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STRONG SUPPRESSION OF COULOMB CORRECTIONSTO THE e+e� PAIR PRODUCTION CROSS SECTIONIN ULTRARELATIVISTIC NUCLEAR COLLISIONSR. N. Lee *, A. I. Milstein **Budker Institute of Nu
lear Physi
s, Siberian Brand of the Russian A
ademy of S
ien
es630090, Novosibirsk, RussiaNovosibirsk State University630090, Novosibirsk, RussiaRe
eived July 6, 2009The Coulomb 
orre
tions to the e+e� pair produ
tion 
ross se
tion in ultrarelativisti
 nu
lear 
ollisions are
al
ulated in the next-to-leading approximation with respe
t to the parameter L = ln 
A
B, where 
A;B arethe Lorentz fa
tors of 
olliding nu
lei. We �nd 
onsiderable redu
tion of the Coulomb 
orre
tions even for large
A
B due to the suppression of the e+e� pair produ
tion with the total energy of the order of a few ele
tronmasses in the rest frame of one of the nu
lei. Our result explains why the deviation from the Born result wasnot observed in the SPS experiment [1, 2℄.PACS: 25.75.Dw, 12.20.-m, 25.20.Lj, 34.90.+qEle
tron�positron pair produ
tion in ultrarelativis-ti
 nu
lear 
ollisions have been investigated intensivelyduring almost two de
ades (see re
ent reviews [3, 4℄).This pro
ess is important in the problem of beam life-time and luminosity of hadron 
olliders. It is also aserious ba
kground for many experiments be
ause ofits large 
ross se
tion. For heavy nu
lei, the e�e
t ofhigher-order terms (Coulomb 
orre
tions) of the per-turbation theory with respe
t to the parameters ZA�and ZB� 
an be very important (ZA and ZB are the
harge numbers of the nu
lei A and B, and � � 1=137is the �ne stru
ture 
onstant). However, no eviden
eof the Coulomb 
orre
tions has been found in the ex-periments in [1, 2℄. This stimulated 
onsiderable the-oreti
al interest in this pro
ess. In a series of theoret-i
al works [5�7℄, it was found that the exa
t-in-ZA;B�
ross se
tion 
oin
ides with that obtained in the Bornapproximation in the ultrarelativisti
 limit. This state-ment was regarded as an explanation of the experi-mental results [1, 2℄. However, this 
on
lusion 
ontra-di
ted the result obtained in Ref. [8℄ with the help ofthe Weizsä
ker�Williams approximation in the leading*E-mail: R.N.Lee�inp.nsk.su**E-mail: A.I.Milstein�inp.nsk.su

logarithmi
 approximation. This 
ontradi
tion was re-solved in Ref. [9℄. It was shown that the wrong 
on
lu-sion in Refs. [5�7℄ regarding the absen
e of Coulomb
orre
tions was due to the bad treatment of 
onditio-nally 
onvergent integrals. The 
onsistent approa
h inRef. [9℄ results in the Coulomb 
orre
tions that 
oin-
ide with those in Ref. [8℄. Hen
e, the absen
e of theCoulomb 
orre
tions in the experiments in [1, 2℄ hasremained unexplained.In this paper, we 
al
ulate the Coulomb 
orre
tionsto the e+e� pair produ
tion 
ross se
tion in ultrarela-tivisti
 nu
lear 
ollisions in the next-to-leading appro-ximation. We show that the a

ount of the next-to-lea-ding term leads to a strong suppression of the Coulomb
orre
tions, whi
h gives a natural explanation of the re-sults obtained in the experiments [1, 2℄.Be
ause the nu
lear mass is large 
ompared to theele
tron mass, it is possible to treat the nu
lei assour
es of an external �eld and 
al
ulate the probabilityPn(b) of n-pair produ
tion at a �xed impa
t parame-ter b. It is 
onvenient to introdu
e the average numberW (b) of produ
ed pairs and the number-weighted 
rossse
tion �T as6 ÆÝÒÔ, âûï. 6 (12) 1121



R. N. Lee, A. I. Milstein ÆÝÒÔ, òîì 136, âûï. 6 (12), 2009W (b) = 1Xn=1nPn(b);�T = Z d2bW (b) = 1Xn=1n�n; (1)where �n = Z d2b Pn(b)is the n-pair produ
tion 
ross se
tion. The 
ross se
tion�T 
an be represented as�T = �0 + �A + �B + �AB ; (2)where �0 / (ZA�)2(ZB�)2is the Born 
ross se
tion, �A and �B are the Coulomb
orre
tions with respe
t to nu
leus A and B (
on-taining the terms proportional to (ZB�)2(ZA�)2n and(ZB�)2n(ZA�)2, n > 2), and �AB is the Coulomb
orre
tion with respe
t to both nu
lei (
ontaining theterms proportional to (ZB�)n(ZA�)l with n; l > 2).The 
ross se
tion �0 
oin
ides with the Born 
ross se
-tion of one-pair produ
tion, whi
h was 
al
ulated manyyears ago in Refs. [10, 11℄. In the leading logarithmi
approximation, the quantities �A;B / L2 and �AB / Lwere respe
tively obtained in Refs. [8, 9℄ and Ref. [12℄.The leading logarithmi
 approximation for W (b)provides the fa
torization of Pn(b) [13�16℄, su
h thatPn(b) = Wn(b)n! e�W (b): (3)The fun
tionW (b) was 
al
ulated in the Born approxi-mation in Refs. [17�21℄ and with the Coulomb 
orre
-tions taken into a

ount in Refs. [22�25℄. Using Eq. (3),the 
ross se
tion �1 of one pair produ
tion 
an be rep-resented as a sum of �T and the unitarity 
orre
tion�unit �1 = �T + �unit;�unit = � Z d2bW (b)�1� e�W (b)� : (4)The existen
e of the unitarity 
orre
tion was �rst re-
ognized in Ref. [26℄ (see also review [3℄). It was eva-luated numeri
ally in Refs. [20, 27℄. The leading 
on-tribution to �1 is given by the term �0 in �T , Eq. (2),and is known with high a

ura
y [10, 11℄. The terms�A and �B in �T also give important 
ontributions to�1. In the leading logarithmi
 approximation, theseterms were derived in Refs. [8, 9℄. The last two 
on-tributions to �1, �AB and �unit, are rather small (seeRefs. [12, 20℄).

In this paper, we 
al
ulate the leading 
orre
tionsto �A;B (whi
h are also the 
orre
tions to �1). Weshow that these 
orre
tions essentially diminish themagnitude of �A;B even for the parameters of the LHC(
A = 
B � 3000 and ZA = ZB = 82). It is 
onve-nient to 
al
ulate �A in the rest frame of the nu
leus A,where the nu
leus B has the Lorenz fa
tor 
 = 2
A
Bat 
A;B � 1. We note that �A, being proportional to(ZB�)2, 
an be dire
tly 
al
ulated as the Coulomb 
or-re
tions to �1 with respe
t to the parameter ZA�, and
an therefore be represented as�A = 1Z2m d! 1Z(!=
)2 dQ2 �dn?(!;Q2)d! dQ2 �?(!;Q2)++ dnk(!;Q2)d! dQ2 �k(!;Q2)� ; (5)wheredn?(!;Q2) = Z2B�� �1� (!=
)2Q2 � d!! dQ2Q2 ;dnk(!;Q2) = Z2B�� d!! dQ2Q2 (6)are the numbers of virtual photons 
�?;k with the ener-gy !, the virtuality �Q2 < 0, and the transverse andlongitudinal polarizations. The quantities �?(!;Q2)and �k(!;Q2) are the Coulomb 
orre
tions to the 
rossse
tions of the pro
esses 
�?;kA! e+e�A.We dis
uss the 
ontributions to �A of di�erent re-gions of the integration with respe
t to ! and Q2.The leading logarithmi
 
ontribution / L2 
omesfrom the integration of �? over the region(I) m� ! � m
; (!=
)2 � Q2 � m2: (7)The leading 
orre
tion / L 
omes from the followingregions: (II) Q2 � m2; m� ! � 
m; (8)(III) Q2 � (!=
)2 ; m� ! � 
m; (9)(IV) ! � m; (m=
)2 � Q2 � m2: (10)We note that the 
ross se
tion �k gives a logarithmi-
ally enhan
ed 
ontribution only in region II. There-fore, be
ause we keep the terms proportional to L2 orL, we 
an write �A as�A = �Aas + Æ�A;�Aas = 1Z2m d! 1Z(!=
)2 dQ2 �dn?(!;Q2)d! dQ2 �?(1; Q2) ++ dnk(!;Q2)d!dQ2 �k(1; Q2)� ; (11)1122
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orre
tions : : :Æ�A = 1Z2m d! 1Z(!=
)2 dQ2 dn?(!;Q2)d! dQ2 Æ�?(!;Q2);Æ�?(!;Q2) = �?(!;Q2)� �?(1; Q2): (12)The quantities �?;k(1; Q2) 
an be 
al
ulated in thesemi
lassi
al approximation. Following the method de-s
ribed in detail in Ref. [28℄, we obtain�?;k(1; Q2) = �! Re Z d" Sp Z dr1dr2e�ik�r �� h�2e � p2 + k̂ê�D�i h�2e� � p1 � k̂ê��D+i ;D� = D(r2; r1j"); D+ = D(r1; r2j"� !); (13)where D(r2; r1j") is the semi
lassi
al Green's fun
tionof the squared Dira
 equation, e = (0; 1; 0; 0) for �?and e = (0; 0; 0; Q=!) for �k in the frame where k is di-re
ted along the z axis. Using the expli
it expressionsfor the Green's fun
tions in Ref. [28℄, we obtain these
ross se
tions as �?(1; Q2) == �N 1Z0 dy 1 + 2 (1� 2y�y) (1 + y�yQ2=m2)(1 + y�yQ2=m2)2 ;�k(1; Q2) = 4�N 1Z0 dy y2�y2Q2=m2(1 + y�yQ2=m2)2 ;N = �4(ZA�)23m2 Re [ (1 + iZA�)�  (1)℄ ;�y = 1� y;
(14)

where  (x) = d ln �(x)dx :These formulas agree with the result in Ref. [29℄ if themissing fa
tor y�y in �k pointed out in Ref. [30℄ is takeninto a

ount. Substituting Eq. (14) in Eq. (11) andtaking the integrals over ! and Q2, we obtain�Aas = 7(ZB�)2N3� �L2 + 2021L� (15)in the logarithmi
 a

ura
y. We re
all thatL = ln(
A
B) = ln(
=2):Result (15) is in agreement with those obtained inRefs. [30, 31℄.We now pass to the 
ontribution Æ�A, Eq. (12),whi
h has not been 
onsidered previously. In Ref. [31℄,it was 
onje
tured that the term Æ�A 
an be safelyomitted. We show below that this guess is 
ompletely

wrong. The fun
tion Æ�?(!;Q2) in the integrand pro-vides the 
onvergen
e of the integral over ! in the re-gion ! � m. The logarithmi
ally enhan
ed 
ontribu-tion is given by the region (m=
)2 � Q2 � m2 of theintegration over Q2. Be
ause Q2 � m2 in this region,we 
an substitute Æ�?(!;Q2)! Æ�?(!; 0) in Eq. (12).Then we take the integral over Q2 and obtainÆ�A = 7(ZB�)2N G(ZA�)3� L;G(ZA�) = 2 1Z2m d!! � �? (!; 0)�? (1; 0) � 1� : (16)The quantity �?(!; 0) � �
A(!)is the Coulomb 
orre
tions to the e+e� pair produ
tion
ross se
tion by a real photon in the Coulomb �eld, and�? (1; 0) = 7�N3 :Taking the sum of Eqs. (15) and (16), we �nally obtain�A in the next-to-leading approximation�A = 7(ZB�)2N3� �L2 +�G(ZA�) + 2021�L� : (17)To 
al
ulate the fun
tion G(ZA�), it is ne
essaryto know the magnitude of the Coulomb 
orre
tions�
A(!) in the energy region where the produ
ed e+e�pair is not ultrarelativisti
. The formal expression forit, exa
t in ZA� and !, was derived in Ref. [32℄. Thisexpression has a very 
ompli
ated form 
ausing severedi�
ulties in 
omputations. The di�
ulties in
rease as! in
reases, and the numeri
al results in Refs. [32, 33℄were obtained only for ! < 5 MeV. In a series of laterpubli
ations [34�37℄ (see also reviews [38, 39℄), the mag-nitude of �
A(!) has been obtained for higher valuesof ! and several ZA. In the high-energy region ! � m,the analysis is greatly simpli�ed. As a result, a rathersimple form of the Coulomb 
orre
tions was obtainedin [40, 41℄ in the leading approximation with respe
tto m=! and in [28℄ in the next-to-leading approxima-tion. In Ref. [42℄, a simple formula that 
orre
tly repro-du
es the low-energy results and the high-energy limitwas suggested. This �bridging� expression has high a
-
ura
y at intermediate energies and di�ers from theexa
t result for �
A(!) only in the region 
lose to thethreshold ! = 2m. For our purpose, this di�eren
e isnot important be
ause the ratio �
A(!)=�
A(1) 
anbe negle
ted in 
omparison with unity in this region.The fun
tion G(Z�) is shown in Fig. 1. It 
an beseen that G(Z�) varies slowly from �6:6 for Z = 11123 6*
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Fig. 1. The dependen
e of G(Z�) on Z
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γFig. 2. The ratio �A=�ALA (solid 
urve) as a fun
tionof 
 for ZA = 82. Here, �ALA = 7(ZB�)2NL2=3� isthe Coulomb 
orre
tions 
al
ulated in the leading lo-garithmi
 approximation. The dashed 
urve shows theratio �Aas=�ALAto �6:14 for Z = 100, being large for all interestingvalues of Z. A large value of G leads to a big di�er-en
e between �A in Eq. (17) and its leading logarithmi
approximation �ALA = 7(ZB�)2NL23�even for very large 
. This statement is illustrated inFig. 2, where the ratio �A=�ALA is shown as a fun
tionof 
 (solid 
urve). If we omit the 
ontribution Æ�A anduse �Aas in Eq. (15) as an approximation to �A, then the
ontribution of the term linear in L be
omes mu
h lessimportant (see the dashed 
urve in Fig. 2). We notethat for the Pb�Pb 
ollisions at the LHC, 
 � 1:8 � 107and �A=�ALA � 0:66. For Au�Au 
ollisions at RHIC,

1000 104 105 106 107

γ

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0

0.05

σA/σ0

Fig. 3. The ratio �A=�0 (solid 
urve) as a fun
tionof 
 for ZA = 82. The dashed 
urve shows the ratio�ALA=�0
 � 2:3 � 104 and �A=�ALA � 0:42. In the experimentsat SPS [1, 2℄, the Lorentz fa
tor was 
 � 200. Natural-ly, we 
annot use result (17) obtained in the logarith-mi
 approximation in the region 
 . 500, where thelogarithmi
 
orre
tion to �A be
omes larger than theleading term �ALA. However, we 
an 
laim that due tothe strong 
ompensation between the leading term andthe 
orre
tion, the Coulomb 
orre
tions �A are mu
hsmaller than �ALA for 
 . 500. Therefore, this naturallyexplains why there was no eviden
e of the Coulomb 
or-re
tions in the experiments [1, 2℄.We now dis
uss the importan
e of the Coulomb 
or-re
tions �A in 
omparison with the Born 
ross se
-tion �0. The ratio �A=�0 is shown in Fig. 3. Inthe next-to-leading approximation for �A, this ratio(solid 
urve) is small (. 5%), while the same ratioobtained with �A approximated by �ALA rea
hes 20%at 
 � 1000.In Ref. [43℄, the Coulomb 
orre
tions were 
al-
ulated using the light-front approa
h. The author
laimed that the results in [43℄ in
lude all next-to-lea-ding terms (/ L). However, the region where the e+e�pair has the energy of a few ele
tron masses evidently
annot be 
orre
tly des
ribed by the light-front ap-proa
h (see, e.g., the 
ondition after Eq. (3) in Ref. [5℄).Be
ause our derivation shows that just this region givesthe largest 
ontribution to the next-to-leading term,the statement in [43℄ is in
orre
t.To summarize, we have 
al
ulated the Coulomb
orre
tions �A to the e+e� pair produ
tion in thenext-to-leading logarithmi
 approximation. After thea

ount of the next-to-leading term, the magnitude of�A be
omes small in 
omparison with the Born 
ross1124
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tions : : :se
tion, in 
ontrast to the leading term �ALA. Thelarge di�eren
e between our result and the previouslysuggested one has a simple explanation. The previ-ous result was based on the use of the high-energyasymptoti
 form of the Coulomb 
orre
tions to thephotoprodu
tion 
ross se
tion instead of the exa
tCoulomb 
orre
tions. But the exa
t Coulomb 
or-re
tions are strongly suppressed in the rather wideregion 2m < ! . 20m. We note that our results,
ombined with �AB in [12℄, 
omplete the 
al
ulationof the linear-in-L terms in the number-weighted 
rossse
tion �T .This work was supported in part by the RFBR(grants �� 09-02-00024 and 08-02-91969).REFERENCES1. C. R. Vane, S. Datz, P. F. Dittner, H. F. Krause,R. S
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