ПОИСК ПРОЦЕССА $e^+e^- o K^+K^-\pi^0$ В ЭКСПЕРИМЕНТАХ СО СФЕРИЧЕСКИМ НЕЙТРАЛЬНЫМ ДЕТЕКТОРОМ НА ВЭПП-2М

М. Н. Ачасов^{а,b}, К. И. Белобородов^{а,b}, А. В. Бердюгин^{а,b}, А. Г. Богданчиков^а, Д. А. Букин^а, А. В. Васильев^{а,b}, В. Б. Голубев^{а,b}, Т. В. Димова^{а,b}, В. П. Дружинин^{а,b}, И. А. Кооп^{а,b}, А. А. Король^{а,b}, С. В. Кошуба^а, Е. В. Пахтусова^{a*}, С. И. Середняков^{а,b}, З. К. Силагадзе^{а,b}, А. Н. Скринский^а, Ю. М. Шатунов^а

^а Институт ядерной физики им. Г. И. Будкера Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

> ^b Новосибирский государственный университет 630090, Новосибирск, Россия

Поступила в редакцию 28 июля 2009 г.

В эксперименте со сферическим нейтральным детектором на e^+e^- -коллайдере ВЭПП-2М проводился поиск процесса $e^+e^- \to K^+K^-\pi^0$ при энергии до 1.38 ГэВ. Установлены верхние пределы сечений процессов $\sigma(e^+e^- \to \phi\pi \to K^+K^-\pi^0) < 0.023$ нб и $\sigma(e^+e^- \to KK^*(892) \to K^+K^-\pi^0) < 0.059$ нб на 95 % уровне достоверности.

1. ВВЕДЕНИЕ

Одним из источников новых данных по физике мезонов являются процессы $e^+e^- \rightarrow hadrons$. Среди них представляет интерес рождение пары странных адронов в конечном состоянии, в том числе в реакциях $e^+e^- \rightarrow K\bar{K}\pi$, являющихся объектом исследования в течение многих лет [1-6]. Эти процессы вносят существенный вклад в полное сечение $e^+e^- \rightarrow hadrons$ и, кроме того, позволяют изучать содержащие странные кварки промежуточные состояния, информация о которых весьма ограничена. Наиболее точными являются измерения сечения реакций $e^+e^- \rightarrow K^+K^-\pi^0$ и $e^+e^- \to K_S K^{\pm}\pi^{\mp}, K_S \to \pi^+\pi^-$ в экспериментах на детекторе BaBaR (SLAC) [6], выполненных в методике ISR (Initial State Radiation — излучение фотонов начальными частицами).

В настоящей работе описывается эксперимент на e^+e^- -коллайдере ВЭПП-2М со сферическим нейтральным детектором (СНД) по поиску процесса $e^+e^- \rightarrow K^+K^-\pi^0$ в диапазоне энергии в системе центра масс $E_{c.m.}$ от 1.2 до 1.38 ГэВ — максимальной энергии коллайдера. Интегральная светимость составила 4.3 пб⁻¹.

2. ДЕТЕКТОР СНД И ЭКСПЕРИМЕНТ

Эксперименты с СНД [7] проводились на e^+e^- -коллайдере ВЭПП-2М [8] с 1995 по 2000 гг. в диапазоне энергии $E_{c.m.}$ от 0.36 до 1.38 ГэВ, где $E_{c.m.} = 2E_b$, $E_b -$ энергия пучков. Главной частью СНД является трехслойный сцинтилляционный калориметр, состоящий из 1632 счетчиков с кристаллами NaI(Tl). Энергетическое и угловое разрешение калориметра зависит от энергии фотонов следующим образом:

$$\frac{\sigma_E \ [\%]}{E} = \frac{4.2 \ \%}{\sqrt[4]{E \ [\Gamma \ni B]}},$$
$$\sigma_{\varphi,\theta} = \frac{0.82^{\circ}}{\sqrt{E \ [\Gamma \ni B]}} \oplus 0.63^{\circ}.$$

Трековая система состояла из двух цилиндрических дрейфовых камер («длинной» и «короткой») по пять слоев каждая. Угловое разрешение трековой системы равно 0.5° и 2° для азимутального и полярного углов, соответственно. В систему антисовпаде-

^{*}E-mail: lenapakh@sndxt1.inp.nsk.su

ний входили два слоя стримерных трубок и сцинтилляционных счетчиков. Телесный угол детектора составлял 90 % от 4π .

Идентификация заряженных частиц в СНД осуществлялась по ионизационным потерям частиц в трековой системе и по энерговыделению в слоях калориметра NaI(Tl). Энергия частиц определялась с помощью кинематической реконструкции событий.

Моделирование процесса $e^+e^- \rightarrow K^+K^-\pi^0$ проводилось с различным распределением частиц в конечном состоянии: по фазовому пространству, в предположении промежуточных $KK^*(892)$ - и $\phi\pi$ -состояний.

3. ОТБОР СОБЫТИЙ

Для выделения событий процесса

$$e^+e^- \to K^+K^-\pi^0 \tag{1}$$

требовалось наличие в событии двух заряженных частиц и от двух до четырех зарегистрированных в калориметре фотонов. Расстояние r от трека заряженной частицы до оси пучков не должно превышать 0.3 см, а координата z вдоль оси пучков ближайшей к пучку точки трека ограничена условием $|z| \leq 10$ см.

Основными источниками фона являются процессы

$$e^+e^- \to \pi^+\pi^-\pi^0, \tag{2}$$

$$e^+e^- \to \pi^+\pi^-\pi^0\pi^0,$$
 (3)

$$e^+e^- \to \pi^+\pi^-\pi^0\pi^0\pi^0.$$
 (4)

Дополнительный фон дают события процесса $e^+e^- \rightarrow e^+e^-\gamma$ с наложением фотонов от взаимодействия пучков с атомами остаточного газа в вакуумной камере. Для подавления этого фона требовалось, чтобы энерговыделение заряженных частиц в калориметре не превышало 0.7 Ес.т. Значения полярных углов θ_i заряженных частиц должны были находиться в диапазоне $36^\circ \leq \theta_i \leq 144^\circ$. Для событий с числом фотонов 2 и 3 угол $\Delta \varphi$ отклонения от коллинеарности в плоскости, перпендикулярной пучку, должен был удовлетворять условию $10^\circ \leq |\Delta \varphi| \leq 90^\circ$. Верхний предел на $|\Delta \varphi|$ подавляет фон от процессов (2), (3), (4). Для этой же цели служит ограничение $|\Delta \varphi| \leq 100^\circ$ для событий с четырьмя зарегистрированными фотонами.

Подавление фона от взаимодействия пучков с атомами остаточного газа в вакуумной камере обеспечивалось условием, ограничивающим число сработавших в «длинной» дрейфовой камере проволочек ($N_{wire} < 12$), и требованием, чтобы расстояние $|z_1 - z_2|$ не превышало 2 см. При этом фон снижается почти в 2 раза при 25 % потере в эффективности искомого процесса.

Для подавления фона от процессов (2)–(4) проводилась кинематическая реконструкция событий в моделях, соответствующих основным рассматриваемым процессам (1)–(3). В результате реконструкции, используя измеренные значения углов частиц и энергии фотонов в калориметре, уточнялись значения этих параметров частиц и определялась энергия заряженных. Соответствие параметров частиц в событии конкретной модели характеризовалось значениями следующих функций:

$$\chi^2(K^+K^-\pi^0)$$
 — модель $e^+e^- \to K^+K^-\pi^0$,
 $\chi^2(\pi^+\pi^-\pi^0)$ — модель $e^+e^- \to \pi^+\pi^-\pi^0$,
 $\chi^2(\pi^+\pi^-\pi^0\pi^0)$ — модель $e^+e^- \to \pi^+\pi^-\pi^0\pi^0$.

Первые две модели применялись для событий с числом фотонов более одного. Последняя модель рассматривалась, если число зарегистрированных фотонов в событии было больше трех. В случае, если в событии зарегистрировано более, чем необходимо по соответствующей модели фотонов от распадов π^0 , рассматривались все возможные варианты вхождения фотонов в пару от распада π^0 и выбирался вариант, имеющий минимальное значение соответствующей функции. Кандидатами в распавшийся π^0 являлись два фотона, инвариантная масса которых отклонялась от массы π^0 не более, чем на 100 МэВ.

Для подавления событий процесса (2) использовалось ограничение: $\chi^2(\pi^+\pi^-\pi^0) > 20$, при этом фон снижается в 3 раза, а эффективность искомого процесса на 1%. Для подавления фона от процесса (3) использовалось ограничение $\chi^2(\pi^+\pi^-\pi^0\pi^0) > 20$, подавляющее фон в 2 раза, при этом эффективность регистрации процесса (1) уменьшается еще на 1%.

Распределения по параметру $\chi^2(K^+K^-\pi^0)$ событий моделирования процессов (1), (2), (3), (4) показаны на рис. 1. Для процессов (2), (3), (4) использовались экспериментальные значения сечений [9–11], события моделирования процесса (1) приведены с произвольной нормировкой для наглядности. Для дальнейшего подавления фоновых процессов применялись параметры $K^-\pi$ -разделения, использующие распределение энерговыделения в слоях калориметра для заряженных частиц и ионизационные

Рис. 1. Распределение событий по параметру $\chi^2(K^+K^-\pi^0)$ при энергии $E_{c.m.} = 1.38$ ГэВ. Тонированная гистограмма — распределение событий моделирования процесса (1), нормировка произвольная. Штрихованная гистограмма — суммарный фон от процессов (2), (3), (4), полученный по моделированию, черная гистограмма — фон от процесса (2)

потери dE/dx в дрейфовых камерах. Эффективное $K-\pi$ -разделение по калориметру возможно в исследуемом диапазоне энергий частиц благодаря значительной разнице между пионами и каонами в пробегах и ионизационных потерях в веществе калориметра.

Для построения параметров разделения заряженных каонов и пионов по энерговыделению частиц в слоях калориметра использовались функции $p_{K,\pi}(E)$, зависящие от вероятности $p_i(E_i; E)$ иметь частице с энергией E спектр энерговыделений E_i в трех слоях калориметра (i = 1, 2, 3):

$$p_{K,\pi}(E) = -\ln(p_1(E_1; E)p_2(E_2; E)p_3(E_3; E)).$$

В работе мы использовали следующую зависимость энерговыделения последующих слоев от предыдущих:

$$p_2(E_2; E) = p_2(E_2; E_1, E),$$

 $p_3(E_3; E) = p_3(E_3; E_1, E).$

Для j-ой частицы (j = 1, 2) параметр разделения каонов и пионов будет иметь вид

$$P_j = p_K(E_{K_j}) - p_\pi(E_{\pi_j}),$$

где E_{K_j} , E_{π_j} — энергии частиц, определенные в результате кинематической реконструкции события в модели $e^+e^- \to K^+K^-\pi^0$ и одной из фоновых моделей (2) или (3), соответственно. При построении p_i использовались распределения энерговыделения в калориметре, полученные при моделировании процессов $e^+e^- \to K^+K^-$ и $e^+e^- \to \pi^+\pi^-$. Суммарный для двух заряженных частиц в событии параметр *К*-*π*-разделения, использующий энерговыделение в калориметре, равен

$$P = P_1 + P_2$$

Ионизационные потери dE/dx в дрейфовых камерах использовались как дополнительный параметр $K-\pi$ -разделения:

$$W_{j} = -\ln(w_{K}(dE/dx, E_{K_{j}})) + \ln(w_{\pi}(dE/dx, E_{\pi j})).$$

Вероятности w_K, w_π получены по экспериментальным событиям. Для двух заряженных частиц в событии параметр разделения каонов и пионов, использующий ионизационные потери частиц в дрейфовых камерах, равен

$$W = W_1 + W_2.$$

Результирующий параметр разделения событий, содержащих пару каонов или пару пионов, является суммой:

$$Q = P + W.$$

Для модели (3) кинематическая реконструкция возможна, если зарегистрировано четыре фотона. Но даже в этом случае использование соответствующего параметра К-л-разделения неэффективно, поскольку только примерно десятая часть событий процесса (1) проходит критерий отбора на наличие в событии кандидатов в два π^0 . Поэтому при построении параметров К-*п*-разделения использовались энергии пионов, определенные с помощью кинематической реконструкции в модели (2). На рис. 2 приведены двумерные распределения событий в эксперименте и моделировании по параметрам Q и $\chi^2(K^+K^-\pi^0)$ при энергии $E_{c.m.} = 1.38$ ГэВ. Для поиска событий процесса (1) использовалось условие Q < -2. На рис. 3a приведено суммарное для энергии $E_{c.m.} = 1.37 - 1.38$ ГэВ распределение этих событий по параметру $\chi^2(K^+K^-\pi^0)$.

4. ПРОЦЕСС $e^+e^- \rightarrow KK^*(892) \rightarrow K^+K^-\pi^0$

Реакция $e^+e^- \to K^+K^-\pi^0$ может иметь как изовекторную, так и изоскалярную компоненту. Основной вклад в сечение этого процесса дает промежуточное состояние $KK^*(892)$ [6], порог рождения которого практически совпадает с предельной энергией накопителя ВЭПП-2М, поэтому ненулевая величина сечения может быть связана с большой шириной вышестоящих резонансов. Этим определяется наш выбор точек по энергии $E_{c.m.} = 1.37$ –1.38 ГэВ.

Рис. 2. Двумерные распределения событий по параметрам Q и $\chi^2(K^+K^-\pi^0)$, полученные в эксперименте (*a*) и при моделировании процессов (1), (2), (3) (рис. *б*, *в*, *г*, соответственно) при энергии $E_{c.m.} = 1.38$ ГэВ. Линией обозначено условие отбора событий Q < -2

Рис. 3. а — Распределение событий, удовлетворяющих условию Q < -2, по параметру χ²(K⁺K⁻π⁰). Точки с ошибками — эксперимент, тонированная гистограмма — полученный по моделированию суммарный фон от процессов (2), (3), (4). б — Распределение событий, удовлетворяющих условию -2 < Q < 5, по параметру χ²(K⁺K⁻π⁰). Кривая аппроксимация фона. E_{c.m.} = 1.37-1.38 ГэВ

$E_{c.m.}, \Gamma \mathfrak{s} \mathbf{B}$	<i>IL</i> , нб ⁻¹	$\sigma(e^+e^- \to KK^*(892) \to \\ \to K^+K^-\pi^0)$
1.37	256.2	< 0.123 нб $95~\%~{ m CL}$
1.38	486.6	< 0.085 нб $95~\%~{ m CL}$

Таблица 1. Верхний предел на сечение процесса $e^+e^- \to KK^*(892) \to K^+K^-\pi^0$

Эффективность регистрации процесса $e^+e^- \rightarrow K^+K^-\pi^0$ была определена в предположении этого промежуточного состояния. Для выбранных критериев отбора она составила 11.1 %. Основные поправки к эффективности регистрации были связаны с ограничением на параметр разделения $Q < -2(0.98 \pm 0.02)$ и ограничениями на количество сработавших проволочек в «длинной» дрейфовой камере $N_{wire} < 12$ и расстояние между координатами $|z_1 - z_2| < 2$ см (0.86 ± 0.03). Для единичного матричного элемента амплитуды этого процесса эффективность регистрации на 20% больше.

Для определения вклада фона в события, удовлетворяющие условию Q < -2, использовались события, у которых значение параметра Q находилось в диапазоне -2 < Q < 5 (рис. 36) в предположении, что зависимость фона от параметра $\chi^2(K^+K^-\pi^0)$ для этих двух типов событий одинакова. Доля событий эффекта при ограничении -2 < Q < 5 составляет менее 1% событий с Q < -2. Распределение событий по параметру $\chi^2(K^+K^-\pi^0)$ аппроксимировалось выражением

$$N_{exp,i} = N(K^+ K^- \pi^0) p_i (K^+ K^- \pi^0) + cN_b,$$

где *i* — номер бина в гистограмме, $N_{exp,i}$ найденное количество событий в эксперименте, $p_i(K^+K^-\pi^0)$ — распределение по $\chi^2(K^+K^-\pi^0)$ искомого процесса $e^+e^- \to K^+K^-\pi^0$, полученное по моделированию, $N(K^+K^-\pi^0)$ — число $K^+K^-\pi^0$ событий. Фон N_b аппроксимировался сплайном третьего порядка с коэффициентом с для условия Q < -2 и с коэффициентом 1 для условия -2 < Q < 5, причем вкладом эффекта в последнем случае мы пренебрегли. Определяемыми величинами в результате аппроксимации были число событий процесса (1) $N(K^+K^-\pi^0)$, параметры сплайна, коэффициент с. Событий $K^+K^-\pi^0$ не было найдено, поэтому мы установили верхние пределы на сечение процесса $e^+e^- \rightarrow KK^*(892) \rightarrow K^+K^-\pi^0$ на 95 % уровне достоверности (табл. 1). Объединяя обе

Рис.4. Распределение событий моделирования процесса $e^+e^- \rightarrow \phi \pi^0 \rightarrow K^+K^-\pi^0$ по энергии пиона $E(\pi^0)$ для различных значений энергии в системе центра масс: $E_{c.m.} = 1.20$ (a), 1.26 (б), 1.32 (c), 1.37 (c) ГэВ. Вертикальными линиями отмечены границы отбора, соответствующие 80% вероятности попадания событий в отмеченный интервал

точки по энергии, получаем для диапазона энергии $E_{c.m.} = 1.37 - 1.38$ ГэВ на 95 % уровне достоверности:

$$\sigma(e^+e^- \to KK^*(892) \to K^+K^-\pi^0) < 0.059$$
 нб.

5. ПРОЦЕСС
$$e^+e^- \rightarrow \phi \pi^0 \rightarrow K^+K^-\pi^0$$

Промежуточное состояние процесса

$$e^+e^- \to \phi \pi^0 \to K^+ K^- \pi^0 \tag{5}$$

имеет изоспин, равный 1, следовательно, основной вклад в это сечение при энергии порядка 1 ГэВ дают идущие через ОZI запрещенные переходы: $\rho, \rho', \rho'' \to \phi \pi \to K^+ K^- \pi^0$. Поиск событий процесса (5) осуществлялся в диапазоне энергии 1.2–1.38 ГэВ, для чего применялись критерии отбора, близкие к условиям отбора событий процесса $e^+e^- \to KK^* \to K^+ K^- \pi^0$. При этом мы сня-

Рис. 5. a — Распределение событий моделирования процесса $e^+e^- \rightarrow \phi \pi^0 \rightarrow K^+K^-\pi^0$ по нормированному на энергию пучка энерговыделению в калориметре заряженных частиц и γ -квантов в диапазоне энергии $E_{c.m.} = 1.2$ -1.38 ГэВ. δ — Распределение экспериментальных событий. Линиями обозначены установленные ограничения на параметры E_{γ}/E_b и E_{ch}/E_b (область C)

Рис. 6. a — Распределение по $\chi^2(K^+K^-\pi^0)$ экспериментальных событий, удовлетворяющих выбранным условиям на параметры E_{ch}/E_b и E_{γ}/E_b (область C на рис. 5). δ — Распределение экспериментальных событий, удовлетворяющих условиям $E_{ch}/E_b \le 0.15$ и $E_{\gamma}/E_b \le 0.3$. Кривая — аппроксимация фона. $E_{c.m.} = 1.2$ –1.38 ГэВ

ли ограничения на полярные углы θ_1 , θ_2 заряженных частиц, на количество сработавших проволочек в длинной дрейфовой камере, заменили верхний предел на количество фотонов, зарегистрированных в калориметре, с четырех до пяти, для $E_{c.m.}$ выше 1.29 ГэВ отменили предельный угол отклонения от коллинеарности заряженных частиц $\Delta \varphi$, установив общее для всех событий условие $|\Delta \varphi| > 10^{\circ}$. Ослабление условий отбора связано с

низкой эффективностью регистрации каонов от распада ϕ мезона из-за их относительно малой энергии по сравнению с энергией каонов в процессе $e^+e^- \to KK^* \to K^+K^-\pi^0$, приводящей к их распадам и поглощению в веществе, расположенном на пути частиц до дрейфовой камеры. В дальнейшем события отбирались по параметру $E(\pi^0)$ — энергии π^0 , который вычислялся по энергиям тех гамма-квантов в событии, которые соответствовали минимальному

Таблица 2. Сечение процесса $e^+e^- \to \phi \pi^0 \to K^+K^-\pi^0$

<i>Е</i> _{с.<i>m</i>.} , ГэВ	IL, нб ⁻¹	$\sigma(e^+e^- \to \phi \pi^0 \to$ $\to K^+K^-\pi^0),$ нб
1.2-1.29	1852.7	0.~+~0.008
1.3-1.38	2493.6	$0.015\substack{+0.019 \\ -0.021}$

 $\chi^2(K^+K^-\pi^0)$ без коррекции их параметров в результате кинематической реконструкции. На рис. 4 приведены распределения событий моделирования процесса $e^+e^- \to \phi\pi^0 \to K^+K^-\pi^0$ по энергии π^0 для разных значений $E_{c.m.}$ Для отбора событий использовались ограничения на параметр $E(\pi^0)$, соответствующие 80% вероятности попадания событий искомого процесса в указанный интервал.

На рис. 5 приведено двумерное распределение событий по нормированному на энергию пучка энерговыделению в калориметре заряженных частиц (E_{ch}/E_b) и γ -квантов (E_{γ}/E_b) в диапазоне энергии $E_{c.m.} = 1.2-1.38$ ГэВ. Для подавления фона использовались ограничения $E_{\gamma}/E_b + 0.7E_{ch}/E_b > 0.35$ и $E_{ch}/E_b > 0.05$, которые обозначены линиями на рис. 5 (область C). При этом эффективность искомого процесса снижается на 15 %, а фон уменьшается вдвое.

Эффективность регистрации событий процесса (5) в рассматриваемом диапазоне энергии меняется от 7.2% при энергии 1.2 ГэВ до 17.4% при 1.38 ГэВ. Аналогично подходу при поиске процесса $e^+e^ \rightarrow$ KK^* \rightarrow $K^+K^-\pi^0,$ мы аппроксимировали распределение по параметру $\chi^2 (K^+ K^- \pi^0)$ найденных в эксперименте событий (рис. 6а) суммой распределения искомых событий процесса (5) и фона. Для определения зависимости фона от параметра $\chi^{2}(K^{+}K^{-}\pi^{0})$ мы использовали события, удовлетворяющие условиям $E_{\gamma}/E_b \leq 0.3$ и $E_{ch}/E_b \leq 0.15$ (рис. 6б). Предполагая зависимость фона от параметра $\chi^2(K^+K^-\pi^0)$ одинаковой для этих двух типов событий, мы получили значения сечений процесса $e^+e^- \rightarrow \phi \pi^0 \rightarrow K^+K^-\pi^0$, приведенные в табл. 2. Поскольку полученные значения согласуются с нулем, мы установили верхний предел на сечение процесса $e^+e^- \to \phi \pi^0 \to K^+K^-\pi^0$ в интервале энергии $E_{c.m} = 1.2 - 1.38 \ \Gamma$ эВ на уровне достоверности 95 %:

$$\sigma(e^+e^- \to \phi \pi^0 \to K^+K^-\pi^0) < 0.023$$
 нб

В качестве оценки систематической ошибки мы использовали разницу в величине сечения, полученного в диапазоне энергии $E_{c.m} = 1.3-1.38$ ГэВ для двух вариантов обработки: цитируемого и варианта, когда для отбора событий использовались ограничения $E_{\gamma}/E_b > 0.3$ и $E_{ch}/E_b > 0.05$, приводящие к потере в эффективности регистрации в два раза. Систематическая ошибка составила 30 % от полученной статистической точности определения сечения процесса (5).

6. ЗАКЛЮЧЕНИЕ

В работе установлен верхний предел на сечение процесса $e^+e^- \rightarrow \phi \pi^0 \rightarrow K^+K^-\pi^0$ в интервале энергии $E_{c.m} = 1.2$ –1.38 ГэВ на уровне достоверности 95 %:

$$\sigma(e^+e^- \to \phi \pi^0 \to K^+K^-\pi^0) < 0.023$$
 нб.

Результат не противоречит данным работы [6] по измерению сечения процесса $\sigma(e^+e^- \to \phi \pi^0)$:

$$\sigma(E_{c.m} = 1.2\text{--}1.3 \ \Gamma \text{эB}) = 0.014 \pm 0.016 \ \text{нб},$$

$$\sigma(E_{c.m} = 1.3\text{--}1.4 \ \Gamma \text{эB}) = 0.025 \pm 0.018 \ \text{нб}.$$

Для процесса $e^+e^- \rightarrow KK^*(892) \rightarrow K^+K^-\pi^0$ при энергии $E_{c.m.} = 1.37-1.38$ ГэВ также установлен верхний предел на величину сечения на уровне достоверности 95 %:

$$\sigma(e^+e^- \to KK^*(892) \to K^+K^-\pi^0) < 0.059$$
 нб.

Этот результат не противоречит измерениям сечения этого процесса в эксперименте [6]:

$$\sigma(E_{c.m} = 1.36 - 1.38 \ \Gamma \mathfrak{sB}) = 0.208 \pm 0.120 \ \mathrm{нб},$$

$$\sigma(E_{c,m} = 1.38 - 1.40 \ \Gamma \Rightarrow B) = 0.100 \pm 0.089 \ нб,$$

однако, точность нашего результата более, чем в два раза выше точности, полученной при этих энергиях в цитируемой работе.

Работа выполнена при частичной финансовой поддержке Президента РФ (грант НШ-5655.2008.2) и РФФИ (гранты №№ 08-02-00328-а, 08-02-00660-а, 08-02-00634-а, 07-02-00104-а).

ЛИТЕРАТУРА

- F. Mane, D. Bisello, J. C. Bizot et al., Phys. Lett. B 112, 178 (1982).
- J. Buon, D. Bisello, J. C. Bizot et al., Phys. Lett. B 118, 221 (1982).

- D. Bisello, G. Busetto, A. Castro et al., Nucl. Phys. Proc. Suppl. 21, 111 (1991).
- D. Bisello, G. Busetto, A. Castro et al., Z. Phys. C 52, 227 (1991).
- S. I. Dolinsky, V. P. Druzhinin, M. S. Dubrovin et al., Phys. Rep. 202, 1 (1991).
- B. Aubert, M. Bona, D. Boutigny et al., Phys. Rev. D 77, 092002 (2008).
- M. N. Achasov, V. M. Aulchenko, S. E. Baru et al., Nucl. Instr. Meth. A 449, 125 (2000).

- I. A. Koop, D. I. Ganyushin, P. M. Ivanov et al., in Proc. of the III Int. Workshop on Physics and Detectors for DAFHNE, Frascati, Italy (1999), p. 393.
- M. N. Achasov, V. M. Aulchenko, K. I. Beloborodov et al., Phys. Rev. D 66, 032001 (2002).
- **10**. М. Н. Ачасов, К. И. Белобородов, А. В. Бердюгин и др., ЖЭТФ **123**, 899 (2003).
- G. Cosme, B. Dudelzak, B. Grelaud et al., Nucl. Phys. B 152, 215 (1979).