2 �dn?(!;Q2)d! dQ2 �?(!;Q2)++ dnk(!;Q2)d! dQ2 �k(!;Q2)� ; (5)wheredn?(!;Q2) = Z2B�� �1� (!=)2Q2 � d!! dQ2Q2 ;dnk(!;Q2) = Z2B�� d!! dQ2Q2 (6)are the numbers of virtual photons �?;k with the ener-gy !, the virtuality �Q2 < 0, and the transverse andlongitudinal polarizations. The quantities �?(!;Q2)and �k(!;Q2) are the Coulomb orretions to the rosssetions of the proesses �?;kA! e+e�A.We disuss the ontributions to �A of di�erent re-gions of the integration with respet to ! and Q2.The leading logarithmi ontribution / L2 omesfrom the integration of �? over the region(I) m� ! � m; (!=)2 � Q2 � m2: (7)The leading orretion / L omes from the followingregions: (II) Q2 � m2; m� ! � m; (8)(III) Q2 � (!=)2 ; m� ! � m; (9)(IV) ! � m; (m=)2 � Q2 � m2: (10)We note that the ross setion �k gives a logarithmi-ally enhaned ontribution only in region II. There-fore, beause we keep the terms proportional to L2 orL, we an write �A as�A = �Aas + Æ�A;�Aas = 1Z2m d! 1Z(!=)2 dQ2 �dn?(!;Q2)d! dQ2 �?(1; Q2) ++ dnk(!;Q2)d!dQ2 �k(1; Q2)� ; (11)1122
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(14)

where  (x) = d ln �(x)dx :These formulas agree with the result in Ref. [29℄ if themissing fator y�y in �k pointed out in Ref. [30℄ is takeninto aount. Substituting Eq. (14) in Eq. (11) andtaking the integrals over ! and Q2, we obtain�Aas = 7(ZB�)2N3� �L2 + 2021L� (15)in the logarithmi auray. We reall thatL = ln(AB) = ln(=2):Result (15) is in agreement with those obtained inRefs. [30, 31℄.We now pass to the ontribution Æ�A, Eq. (12),whih has not been onsidered previously. In Ref. [31℄,it was onjetured that the term Æ�A an be safelyomitted. We show below that this guess is ompletely

wrong. The funtion Æ�?(!;Q2) in the integrand pro-vides the onvergene of the integral over ! in the re-gion ! � m. The logarithmially enhaned ontribu-tion is given by the region (m=)2 � Q2 � m2 of theintegration over Q2. Beause Q2 � m2 in this region,we an substitute Æ�?(!;Q2)! Æ�?(!; 0) in Eq. (12).Then we take the integral over Q2 and obtainÆ�A = 7(ZB�)2N G(ZA�)3� L;G(ZA�) = 2 1Z2m d!! � �? (!; 0)�? (1; 0) � 1� : (16)The quantity �?(!; 0) � �A(!)is the Coulomb orretions to the e+e� pair produtionross setion by a real photon in the Coulomb �eld, and�? (1; 0) = 7�N3 :Taking the sum of Eqs. (15) and (16), we �nally obtain�A in the next-to-leading approximation�A = 7(ZB�)2N3� �L2 +�G(ZA�) + 2021�L� : (17)To alulate the funtion G(ZA�), it is neessaryto know the magnitude of the Coulomb orretions�A(!) in the energy region where the produed e+e�pair is not ultrarelativisti. The formal expression forit, exat in ZA� and !, was derived in Ref. [32℄. Thisexpression has a very ompliated form ausing severedi�ulties in omputations. The di�ulties inrease as! inreases, and the numerial results in Refs. [32, 33℄were obtained only for ! < 5 MeV. In a series of laterpubliations [34�37℄ (see also reviews [38, 39℄), the mag-nitude of �A(!) has been obtained for higher valuesof ! and several ZA. In the high-energy region ! � m,the analysis is greatly simpli�ed. As a result, a rathersimple form of the Coulomb orretions was obtainedin [40, 41℄ in the leading approximation with respetto m=! and in [28℄ in the next-to-leading approxima-tion. In Ref. [42℄, a simple formula that orretly repro-dues the low-energy results and the high-energy limitwas suggested. This �bridging� expression has high a-uray at intermediate energies and di�ers from theexat result for �A(!) only in the region lose to thethreshold ! = 2m. For our purpose, this di�erene isnot important beause the ratio �A(!)=�A(1) anbe negleted in omparison with unity in this region.The funtion G(Z�) is shown in Fig. 1. It an beseen that G(Z�) varies slowly from �6:6 for Z = 11123 6*
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Fig. 1. The dependene of G(Z�) on Z
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