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FLUCTUATION INTERACTIONS OF COLLOIDAL PARTICLEST. Oampo-Delgado a, B. Ivlev a;b*aInstituto de Físia,Universidad Autónoma de San Luis Potosí San Luis PotosíSan Luis Potosí 78000, MexiobDepartment of Physis and Astronomy and NanoCenter,University of South CarolinaColumbia, South Carolina 29208, USAReeived August 22, 2009For like-harged olloidal partiles, two mehanisms of attration between them survive when the interpartiledistane is larger than the Debye sreening length. One of them is the onventional van der Waals attrationand the seond is the attration mehanism mediated by thermal �utuations of partile position. The latter isrelated to the e�etive variable mass (Euler mass) of the partiles produed by the �uid motion. The strongestattration potential (up to the value of the temperature T ) orresponds to the ase of unharged partiles anda relatively large Debye sreening length. In this ase, the third attration mehanism is involved. It is mediatedby thermal �utuations of the �uid density.1. INTRODUCTION AND AN OVERVIEWSystems of harged olloidal partiles exhibit a vari-ety of unusual physial properties [1�3℄. Colloidal par-tiles an be arranged into rystals [4℄ and into stru-tures with lusters and voids [5�7℄. Colloidal systemsmay undergo di�erent types of phase transition [8�13℄.Topologial phase transitions in a two-dimensional sys-tem of olloidal partiles were disussed in [14, 15℄. Un-usual ensembles of olloidal partiles were observed inRefs. [16�18℄. In [19℄, bukling instabilities in on�nedolloidal rystals were analyzed. Interesting behaviorsof olloidal partiles in external �elds were reportedin [20℄. In an eletrolyte, olloidal partiles aquiresome surfae harge, sreened by ounterions at theDebye length �D , whih results in the repulsion po-tential of Derjaguin, Landau, Verwey, and Overbeek(DLVO) [1, 2℄. The DLVO theory, as a result of so-lution of the linearized Poisson�Boltzmann equation,has been questioned in [21, 22℄. The generalization ofthe DLVO interation via a modi�ation of ounterionsreening was reported in [23℄.The long-range attration of like-harged partilesis a matter of hallenge and ontroversy in olloidal si-ene. Very shematially, the story of the long-rangeattration is as follows.*E-mail: ivlev�aprine.physis.s.edu

Initially, the long-range attration of olloidal par-tiles on a miron sale was reported in Ref. [24℄. Theauthors reonstruted a pair potential from the mea-sured orrelation funtions of a large ensemble of ol-loidal partiles.The authors of Refs. [25�27℄ published even moresurprising results, the attration being extended over adistane of almost 4 �m. They used a laser tehniquereleasing two partiles and observing their behavior.But their measurements were atually misinterpreted.Only a marosopi hydromehanial e�et assoiatedwith spei�ity of measurements but not a mirosopiattration mehanism was observed [28℄.For a high-onentration partile ensemble, Behin-ger and his group showed that di�erent types of theinterpartile potential result in almost idential orre-lation funtions [29, 30℄. The onlusion was that theinteration potential should be drawn from experimentsnot with a large ensemble but with a pair of olloidalpartiles. Another di�ulty is related to an unertaintyin the observed partile position aused by di�ration,whih an result in errors in the alulated pair po-tential (see Ref. [31℄ and the referenes therein). Toredue the di�ration unertainty, ultraviolet observa-tions should be used. Therefore, the reliability of al-ulation of the pair potential based on statistial prop-erties of large ensembles of partiles is questionable.419



T. Oampo-Delgado, B. Ivlev ÆÝÒÔ, òîì 137, âûï. 3, 2010Despite the lak of reliability of various experimentson determination of a mirosopi attration meha-nism of like-harges, it is always intriguing whetherthey attrat in reality. We onsider the following miro-sopi mehanism of attration of two olloidal partilesor a partile and a wall.1. The onventional van der Waals attrationuvdW [32℄ mediated by eletromagneti �utuations.2. The attration Uom mediated by thermal om-pression �utuations of a �uid.3. The attration I assoiated with thermal �utu-ations of partile positions in a �uid. It results fromvariable partile masses (Euler masses) depending onthe distane between them. This mehanism and theterm �Euler mass� were proposed in Ref. [33℄.In the �rst mehanism, the energy of �utuatingeletromagneti waves depends on the distane betweenpartiles and therefore leads to a fore.The �rst and the seond mehanisms are generibeause eletromagneti waves are just substituted byhydrodynami ones.In the third mehanism, moving partiles drag apart of the �uid. The mass of the involved �uid dependson the distane between the partiles. There is a ther-mal drift of the partiles into the region with a larger ef-fetive mass, whih is analogous to lassial mehanis.This an be interpreted as an e�etive interation me-diated by thermal �utuations of partile positions in a�uid. Formation of the variable mass involves high-fre-queny �utuations of the partiles when dissipativehydrodynami e�ets are not important [34℄. This or-responds to Euler hydrodynamis and gives rise to theterm �Euler mass�. The formation of Euler mass re-sembles the equipartition law when the mean kinetienergy is T=2 regardless of the dissipation. This is be-ause the mean kineti energy is also determined byhigh frequenies.There is a substantial di�erene among the aboveattration mehanisms. The �rst and the third onessurvive when the interpartile distane beomes largerthan the Debye sreening length. At this distane, theDLVO repulsion is very small and the above two meha-nisms are the only interations. The seond mehanismworks when Coulomb e�ets in the �uid are not pro-nouned. Spei�ally, the partiles are not harged andthe Debye sreening length is larger than the interpar-tile distane. A relative role of I and uvdW was alsoanalyzed in Ref. [35℄.The goal of this paper is to study the three attra-tion potentials for two partiles and for one near a wall(walls).

2. VAN DER WAALS INTERACTIONThe energy of a �utuating eletromagneti �eldaround two partiles depends on the distane R be-tween them and therefore results in an interation fore.It is alled the van der Waals fore [32℄. This foreis mainly determined by the typial wave length � ofthe �utuating eletromagneti �eld beause we shouldhave � � R. The permittivity of the partile material"(!) depends on the typial frequeny ! � =R. Weonsider relatively large interpartile distanes,!0 < R; (1)where !0 orresponds to an absorption peak of "(!).For example, !0 � 1016 s�1 for water, and estimate (1)beomes 100Å< R.At a �nite temperature, the typial wave length ofthe �utuating eletromagneti �eld is ~=T . In whatfollows, the interpartile distane is not too large,R < ~T ; (2)whih is equivalent to R < 7:4 �m at room tempera-ture.We onsider a typial interpartile distane R of theorder of one or two mirons, whih agrees with ondi-tions (1) and (2). In the optial range of !, the per-mittivity is determined by the refrative index and anbe substituted by the dieletri onstant " for parti-les and the dieletri onstant "0 for the surroundedmedium. When the two dieletri onstants are loseto eah other, "� "0"0 � 1; (3)we an use the approah of pairwise summation to al-ulate the energy of eletromagneti �utuations (thevan der Waals interation energy) [32, 36℄ asuvdW (R) = �23~("� "0)264�3"5=20 ZV1 d3r1 ZV2 d3r1jr1 � r2j7 : (4)In Eq. (4), the integrations are taken over the volumesof the two bodies. For two idential spherial partilesof the radius a and enter-to-enter distane R, the in-tegration in Eq. (4) results in [32, 36℄uvdW (R) = � 231920� ("�"0)2"5=20 ~R �2a2(20a2�3R2)(R2�4a2)2 ++ 2a2R2 + ln R2R2 � 4a2 � : (5)420



ÆÝÒÔ, òîì 137, âûï. 3, 2010 Flutuation interations of olloidal partilesFor a spherial partile near a �at in�nite wall,Eq. (4) yieldsuvdW (h) = � 23640� ("� "0)2"5=20 ~a 1Z�1 (1� z2) dz(z + h=a)4 ; (6)where h is the enter-to-wall distane.In the region of visible light for water, "0 � 1:77,for the typially used polystyrene olloidal partiles," � 2:40. Therefore, the parameter (" � "0)="0 � 0:35an be onsidered relatively small and hene Eqs. (5)and (6) are reasonable approximations for the van derWaals interation.3. INTERACTION MEDIATED BYCOMPRESSION FLUCTUATIONS OF THEFLUIDWe suppose that two partiles are totally �xed in-side a hydrodynami medium and serve only as obsta-les to �uid motion. There is no marosopi motion inthe system and the only motion is aused by thermal�utuations of the �uid veloity v(r; t). In this ase,the free energy of thermal �utuations of the �uid F (R)depends on the distane R between the partiles. Thefuntion Uom(R) = F (R)� F (1) (7)is an interation mediated by ompression �utuationsof the �uid analogously to the onventional van derWaals interation mediated by eletromagneti �utu-ations.To �nd the free energy of thermal �utuations of the�uid, we an start with the linearized Navier�Stokesequation [34℄��v�t = �rp+ �r2v + �� + �3�rdiv v: (8)There are two types of �uid motion, one of themis transverse di�usion and the seond is longitudinalsound waves assoiated with density variations. Theequilibrium free energy of transverse motions is deter-mined by the Boltzmann distribution of their kinetienergies and is independent of the frition oe�ientin the thermal limit. The free energy of transverse mo-tions in the thermal limit depends on the total volume,but is independent of the relative positions of the bod-ies. Therefore, transverse �utuations do not result inan interation.Quite an opposite situation ours for longitudinalmotions, when the total free energy is a sum of ener-gies of di�erent sound modes. The spetrum of sound

waves depends on the distane R between bodies due tohydrodynami boundary onditions on body surfaes,and this results in an R-dependene of the free energy.Hene, the �utuation interation between bodies ismediated by hydrodynami sound waves, like the on-ventional van der Waals interation is mediated by �u-tuations of eletromagneti ones. With v = r��=�t,it follows from Eq. (8) that��2��t2 = �Æp+�� + 4�3 � ��tr2�: (9)From thermodynami relations and the ontinuityequation, we an obtain Æp = ��s2r2�, where s is theadiabati sound veloity [34℄. At the typial frequeny! � s=a � 1011 s�1 (with a � 1 �m being the partileradius), the dissipative term in Eq. (9) is small and wean write �2��t2 � s2r2� = 0: (10)Aording to the small-frition limit, the boundary on-dition for the normal derivative rn� = 0 to Eq. (10)orresponds to the Euler �uid [34℄. From the generalstandpoint, the free energy of a system of harmoni os-illators is independent of frition in the thermal limit.In an eletrolyte, the dispersion law of sound wavesan be approximated as!2(q) = s2q2 + s2�2D ; (11)where �D is the Debye sreening length. We �rst on-sider the ase of two in�nite parallel walls separatedby a distane R. The free energy per unit area of thesystem is expressed as a sum of energies of indepen-dent osillators aording to general rules of statistialphysis, F = T Z d2k(2�)2 1Xn=1 ln h! �k; �nR �i : (12)Performing the same steps as in Ref. [33℄, we obtainthe interation mediated by ompression �utuationsin the formUom = T32�R2 �� 1Z0 dz ln"1� exp �sz + 4R2�2D !# : (13)In the limit ases, Eq. (13) beomesUom =8>><>>:��(3)=16�R2; R� �D;�exp(�2R=�D)8�R�D ; �D � R; (14)421



T. Oampo-Delgado, B. Ivlev ÆÝÒÔ, òîì 137, âûï. 3, 2010where �(3) � 1:202 is the Riemann zeta funtion value.At a large R, the interation in (14) is sreened onthe length �D=2. The possibility of an interationmediated by noneletromagneti �utuations was pro-posed in [32℄. The �rst formula in (14) was obtainedin Ref. [33℄. It is similar to the result in Ref. [36℄ foreletromagneti �utuations and perfetly ondutingplanes.The �utuation interation in (13) depends on theDebye sreening length. This is due to summation overall wave vetors in the free energy and results in itsdependene on the density of states, whih, in turn,depends on the form of the spetrum. In our ase,the spetrum ! = s(k2 + ��2D )1=2 introdues a �D-dependene in the free energy.When two objets are not �at but are lose enoughand interat by small parts of their surfaes, whih arealmost �at, the interation potential an be derivedfrom �at approximation (14) by integrating over thesurfaes. For example, for a partile lose to a �atwall, in the ase where the enter-to-wall distane h issmaller than the partile radius a, the interation anbe alulated as in Ref. [33℄:Uom = ��(3)8 T ah� a; h� a� a; �D: (15)The analogous result for two spheres with the enter-to-enter distane R isUom = ��(3)16 T aR� 2a; R� 2a� a; �D : (16)Equations (15) and (16) hold in a noneletrolyti �uidor in an eletrolyte with a su�iently large sreeninglength.4. WHICH MECHANISM SURVIVES IN ANELECTROLYTE?In an eletrolyte, the interation Uom mediated byplasmons is strongly sreened (see (14)). The van derWaals interation uvdW , mediated by photons of vi-sible-range frequenies, is not sensitive to the plasmone�ets. The mehanism of variable mass is onnetedsolely with inompressible �uid �utuations. There-fore, only the onventional van der Waals interationuvdW and variable mass mehanisms I an survive inan eletrolyte. The interation due to variable mass isonsidered in the following setions.

5. VARIABLE MASS MECHANISMTo illustrate the variable mass mehanism, we on-sider a simple mehanial analogy. We suppose that alassial nondissipative partile of the total energy Emoves in the harmoni potential �x2. When the par-tile mass is onstant, the mean displaement hxi = 0in the harmoni potential. But in the ase of a variablemass m(x), the mean displaement hxi 6= 0. This is be-ause the partile veloity is smaller in the region of alarger mass, just to keep the total energy onstant. A-ordingly, the partile spends more time in the regionof larger mass. This is equivalent to a ertain e�e-tive attration I(x) to the region of larger mass. Asshown in Ref. [33℄, for a slowly varying m(x), the totale�etive potential beomes �x2 � (E=2) lnm(x).A real partile with frition partiipates in theBrownian motion haraterized by a ertain tempera-ture T . We brie�y repeat the main arguments leadingto the e�etive potential I [33℄. The Langevin equationdesribing suh proesses has the formm(x)�x + 12 �m�x _x2 + �V (x)�x + � _x == stohasti fore: (17)Short-time �utuations of the veloity _x are well sepa-rated from the slow drift in an e�etive potential. In-deed, aording to the �utuation�dissipation theorem,the mean value of the kineti energy hm _x2=2i = T=2orresponds to the equipartition law and is essentiallygiven by short-time �utuations related to the in�nitelylarge irle in the omplex frequeny plane. Substitut-ing that mean value in Eq. (17) leads to the e�etivepotential V (x) + I(x) [33℄, whereI(x) = �T2 lnm(x): (18)Expression (18) is an exat result in the thermal limit(no quantum �utuations), as is the equipartition law.We reall what happens in the onventional aseof position-independent masses. In the thermal limit,we an then set all frequenies equal to zero beausethey provide only quantum orretions to the partitionfuntion. The remaining part of the partition fun-tion is determined solely by the potential energy anddoes not depend on veloities. The senario hangesfor a position-dependent mass. In that ase, the fol-lowing general arguments an be used. The partitionfuntion Z, whih is proportional to the phase volume�p�x, aquires an additional positional dependene�p � pTm(x) following from the momentum han-nel even in the thermal limit [33℄. The free energy422



ÆÝÒÔ, òîì 137, âûï. 3, 2010 Flutuation interations of olloidal partiles(�T lnZ) results in interation potential (18) obtainedby a rigorous derivation proedure.In the multidimensional ase, the kineti energy isexpressed in terms of the mass tensor mij(R) asK = 12 mij(R) _Ri _Rj ; ! !1: (19)As shown in Ref. [33℄, the interation due to variablemass is then given byI(R) = �T2 ln [detm(R)℄ : (20)The potential in (20) has a �utuation origin and ismediated by fast �utuations of veloity. In terms ofoordinates, when form (19) is diagonalized, detm be-omes a produt of prinipal values and interation (20)is redued to a sum of terms related to prinipal oor-dinates.6. INTERACTION MEDIATED BY THERMALFLUCTUATIONS OF PARTICLEVELOCITIESCalulating the e�etive �utuation potential forsystems with a ompliated dynamis requires �ndingthe mass tensor in the high-frequeny limit and insert-ing it in Eq. (20). When partiles in a �uid perform anosillatory motion with a high frequeny, the �uid ve-loity obeys the Euler equation everywhere in the �uidexept a thin layer lose to the partile surfaes [34℄.Hene, �nding the mass tensor in Eqs. (19)�(20) re-quires solving the Euler equation with a zero boundaryondition for the normal omponent of the �uid ve-loity. For this reason, the mass orresponding to thehigh-frequeny limit of partile dynamis an be alledthe Euler mass. The e�etive partile masses dependon the �uid mass involved in the motion. The �uidmass depends on the interpartile distane, and there-fore the e�etive partile masses also depend on thatdistane.In the ase of one partile of a radius a in a bulk�uid, the Euler mass tensor has the form [34℄mij = 4�a33 ��0 + �2� Æij ; (21)where �0 is the mass density of the partile and � isthe �uid density. The �rst term in Eq. (21) is relatedto the proper mass of the partiles and the seond isassoiated with the �uid motion.
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Fig. 1. Arrangements of partiles with veloities u toalulate the mass Mx (a) and Mz (b) in Eq. (23)6.1. Two partiles in an in�nite �uidWe now alulate the Euler mass tensor for twoidential partiles in a �uid. The �uid veloity normalto the partile surfae should be equal to the normalpartile veloity on its surfae. If the partile veloitiesare u1 and u2, there are four independent quadratiombinations u21 + u22, u1u2, (R � u1)(R � u2), and[(R � u1)2 + (R � u2)2℄. We make the veloity trans-formation V = u1 + u2p2 ; v = u1 � u2p2 : (22)In terms of the new veloities, the kineti energy anbe written asK = 12 3Xi=1 �Mi(R)V 2i +mi(R)v2i � ; (23)where i = 1; 2; 3 respetively orrespond to x; y; z. Ex-pression (23) involves only four independent masses be-ause Mx = My and mx = my. The proper masses ofthe partiles 4�a3�0=3 an be separated from the �uidones by writingMi = 4�a33 ��0 + �2Gi �Ra �� ;mi = 4�a33 ��0 + �2gi�Ra �� : (24)Aording to Eq. (21), G(1) = g(1) = 1.The easiest way to alulate the masses is to use themethod illustrated in Figs. 1 and 2, where the partileveloities are shown by arrows. The kineti energy ofthe �uid in Figs. 1a and 1b is (2�a3=3)Gx;z(R=a)u2.423
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Fig. 2. Arrangements of partiles with veloities u toalulate the mass mx (a) and mz (b) in Eq. (23)Analogously, the �uid kineti energy in Figs. 2a and2b is (2�a3=3)gx;z(R=a)u2. Interation potential (20)beomesI(R) = �T �ln [2�0+�Gx(R=a)℄[2�0+�gx(R=a)℄(2�0+�)2 ++ 12 ln [2�0 + �gz(R=a)℄[2�0 + �Gz(R=a)℄(2�0 + �)2 � : (25)The funtion I(R) tends to zero as R!1.6.2. One partile near an in�nite wallWe onsider one partile of a radius a plaed in ahalf-spae of the �uid �lling the volume z > 0. Theenter-to-plane distane is h (the plane is at z = 0).The boundary ondition at the partile surfae is theequality of the normal omponents of the �uid and thepartile veloities. The normal veloity omponent ofthe �uid veloity at the �at surfae is zero. Obviously,the total kineti energy is half that alulated in theprevious subsetion orresponding to Fig. 1a (the xand y omponents) and Fig. 2b, whih are related tothe zero normal veloity of the �uid at z = 0.It is now easy to write the interation potential us-ing the results in the previous subsetion. It is givenbyI(h) = �T �ln 2�0 + �Gx(2h=a)2�0 + � ++ 12 ln 2�0 + �gz(2h=a)2�0 + � � ; (26)where the funtions Gx and gz are the same as in theprevious subsetion.

6.3. One partile near two in�niteperpendiular wallsThis situation is shown in Figs. 3�5. The partile isplaed in the �uid limited by the onditions y < 0 andz > 0. The other image partiles, shown with dashedurves, are introdued in order to satisfy the boundaryonditions on the planes z = 0 and y = 0 of zero normalveloities of the �uid. If we onsider the whole spaewith the introdued image partiles, the total kinetienergies areKi = 44�a33 ��0 + �fi�ha ; Da �� u22 (27)with i = 1; 2; 3 for Figs. 3, 4, 5 respetively; the velo-ities of all partiles are equal to u. Analogously to theprevious ases, the interation potential isI(h;D) = �T2 3Xi=1 ln 2�0 + �fi(h=a;D=a)2�0 + � : (28)The boundary onditions are of the same type as inSe. 6.1.7. NUMERICAL METHOD TO CALCULATETHE INTERACTION POTENTIALIn our ase, the �uid veloity is v = r', wherethe potential ' satis�es the Laplae equation r2' = 0with the boundary onditions spei�ed in Se. 6,n(u�r')��S = 0; (29)where S is the total surfae that restrits the �uid. Sinludes borders of the partiles (with veloities u) andwalls (with zero veloity). The unit vetor n is perpen-diular to the surfaes. The kineti energy of the �uidis R d3r �v2=2. Therefore, the total kineti energy ofthe system an be written asK =Xi 0��02 u2i � �2 ZSi dS '(r)ni � ui1A ; (30)where summation ranges over all partiles with the are-as Si.The numerial method proposed to alulate theEuler masses is based on an iteration proedure. Inwhat follows, we disuss this method for two partilesin an in�nite �uid. The zero approximation is'0(r) =  (r�R=2) +  (r+R=2); (31)424
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xFig. 3. A partile near two perpendiular walls. Thethree image partiles, shown by the dashed urves, areadded to onsider the whole spae with zero normal ve-loities of the �uid at the walls. This partile arrange-ment ontributes to the funtion f1 in Eq. (27)
z

y

xFig. 4. The partile arrangement ontributing to thefuntion f2 in Eq. (27)
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Fig. 5. The partile arrangement ontributing to thefuntion f3 in Eq. (27)where the harmoni funtion  satis�es the equation (r) = � 14� Z dS0G(r; r0)n0 � (r0)�r0 (32)outside the sphere of the radius a entered at r = 0.At the sphere surfae, nr (r) = u os � and � is the

angle between n and u. The integration in Eq. (32)is extended over the sphere surfae, and the Green'sfuntion is given byG(r; r0) = 2jr�r0j+1a ln� r�r os jr�r0j+a�r os � ; (33)where [37℄jr� r0j = �r2 + a2 � 2ar os �1=2 ;os  = os � os �0 + sin � sin �0 os(�� �0):The zeroth approximation potential '0(r) in (31)provides the orret boundary onditions at the partilesurfaes S in the limit R!1. At a �nite R, boundaryondition (29) is not satis�ed by the zeroth approxima-tion (31), whih therefore requires a modi�ation. Wean onstrut an iteration sheme ' = '0+'1+'2+: : :by means of the reursion relation'n+1(r) = � Zjr0�R=2j=a dS04� G�r� R2 ; r0 � R2 ��� n0 � (uÆno �r'n(r0))�� Zjr0+R=2j=a dS04� G�r+ R2 ; r0 + R2 ��� n0 � (uÆno �r'n(r0)); (34)where n = 0; 1; 2; : : : We have a fast onvergene atlarge R beause 'n+1 � 'na=R. At eah iterationstep, the boundary onditions beomes more and moreexat with respet to the parameter a=R.To alulate Gx = Gy and Gz in Eq. (23) for Eu-ler masses, we have to apply the sheme in (34) to thesituations shown in Fig. 1a and Fig. 1b. Analogously,gx = gy and gz in Eq. (26) are assoiated with Fig. 2aand Fig. 2b.From the funtions Gx and gz numerially foundby the above method, we an also onstrut intera-tion (26) of a partile and a wall.The same method is appliable to alulations ofthe potential in (28) for one partile near two perpen-diular walls. Instead of two partiles, we should thentake four, with three of them playing the role of ima-ges (shown by dashed urves in Figs. 3�5). We do notdesribe an obvious modi�ation of Eq. (32) in thatase. 8. RESULTSIn this setion, we disuss the three di�erent on-tributions to interation of olloidal partiles, listed in425
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0 uvdW =T (uvdW + I)=TI=T�0:01�0:02�0:03�0:04Fig. 6. The numerially alulated attration potentialsfor two partiles in an in�nite �uid; �=�0 = 1Se. 1, in various geometries: (i) two partiles in a bulk�uid, (ii) one partile over a �at surfae, and (iii) onepartile near two perpendiular planes.The interation Uom, whih is mediated by om-pression �utuations of the �uid, plays the dominantrole beause it is relatively large, Uom=T � (0:3�1.0),as follows from Figs. 6 and 8. On the other hand, theinteration Uom is strongly redued by a �nite Debyesreening length �D . Therefore, this interation an beobserved in eletrolytes with a large �D . In addition,surfaes of interating objets should not be stronglyharged to prevent the Coulomb repulsion from domi-nating over Uom.In onventional eletrolytes, normally used in ex-periments, only uvdW (frequenies higher than theplasma frequeny) and I (nonompressive �utua-tions) survive on distanes longer than �D , where theCoulomb repulsion of harged partiles is sreened.Figure 6 relates to the ase of two partiles in abulk �uid, Se. 6.1. The interation potential I (in theunits of temperature T ) is plotted by the thin solidurve. The onventional van der Waals interation (5)is indiated by a dashed urve. The resulting potentialis shown by a thik urve. It an be seen that Uomsubstantially exeeds the above interation potentials.Figures 7 and 8 orrespond to the ase of one par-tile near the wall, Se. 6.2. As is lear from Fig. 8,Uom is not small and is of the order of T .In Fig. 9, the potential I relates to one partile neartwo perpendiular walls.When the intersurfae distane is small, the poten-tial I tends to a onstant, whereas the van der Waalsinteration is known to diverge. The results in Figs. 6�9orrespond to �=�0 = 1. As this parameter inreases,

−0.12

−0.08

−0.04

0

1.0 2.01.81.61.41.2

h/a

h

a

(uvdW + I)/T

I/T

uvdW /T

Fig. 7. The numerially alulated attration potentialsfor one partile and an in�nite �at wall; �=�0 = 1

h=a1:41:1 1:2 1:3
ah

(uvdW + I)=T0�0:4�0:8�1:2�1:6 Uom=T
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