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The Coulomb corrections to the ete™ pair production cross section in ultrarelativistic nuclear collisions are
calculated in the next-to-leading approximation with respect to the parameter L = Invy4yg, where y4 B are
the Lorentz factors of colliding nuclei. We find considerable reduction of the Coulomb corrections even for large
478 due to the suppression of the ee™ pair production with the total energy of the order of a few electron
masses in the rest frame of one of the nuclei. Our result explains why the deviation from the Born result was

not observed in the SPS experiment [1, 2].
PACS: 25.75.Dw, 12.20.-m, 25.20.Lj, 34.90.+q

Electron—positron pair production in ultrarelativis-
tic nuclear collisions have been investigated intensively
during almost two decades (see recent reviews [3, 4]).
This process is important in the problem of beam life-
time and luminosity of hadron colliders. It is also a
serious background for many experiments because of
its large cross section. For heavy nuclei, the effect of
higher-order terms (Coulomb corrections) of the per-
turbation theory with respect to the parameters Z a
and Zpa can be very important (Z4 and Zp are the
charge numbers of the nuclei A and B, and o = 1/137
is the fine structure constant). However, no evidence
of the Coulomb corrections has been found in the ex-
periments in [1, 2]. This stimulated considerable the-
oretical interest in this process. In a series of theoret-
ical works [5-T7], it was found that the exact-in-Z4 pa
cross section coincides with that obtained in the Born
approximation in the ultrarelativistic limit. This state-
ment was regarded as an explanation of the experi-
mental results [1, 2]. However, this conclusion contra-
dicted the result obtained in Ref. [8] with the help of
the Weizsédcker—Williams approximation in the leading
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logarithmic approximation. This contradiction was re-
solved in Ref. [9]. It was shown that the wrong conclu-
sion in Refs. [5-7] regarding the absence of Coulomb
corrections was due to the bad treatment of conditio-
nally convergent integrals. The consistent approach in
Ref. [9] results in the Coulomb corrections that coin-
cide with those in Ref. [8]. Hence, the absence of the
Coulomb corrections in the experiments in [1, 2] has
remained unexplained.

In this paper, we calculate the Coulomb corrections
to the eTe™ pair production cross section in ultrarela-
tivistic nuclear collisions in the next-to-leading appro-
ximation. We show that the account of the next-to-lea-
ding term leads to a strong suppression of the Coulomb
corrections, which gives a natural explanation of the re-
sults obtained in the experiments [1, 2].

Because the nuclear mass is large compared to the
electron mass, it is possible to treat the nuclei as
sources of an external field and calculate the probability
P, (b) of n-pair production at a fixed impact parame-
ter b. It is convenient to introduce the average number
W (b) of produced pairs and the number-weighted cross
section o as
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A (1)
or = /d%W(b) =Y no,

where

o= /dePn(b)

is the n-pair production cross section. The cross section
o can be represented as

or =0+ 04 + 08B + 018, (2)

where
0% x (Zpr0)?(Zpa)?

is the Born cross section, 0 and ¢ are the Coulomb
corrections with respect to nucleus A and B (con-
taining the terms proportional to (Zga)?(Zaa)?"™ and
(Zpa)?"(Zaa)?, n > 2), and 048 is the Coulomb
correction with respect to both nuclei (containing the
terms proportional to (Zpa)”(Zaa)! with n,l > 2).
The cross section 0¥ coincides with the Born cross sec-
tion of one-pair production, which was calculated many
years ago in Refs. [10, 11]. In the leading logarithmic
approximation, the quantities 04# o L? and 048 « L
were respectively obtained in Refs. [8, 9] and Ref. [12].
The leading logarithmic approximation for W (b)
provides the factorization of P, (b) [13-16], such that

wn(b) Wb

Pu(b) = n!

(3)
The function W (b) was calculated in the Born approxi-
mation in Refs. [17-21] and with the Coulomb correc-
tions taken into account in Refs. [22-25]. Using Eq. (3),
the cross section oy of one pair production can be rep-
resented as a sum of op and the unitarity correction

Ounit

01 = 0T + Ounit,

Tunmit = —/d2bW(b) (1 _e

The existence of the unitarity correction was first re-
cognized in Ref. [26] (see also review [3]). Tt was eva-
luated numerically in Refs. [20, 27]. The leading con-
tribution to oy is given by the term ¢° in o7, Eq. (2),
and is known with high accuracy [10, 11]. The terms
o4 and ¢ in o7 also give important contributions to
o1. In the leading logarithmic approximation, these
terms were derived in Refs. [8, 9]. The last two con-
tributions to oy, a8 and Ounit, are rather small (see
Refs. [12, 20]).

fW(b)) . (4)

In this paper, we calculate the leading corrections
to 0P (which are also the corrections to o). We
show that these corrections essentially diminish the
magnitude of 048 even for the parameters of the LHC
(y4 = v ~ 3000 and Z4 = Zg = 82). It is conve-
nient to calculate o in the rest frame of the nucleus A,
where the nucleus B has the Lorenz factor v = 2v4vp
at 74,8 > 1. We note that o4, being proportional to
(Zpa)?, can be directly calculated as the Coulomb cor-
rections to o; with respect to the parameter Z a, and
can therefore be represented as

= [ [ a0 (B e
Im ()72
o) (o
G wan].
where
2 2 2
0,7 = 22 (1 - L) 0 4G
©
Z3a dw dQ*
dnH( Q2) ia :)32

are the numbers of virtual photons 'yL” with the ener-
gy w, the virtuality —Q? < 0, and the transverse and
longitudinal polarizations. The quantities o (w, Q?)
and o (w, Q?) are the Coulomb corrections to the cross
sections of the processes vj_’”A —ete A

We discuss the contributions to ¢# of different re-
gions of the integration with respect to w and Q2.

The leading logarithmic contribution oc L? comes
from the integration of o over the region

M m<w<my, WH)?><KQ<m? (1)
The leading correction o< L comes from the following
regions:
() Q*~m? m<w<ym, (8)
() Q@ ~ (w/7)*, m<w<ym, (9)
(V) w~m, (m/y)><Q*<m? (10)
We note that the cross section o) gives a logarithmi-

cally enhanced contribution only in region II. There-

fore, because we keep the terms proportional to L? or

L, we can write o as

ot =0l + 607,

o0 o0 9
m (w))?
N dnj(w, Q)

dd0? o)(0,Q*)|, (11)
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SoA — /oodw /OO 10? dny (w,Q?) 51 (0. 0%) W‘l("iong.hThe function 60;_ (}L;J, Q2) in ‘;he integ?an(}i1 pro-
dw dQ? ’ ’ (12) vides the convergence of the integral over w in the re-

2m - (w/v)?

5@_((.0,@2) = cu_(w

7Q2) - CU_(OO, Q2)

The quantities o (oo, Q?) can be calculated in the
semiclassical approximation. Following the method de-
scribed in detail in Ref. [28], we obtain

2 = gRe/ds Sp/drldme’“"” X
X [<2e po + icé) D,] [(ze* pL— ke) D+] . (13)

D_ZD(I‘Q,I‘1|6), D+=D(I‘1,I‘2|€—W),

aL”(oo Q

where D(ry,r;le) is the semiclassical Green’s function
of the squared Dirac equation, e = (0,1,0,0) for o
and e = (0,0,0,Q/w) for o in the frame where k is di-
rected along the z axis. Using the explicit expressions
for the Green’s functions in Ref. [28], we obtain these
cross sections as

UL(Oov Q2) =

1
_ 1+ 2(1—2yy) (14 yyQ?/m?)
- aN/d (1 + ygQ%/m?)? ’

0

a)(o0 = 4aN/

4(ZAO/,)

_YrQ*/m® (14)
(1 + (1+yyQ?/m2)?

N=-—s Re [W(1+iZaa) — (1)),
g=1-y,
where dInT(z)
bla) =

These formulas agree with the result in Ref. [29] if the
missing factor yy in o pointed out in Ref. [30] is taken

into account. Substituting Eq. (14) in Eq. (11) and
taking the integrals over w and Q2, we obtain
Zpa)’N 2
oA = [(Zpa)’N l;,:) {LZ OL] (15)

in the logarithmic accuracy. We recall that

— In(7/2).

Result (15) is in agreement with those obtained in
Refs. [30, 31].

We now pass to the contribution do?, Eq. (12),
which has not been considered previously. In Ref. [31],
it was conjectured that the term do” can be safely
omitted. We show below that this guess is completely

L =1In(yavB)

gion w ~ m. The logarithmically enhanced contribu-
tion is given by the region (m/v)? < Q% < m? of the
integration over Q?. Because Q? <« m? in this region,
we can substitute éo ) (w, Q%) = do 1 (w,0) in Eq. (12).
Then we take the integral over 2 and obtain

od — 7(Zpa)’N G(ZAoz)L
3 ’
(16)
dw [ o) (w,0)
otz =2 [ £ [2125 1]

2m

The quantity
01 (w,0) =0ya(w)

is the Coulomb corrections to the ete™ pair production
cross section by a real photon in the Coulomb field, and

TaN
o1 (00,0) = i
3
Taking the sum of Egs. (15) and (16), we finally obtain

o in the next-to-leading approximation
O'A _ 7(ZBO()2N
3T

{LQ + (G(ZAa) + %) L] . (17)

To calculate the function G(Z4«), it is necessary
to know the magnitude of the Coulomb corrections
0,4 (w) in the energy region where the produced ete™
pair is not ultrarelativistic. The formal expression for
it, exact in Z4 and w, was derived in Ref. [32]. This
expression has a very complicated form causing severe
difficulties in computations. The difficulties increase as
w increases, and the numerical results in Refs. [32, 33]
were obtained only for w < 5 MeV. In a series of later
publications [34-37] (see also reviews [38, 39]), the mag-
nitude of 0,4 (w) has been obtained for higher values
of w and several Z4. In the high-energy region w > m,
the analysis is greatly simplified. As a result, a rather
simple form of the Coulomb corrections was obtained
in [40, 41] in the leading approximation with respect
to m/w and in [28] in the next-to-leading approxima-
tion. In Ref. [42], a simple formula that correctly repro-
duces the low-energy results and the high-energy limit
was suggested. This “bridging” expression has high ac-
curacy at intermediate energies and differs from the
exact result for o, 4(w) only in the region close to the
threshold w = 2m. For our purpose, this difference is
not important because the ratio o4 (w)/o,4(00) can
be neglected in comparison with unity in this region.

The function G(Za) is shown in Fig. 1. It can be
seen that G(Za) varies slowly from —6.6 for Z =
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Fig.2. The ratio o /o7, (solid curve) as a function

of v for Z4 = 82. Here, 074 = 7(Zga)’NL?/3 is

the Coulomb corrections calculated in the leading lo-

garithmic approximation. The dashed curve shows the
ratio ol /o s

to —6.14 for Z = 100, being large for all interesting
values of Z. A large value of GG leads to a big differ-
ence between o in Eq. (17) and its leading logarithmic
approximation

A 7(Zpa)?NL*

OrLa = 3
even for very large 4. This statement, is illustrated in
Fig. 2, where the ratio JA/afA is shown as a function
of 7 (solid curve). If we omit the contribution do” and
use ot in Eq. (15) as an approximation to o, then the
contribution of the term linear in L becomes much less
important (see the dashed curve in Fig. 2). We note
that for the Pb—Pb collisions at the LHC, v ~ 1.8 - 107
and 04 /o', ~ 0.66. For Au-Au collisions at RHIC,

o /a®

0.05 F T T T T L—
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-0251 ]
—0.30 |, . . . . -
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v

Fig.3. The ratio 0 /0® (solid curve) as a function
of v for Z4 = 82. The dashed curve shows the ratio
UfA/ff0

v~ 2.3-10* and 04 /0f, ~ 0.42. In the experiments
at SPS [1, 2], the Lorentz factor was v &~ 200. Natural-
ly, we cannot use result (17) obtained in the logarith-
mic approximation in the region v < 500, where the
logarithmic correction to o becomes larger than the
leading term o4 ,. However, we can claim that due to
the strong compensation between the leading term and
the correction, the Coulomb corrections ¢ are much
smaller than o', for v < 500. Therefore, this naturally
explains why there was no evidence of the Coulomb cor-
rections in the experiments [1, 2].

We now discuss the importance of the Coulomb cor-
A in comparison with the Born cross sec-
The ratio 04/0° is shown in Fig. 3. In
the next-to-leading approximation for o4, this ratio
(solid curve) is small (< 5%), while the same ratio
obtained with o4 approximated by af 4 reaches 20 %
at v ~ 1000.

In Ref. [43], the Coulomb corrections were cal-
culated using the light-front approach. The author
claimed that the results in [43] include all next-to-lea-
ding terms (o< L). However, the region where the e*e™
pair has the energy of a few electron masses evidently
cannot be correctly described by the light-front ap-
proach (see, e.g., the condition after Eq. (3) in Ref. [5]).
Because our derivation shows that just this region gives
the largest contribution to the next-to-leading term,
the statement in [43] is incorrect.

rections o

tion oV,

To summarize, we have calculated the Coulomb
corrections 04 to the ete pair production in the
next-to-leading logarithmic approximation. After the
account of the next-to-leading term, the magnitude of
o4 becomes small in comparison with the Born cross
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section, in contrast to the leading term of',. The

large difference between our result and the previously
suggested one has a simple explanation. The previ-
ous result was based on the use of the high-energy
asymptotic form of the Coulomb corrections to the
photoproduction cross section instead of the exact
Coulomb corrections. But the exact Coulomb cor-
rections are strongly suppressed in the rather wide
region 2m < w < 20m. We note that our results,
combined with ¢4 in [12], complete the calculation
of the linear-in-L terms in the number-weighted cross
section or.

This work was supported in part by the RFBR
(grants NeNe 09-02-00024 and 08-02-91969).
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