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TIME-ODD CORRELATION IN A NEUTRON REFLECTOMETRYEXPERIMENTV. K. Ignatovih *, Yu. V. NikitenkoFrank Laboratory of Neutron Physis, Joint Institute for Nulear Researh141980, Dubna, Mosow Region, RussiaReeived September 4, 2009We �nd that neutron transmission of a magneti systems with the nonollinear magnetization ontains a ti-me-odd orrelation. The neutron re�etion from suh a system violates detailed balane. Time-odd orrelationis shown to violate T-invariane even in the presene of an irreversibility produed by losses and disribed byimaginary part in the neutron�matter interation.1. INTRODUCTIONThe priniples of invariane of physial proessesunder disrete transformations suh as spatial inversion(P-invariane), time reversal (T-invariane), hargeonjugation (C-invariane), and their produts like CPand CPT, and the priniple of detailed balane, some-times alled �reiproity�, are now a standard topi oftextbooks. All these priniples are mainly onsideredwith respet to elementary partiles and elementarysattering proesses, and a large �eld of researh is de-voted to the searh of a violation of these priniples.The detailed balane, like unitarity and energy on-servation, was never heked beause the reign of thesepriniples is unquestionable. The P- and T-invarianewere questioned beause of experimental observation ofP- and T-odd orrelations. For instane, a P-odd or-relation, like pe � s, was observed in neutron �-deay.This means that the numbers of eletrons (with mo-menta pe) emitting along and opposite the neutron spins are di�erent. This orrelation is P-odd beause themomentum pe hanges its sign under spatial inversion,while the axial vetor s does not. Therefore, the pro-dut pe � s also hanges sign. At the same time, thisorrelation is T-even beause both pe and s hangetheir signs under time reversal, and their produt doesnot.A T-invariane violation was initially observed inK-meson deays, and great e�orts, still without suess,are now foused on the searh for the neutron eletridipole moment, whih is equivalent to the searh for*E-mail: ignatovi�nf.jinr.ru

the orrelation s � E, where E is an external eletri�eld.In this paper, we onentrate on neutron optis andshow that T-odd orrelations an easily be disoveredthere, and hene the question of whether these or-relations are an evidene of the T-violation naturallyarises.In fat, the T-invariane violation an be expetedin neutron optis. This is beause neutron interationwith matter is desribed by an optial potential, whihontains an imaginary part due to losses, and the imagi-nary part like frition is onsidered as indiation of timeirreversibility.A Hamiltonian with an imaginary part is not Her-mitian. Under time reversal, whih is desribed by aunitary operator times the omplex onjugation opera-tor, the imaginary part hanges its sign. Normally, theimaginary part of an optial neutron�matter potentialis negative and desribes neutron losses due to absorp-tion. After time reversal, it beomes positive, whihmeans the reation of neutrons. It is lear that thesetwo Hamiltonians are fundamentally di�erent. Never-theless, as we prove in what follows, this does not meana violation of the T-invariane.The detailed balane is a speial fundamental prin-iple. When it is not satis�ed, priniple of maximal en-tropy at equilibrium is violated. The detailed balaneis a litmus paper for judgement whether one satteringor transport model or another is orret. For instane,if we onsider gas �owing along a tube and suppose thatre�etion of atoms from the tube walls proeeds aord-ing to some model indiatrix [1℄, then we must be are-473
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Fig. 1. Re�etion and transmission of a magneti mir-ror of thikness d, onsisting of two �lms magnetizedin the x; y oordinate plane, whih is parallel to theirinterfaes. The external magneti �eld is zero. Mag-neti �elds B1;2 of the �lms are at an angle ' to eahother. The inident neutron going from the left andpolarized along the normal to the �lms (the z axis) anbe re�eted, e.g., with a spin �ip (R�+ is the re�etionamplitude) or transmitted, e.g., without spin �ip (T++is the transmission amplitude)ful about the model. We should guarantee that if we �llthe tube with an isotropially distributed atomi gas,then re�etion from the walls aording to the modeldoes not reate �uxes in the tube.In this paper, however, we show that the well-es-tablished laws of the interation neutron�matter anlead to a violation of detailed balane. It looks as ifsome magneti systems submerged into an isotropiallydistributed equilibrium neutron gas at a temperatureT derease its entropy by �j�Sj and ool the gas bythe amount �T�S without any work! However thisooling annot be observed beause submersion of thesystem into the neutron gas reates many new degreesof freedom, whih inrease the entropy by onsiderablylarger amount.Below, we onsider re�etion and transmission of amagneti mirror shown in Fig. 1. The mirror of thetotal thikness d ontains two magneti layers. Theirmagnetizations are parallel to the interfaes (the x; yoordinate plane) and make an angle ' to eah other.The outside �eld is supposed to be zero. We show thatthe neutron transmission matrix ontains a term pro-portional to the time-odd orrelations � [B1 �B2℄: (1)Observation of suh a orrelation an be interpreted asa T-invariane violation.The problem of T-odd orrelations in ross setionsof polarized neutrons in the presene of orksrew-li-ke magneti �elds and �utuations was �rst disussed

in [2�5℄. We show that the T-odd term in the trans-mission matrix does not imply a violation of the T-in-variane even in presene of absorption.In the next setion, we show how orrelation (1) ap-pears in the transmission of the system shown in Fig. 1.In Se. 3, re�etion of the system in Fig. 1 is disussed.The re�etion matrix is shown not to ontain T-oddterms, but it ontains terms that violate the detailedbalane priniple. In Se. 4, we disuss a T-odd orre-lation appearing in the interation of neutrons with amirror having helioidal magnetization, and show thatthe violation of the detailed balane priniple in thisase is very prominent. In Se. 5, we disuss the on-ept of the T-invariane as applied to neutron re�e-tometry, and show why this invariane is not violatedeven if there is absorption in the system. In Se. 6, wesummarize our results.2. NEUTRON TRANSMISSION OF THETWO-LAYER MAGNETIC MIRROR ANDDERIVATION OF Eq. (1)The left-to-right transmission matrix �̂t for the sys-tem of two �lms depited in Fig. 1 is representableas [6; 7℄�̂t = �̂2(� �B2)[Î� �̂1(� �B1)�̂2(� �B2)℄�1 �� �̂1(� �B1); (2)where Bi are the magneti �elds inside the �lms, Î isthe unit 2 � 2 matrix, and � is the vetor (�x; �y; �z)of the Pauli matries:�x =  0 11 0 ! ; �y =  0 �ii 0 ! ;�z =  1 00 �1 ! : (3)Expression (2) is easily obtained if we imagine thatthe �lms are separated by an in�nitesimal vauum gap.The �rst right and the last left fators in (2) are trans-missions of the separate �lms, and the middle fatoraounts for multiple re�etions between them.The transmission matrix �̂ (� �B) of a single �lm is�̂ (� �B) = exp(ik̂0(� �B)l)�� Î� r̂2(� �B)Î� r̂2(� �B) exp(2ik̂0(� �B)l) ; (4)where l is the �lm thikness,k̂0(� �B) =q(k2 � u)Î� � �B; (5)474



ÆÝÒÔ, òîì 137, âûï. 3, 2010 Time-odd orrelation in a neutron re�etometry experimentk is the wave number of the inident neutron,u = u0 � iu00 is the optial potential of the �lm,r̂(� �B) = k̂� k̂0(� �B)k̂+ k̂0(� �B) (6)is the re�etion matrix of the interfae between thevauum and the �lm, and k̂ = kÎ. The potential u isde�ned with the fator 2m=~2, and the �eld B is de-�ned with the fator 2�m=~2 (m and � are respetivelythe neutron mass and the absolute value of its magnetimoment).The re�etion matrix �̂(� �B) of the �lm is�̂(� �B) == r̂(� �B) Î� exp(2ik̂0(� �B)l)Î� r̂2(� �B) exp(2ik̂0(� �B)l) : (7)We see that (4) and (7) transform into eah other underthe exhange r̂(� �B)$ exp(ik̂0(� �B)l):An arbitrary funtion f̂(� �B) of the matrix (� �B)is also a matrix, whih is representable in the formf̂(� �B) = Îf (+)(B) + � � bf (�)(B); (8)where f (�)(B) = f(B)� f(�B)2 ; b = BB : (9)Relation (8) is easily derived by expanding the fun-tion into the Taylor (or MaLaurent) series in power of(� �B)n and taking into aount that (� �B)2 = ÎB2.Therefore, all even powers (� � B)2n are salars B2n,they onstitute f (+)(B), and all odd powers(� �B)2n�1 = (� �B)B2n = (� � b)B2n+1onstitute � � bf (�)(B).With (8), we an easily �nd thatf̂(� �B)f̂ (�� �B) = f(B)f(�B);and therefore 1Î� f̂(� �B) = 1N [Î� f̂ (�� �B)℄;N = [1� f(B)℄[1� f(�B)℄: (10)For two arbitrary funtions f̂(� �A) and ĝ(� �B) andarbitrary vetors A and B, the relation[Î� f̂(� �A)ĝ(� �B)℄�1 == 1N [Î� ĝ(�� �B)f̂ (�� �A)℄ (11)

holds, whereN Î = [Î� f̂(� �A)ĝ(� �B)℄[Î� ĝ(�� �B)f̂ (�� �A)℄;and heneN = 1�2[f (+)(A)g(+)(B)+f (�)(A)g(�)(B)(a � b)℄++ f(A)f(�A)g(B)g(�B): (12)Here, a = AjAj ; b = Bjbj ;and we use the well-known relation(� � a)(� � b) = (a � b) + i(� � [a� b℄): (13)With aount of (11), the matrix of the total transmis-sion amplitude �̂t in (2) takes the form�̂t = 1N �̂2(� �B2) hÎ� �̂2(�� �B2)�̂1(�� �B1)i�� �̂1(� �B1): (14)Therefore, it has the struture�̂t = 1N [�̂2(� �B2)�̂1(� �B1) �� F̂2(� �B2)F̂1(� �B1)i � 1N [�̂t1 � �̂t2℄; (15)where we setF̂2(� �B2) = �̂2(� �B2)�̂2(�� �B2);F̂1(� �B1) = �̂1(� �B1)�̂1(�� �B1): (16)The �rst term in (15) with (8) and (13) taken into a-ount is�̂t1 = �̂2(� �B2)�̂1(� �B1) == h� (+)1 � (+)2 + � (�)1 � (�)2 (b1 � b2)i Î++ � (�)1 � (+)2 � � b1 + � (�)2 � (+)1 � � b2 ++ i� (�)1 � (�)2 (� � [b2 � b1℄); (17)where the last term ontains orrelation (1), and theseond term �̂t2 in (15) has the same struture withthe replaement of �̂ by F̂.In what follows, we take jB1j = jB2j = B for sim-pliity. If we hoose the x axis along B1, then�B1 = �xB; �B2 = �xB exp(i'�z);and Eq. (2) with aount of (17) beomes�̂t = C0Î+ Cx�x[Î+ � exp(i'�z)℄ + iCz�z; (18)475



V. K. Ignatovih, Yu. V. Nikitenko ÆÝÒÔ, òîì 137, âûï. 3, 2010where all the C and � are some salar funtions of k.It follows from this expression that if the quantizationaxis for inident neutrons is hosen along z, then thetransmission probability without a spin �ip isT (�! �) = jh�j�̂tj�ij2 == jC0j2 + jCz j2 � 2 Im[C0C�z ℄; (19)where Im[x℄, and later Re[x℄, denote imaginary and realparts of x, and the j�i states arej+i = �10�; j�i = �01�: (20)If we know nothing about the magneti struture ofthe mirror, then the di�erene of transmissions for dif-ferent spin diretions along the normal, whih oinideswith the diretion of the neutron wave vetor k, an beinterpreted as a P-odd orrelation k � s. In our ase, weknow the magneti struture, and hene we see thatthe di�erene of transmissions is due to not a P-oddbut a T-odd orrelation (s � [b1�b2℄), and the questionarises as to whether this orrelation is a manifestationof the T-irreversibility of the Shrödinger equation forsuh a magneti �elds on�guration.In fat it does not violate T-invariane, beauseT-inversion inludes exhange of initial and �nal states.Therefore transmission from left to right after T-inver-sion is replaed by transmission in opposite diretion,whih leads to transposition of magneti �elds and ad-ditional hange of sign of the produt [b1�b2℄. More-over, as will be shown later, the T-invariane is notviolated even in presene of losses in matter.It is important to notie that transmission with-out spin �ip depends on angle ', and the di�ereneT (+ ! +) � T (� ! �) / sin' hanges sign when' ! �'. Therefore left rotation in nature is distin-guished from right rotation, whih an be onsideredas violation of spae parity. However, spae parity isalso not violated. Distinguishing of two rotations o-urs beause of dynamis. Interation of neutron withmagneti �eld j�j� � B leads to ounterlokwise pre-ession of the neutron spin around the �eld. Beauseof that only ounterlokwise rotating radio frequeny�eld turns the neutron spin in spin �ipper. Thereforeit is not surprising that ounterlokwise turn of themagneti �eld in the seond �lm ats di�erently thanlokwise turn. By the way this fat gives an oppor-tunity to ommuniate to a distant galaxy what do wemean lokwise and ounterlokwise rotation. Even ifthe distant galaxy is omposed of antimatter, the ob-servers at the distant galaxy an use the neutron (orantineutron) experiment to see neutron preession in

their magneti �eld and diretion of this preession willbe exatly ounterlokwise.Transmissions with spin �ip of the system depitedin Fig. 1,T (�! �) = jh�j�̂tj�ij2 == jCxj2�1 + j�j2 + 2Re[� exp(�i')℄�; (21)an also be di�erent. However, if the two �lms in themirror are idential and di�er only by the magnetiza-tion diretion, then � = 1, and the spin-�ip transmis-sions are idential.3. NEUTRON REFLECTION FROM THE TWOLAYER MAGNETIC MIRRORHere we prove that the re�etivity of the mirrorshown in Fig. 1 does not ontain T-odd terms, but vi-olates the detailed balane priniple.The amplitude of the re�etion from the left is rep-resented by the expression�̂t = �̂1(� �B1) + �̂1(� �B1)�̂2(� �B2)�� [I � �̂1(� �B1)�̂2(� �B2)℄�1�̂1(� �B1); (22)where (11) an be used to write�̂t = �̂1(� �B1) + 1N [�̂1(� �B1)�̂2(� �B2)�� [1� �̂2(�� �B2)�̂1(�� �B1)℄�̂1(� �B1)℄; (23)or �̂t = �̂1(� �B1)� �2(B2)�2(�B2)N �� �̂ 21 (� �B1)�̂1(�� �B1) ++ 1N �̂1(� �B1)�̂2(� �B2)�̂1(� �B1): (24)Using (8), this expression is redued to the form�̂t = D0Î+D1(� � b1) +D2(� � b2) == D0Î+D1�x(1 + � exp(i'�z)℄; (25)where all the D and � = D2=D1 are some salar fun-tions of k. It follows from this equation that the no-spin-�ip re�etivities for both inident polarizations areequal to eah other,R(+! +) = R(�! �) = jh�j�̂tj�ij2 = jD0j2; (26)476



ÆÝÒÔ, òîì 137, âûï. 3, 2010 Time-odd orrelation in a neutron re�etometry experimentwhile the spin-�ip re�etivities R(� ! �) are di�erent,R(� ! �) = jh�j�̂tj�ij2 == jD1j2�1 + j�j2 + 2Re[� exp(�i')℄�; (27)whih means thatR(+! �) 6= R(� ! +);and their dependene on the angle ' is suh thatR(� ! �; ') = R(� ! �;�'): (28). The re�etivity does not ontain T-odd orrela-tions, but violates the detailed balane priniple. Ofourse, it is not evident from (27) that the detailed ba-lane is violated. It is not violated if � is a real number.But numerial alulations presented in Fig. 2 demon-strate that the two spin-�ip re�etivities are atuallydi�erent.In Fig. 2, we show the results of numerial alula-tion of re�etivities and transmissivities of the mirrorin Fig. 1 onsisting of two idential Co layers of thethikness 25 nm magnetized to B = 1 T, when an-gle between their magnetizations is ' = ��=2. Foridential layers, the fator � in (21) is equal to unityin aordane with (17). Therefore, the probabilitiesof transmission with a spin �ip are idential and theirdependene on ' is proportional to os2 '.The di�erene of the two spin-�ip re�etivities im-plies violation of the detailed balane priniple, beauseit reates a yle urrent in phase spae, whih dimi-nishes the entropy. We disuss this e�et in the nextsetion, where the violation of the detailed balane isseen more learly.4. NEUTRON REFLECTION ANDTRANSMISSION OF A MAGNETICMIRROR WITH HELICOIDALMAGNETIZATIONThe false e�et of the time and parity violationis seen espeially well in the ase of a neutron re�e-tion from a magneti mirror magnetized helioidally [8℄around a vetor q that is direted along the z axis pa-rallel to the normal to the mirror interfae. The neut-ron wave funtion in a helioidal �eld was found in [9℄,and the re�etion and transmission of helioidal mir-rors were alulated in [8; 10℄. In Fig. 3, we show there�etivities with and without a spin �ip for polariza-tions of the inident neutron along and opposite the zaxis. Outside the mirror, the magneti �eld is absent.

The analogous transmission probabilities are shown inFig. 4. We see that there is again a time-odd orrela-tion � �q, whih an also be interpreted as a parity-oddorrelation of spin with the inident neutron momen-tum � � k̂. The resonant spin-�ip re�etivity for thej�i polarization inreases with the mirror thikness,and beomes almost total. Suh a re�etivity violatesthe detailed balane priniple, and the violation is es-peially well seen in this example. Indeed, we imaginethat a vessel with ideal walls is homogeneously �lledwith a gas of unpolarized neutrons. If we split thevessel into two parts as shown in Fig. 5, inserting ahelioidal mirror, then all the neutrons from the leftpart I go through the mirror to the right part II, andbeome ompletely polarized along the z axis. Indeed,the neutrons in the j+i state go diretly through themirror, and annot return, while the neutrons in thej�i state are re�eted from the mirror with a spin �ip,and after the re�etion from ideal walls of the vessel, goagain to the mirror and through it to part II. Therefore,it looks as if all the neutrons from part I gathered inpart II in the single state j+i, whih strongly dereasesthe entropy.However, suh a spilling over the mirror from leftto right is atually ompensated by the opposite �uxfrom II to I, beause the neutrons in the j�i state in theright part an go through the mirror, while neutrons inthe j+i state are re�eted from the mirror with a spin�ip to the j�i state. Therefore, the neutrons in bothparts remain isotropi and in the unpolarized state, al-though a yle ours in the phase spae. This ylehas 6 steps listed below, where the last 7th step is thesame as the �rst one.1. The neutron in the j+i state goes through themirror (M) from the left to the right part of the vessel.2. Then it re�ets from the right wall of the vesseland goes to M.3. It re�ets from M to the right with a spin �ip tothe state j�i.4. Then it re�ets from the right wall of the vesseland, being in the j�i state, goes through M from theright to the left part of the vessel.5. Then it re�ets from the left wall of the vesseland goes bak to M.6. It re�ets from M to the left with a spin �ip tothe j+i state.7. Then it re�ets from the left wall of the vesseland, being in the j+i state, goes through M.If there were the same yle but with the initialstate j�i, and a neutron ould go through both yleswith the same probability, then we ould say that bothyles were equally well populated, and the entropy of477
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Fig. 5. Illustration of violation of the detailed balaneprinipleAt the end of this setion, we mention the paper [11℄(see also [4℄), where di�ration on rystals with heli-oidal magnetization was onsidered. It was found thatdi�ration ontains peaks, whih in the perturbationtheory are proportional toI / Æ(�� �B � q); (29)where � = ki�kf is the momentum transferred to therystal by the neutron with the initial and �nal mo-menta ki;f , �B is a vetor of the reiproal lattie ofthe rystal, and q is the helioidal vetor similar to oursin helioidal mirrors. In (29), we see some interestingdisrepany. The argument of the delta funtion on-tains a ombination of polar vetors � and �B and ofthe axial vetor q. This is inonsistent. The additionalpeak appearing beause of the helial magnetization isrelated not to the rystal struture but to the width ofthe Bragg peak. If the energy width of the peak is �u,then the position of the helial magneti peak is shiftedfrom the Bragg position �B of the nonmagneti rystalby �� =p�u+ q2.

But this disrepany does not devaluate the impor-tane of [11℄. Its main value is in the proof that addi-tional magneti peaks exist near Brag peaks, resultingfrom sattering with one-diretional spin �ip. In thatrespet, re�etion from single rystals with helial mag-netization does also violate the detailed balane prin-iple.5. ANALYSIS OF THE TIME INVARIANCEHere, we �rst disuss the question whether theT-odd term in (1) atually manifests a T-invarianeviolation. Next, we analyze the priniple of T-invari-ane in the ase of the neutron sattering on a nonmag-neti system desribed by an optial potential with animaginary part.5.1. T-invariane with term (1)The left-to-right transmission probability withoutspin �ip an be represented by the funtion�!W = Q0 + (s � [b1 � b2℄)Q1; (30)where Q0;1 are some salar funtions of k, and s isa unit vetor direted along the inident neutron po-larization; it an be either parallel or antiparallel to[b1 � b2℄. Hene,���!W (�) = Q0 � j[b1 � b2℄jQ1: (31)The right-to-left transmission is479



V. K. Ignatovih, Yu. V. Nikitenko ÆÝÒÔ, òîì 137, âûï. 3, 2010 �W = Q0 + (s � [b2 � b1℄)Q1 == Q0 � (s � [b1 � b2℄)Q1; (32)beause the order of �lms met by the neutron at trans-mission hanges. Hene, ���W (+) 6= ���!W (+); (33)whih is a manifestation of a violation of the detailedbalane priniple.After the time reversal transformation, not onlys and b1;2 hange sign but also the initial and �nalstates are permuted. Therefore, ���!W (+) is transformedto  ���W (�), but  ���W (�) = ���!W (+); (34)and this proves that the T-invariane is not violated.5.2. T-invariane of the neutron sattering onabsorbing potentialsWe onsider the simplest ase of the neutron sat-tering on a nonmagneti one-dimensional potentialu(x) that is nonzero in an interval 0 � x � d and on-tains an imaginary part. The neutron wave funtionoutside the potential is (x; t) = exp(�i!t)�� h�(x < 0)� exp(ikx) + �(k) exp(�ikx)� ++ �(x > d)�(k) exp(ik(x� d))i ; (35)where �(x) is a step funtion equal to unity when theinequality in its argument is satis�ed, and to zero ot-herwise, and �(k) and �(k) are the re�etion and trans-mission amplitudes, whih are omplex funtion of theinident wave number k. The wave funtion is a solu-tion of the Shrödinger equation�i ��t + �2�x2 � u(x)� (x; t) = 0: (36)If we make the transformationt! �t; (37)then the equation for  (x;�t) hanges its form om-pared with (36). To restore its form, we have to makea omplex onjugation, after whih we obtain�i ��t + �2�x2 � u�(x)� �(x;�t) = 0: (38)

However, we must be areful here. A potential thathas an imaginary part hanges after omplex onjuga-tion, and therefore we annot be sure that the funtion �(x;�t) remains a solution of (38). Instead of (38)we must write�i ��t + �2�x2 � u�(x)�	(x; t) = 0; (39)and hek whether 	(x; t) =  �(x;�t). We prove thatthis equality is true in the ase of a retangular poten-tial, and laim that there are no reasons to doubt itsvalidity for other potentials.In fat, we an deal with stationary equations, wri-ting 	(x; t) = exp(�i!t)�(x)and  (x; t) = exp(�i!t)�(x);and our goal is then to show that a solution �(x) ofthe equation�k2 + �2�x2 � u�(x)��(x) = 0; (40)oinides with ��(x).In the ase of a retangular barrier potential ofheight u = u0 � iu00 and width d, the wave funtionon the full x axis is [12℄�(x; u) = �(x < 0)� exp(ikx)+R(k; u) exp(�ikx)�++�(0 < x < d) [1 + r(k; u)℄ exp(ik0(u)d)1� r2(k; u) exp(2ik0(u)d) �� [exp(ik0(u)(x� d)) � r(k; u) exp(�ik0(u)(x� d))℄ ++�(x > d)T (k; u) exp(ik(x� d)); (41)where R(k; u) = r(k; u)[1� exp(2ik0(u)d)℄1� r2(k; u) exp(2ik0(u)d) ;T (k; u) = exp(ik0(u)d)[1� r2(k; u)℄1� r2(k; u) exp(2ik0(u)d) ; (42)
r(k; u) = k � k0(u)k + k0(u) ; k0(u) =pk2 � u: (43)We here suppose that k2 > u0, and everywhere we ex-pliitly indiate the dependene on the omplex poten-tial u. The funtion ��(x; u) is480



ÆÝÒÔ, òîì 137, âûï. 3, 2010 Time-odd orrelation in a neutron re�etometry experiment��(x; u) == �(x < 0)� exp(�ikx) +R�(k; u) exp(ikx)�++�(0 < x < d) [1 + r�(k; u)℄ exp(�ik0�(u)d)1� r�2(k; u) exp(�2ik0�(u)d) �� [exp(�ik0�(u)(x� d)) � r�(k; u) �� exp(ik0�(u)(x� d))℄ ++�(x > d)T �(k; u) exp(�ik(x� d)): (44)It desribes the interferene of two waves inident fromthe left and right with the respetive amplitudes R�(k)and T �(k). We show that it oinides with the solution�(x) in (40) ontaining these two inident waves.The wave inident from the left gives a solution�l(x), the wave inident from the right gives a solution�r(x), and the total solution is equal to �l(x)+�r(x).Using the general approah in [13; 14℄ for the inidentwave R�(k; u) exp(ikx), we obtain�l(x; u�) = �(x < 0)R�(k; u)�� � exp(ikx) + R(k; u�) exp(�ikx)�++�(0 < x < d)R�(k; u) [1 + r(k; u�)℄ exp(ik0(u�)d)1� r2(k; u�) exp(2ik0(u�)d) �� [exp(ik0(u�)(x� d))� r(k; u�) �� exp(�ik0(u�)(x� d))℄ ++�(x > d)R�(k; u)T (k; u�) exp(ik(x� d)); (45)and for the inident wave T �(k) exp(�ik(x � d)), thewave funtion is�r(x; u�) = �(x < 0)T �(k; u)T (k; u�) exp(�ikx) ++�(0 < x < d)T �(k; u) [1 + r(k; u�)℄ exp(ik0(u�)d)1� r2(k; u�) exp(2ik0(u�)d) �� [exp(�ik0(u�)x)� r(k; u�) exp(ik0(u�)x)℄ ++�(x > d)T �(k; u) [T (k; u�) �� exp(�ik(x� d)) +R(k; u�) exp(ik(x� d))℄ : (46)It follows from (43) and (42) for k2 > u0 that k0(u�) == k0�(u) and r(u�) = r�(u), but R(k; u�) 6= R�(k; u)and T (k; u�) 6= T �(k; u).It is easy to verify by simple algebra that the sumof terms in the interval 0 < x < d from (45) and (46)is equal to the middle term in (44). This is shown inthe next equation, where K 0 denotes k0(u�), and thedependene on k and u is omitted in the other terms:

R� [1 + r�℄ exp(iK 0d)1� r�2 exp(2iK 0d) �� [exp(iK 0(x� d))� r� exp(�iK 0(x� d))℄ ++ T � [1 + r�℄ exp(iK 0d)1� r�2 exp(2iK 0d) �� [exp(�iK 0x)� r� exp(iK 0x)℄ == r�(1� exp(�2iK 0d))1� r�2 exp(�2iK 0d) [1 + r�℄ exp(iK 0d)1� r�2 exp(2iK 0d) �� [exp(iK 0(x� d))� r� exp(�iK 0(x� d))℄ ++ exp(�iK 0d)(1� r�2)1� r�2 exp(�2iK 0d) [1 + r�℄1� r�2 exp(2iK 0d) �� [exp(�iK 0(x� d))� exp(2iK 0d)r� �� exp(iK 0(x� d))℄ = exp(iK 0(x� d))�� r�[1 + r�℄ exp(�iK 0d)(1� r�2 exp(2iK 0d))(1� r�2 exp(�2iK 0d)) �� h exp(2iK 0d)� 1� exp(2iK 0d)(1� r�2)i++ exp(�iK 0(x� d))�� [1 + r�℄ exp(�iK 0d)(1� r�2 exp(2iK 0d))(1� r�2 exp(�2iK 0d)) �� h(1� exp(2iK 0d))r�2 + (1� r�2)i == [1 + r�℄ exp(�ik0�d)1� r�2 exp(�2ik0�d) �� h exp(�ik0�(x� d))� r� exp(ik0�(x� d))i: (47)It an be veri�ed similarly that the sum of ampli-tudes of two outgoing waves at x < 0 is equal toR�(k; u)R(k; u�) + T �(k; u)T (k; u�) = 1: (48)The right outgoing wave at x > d vanishes. Its ampli-tude isR�(k; u)T (k; u�) + T �(k; u)R(k; u�) == 2Re(R�(k; u)T (k; u�)) = 0; (49)whih shows that the phases of the amplitudes R(k; u)and T (k; u�) di�er by �=2.Therefore, we see that �(x) = ��(x), i. e., satte-ring of a salar partile on a omplex potential is timereversible. We have heked this for a simple retan-gular potential, but there are no reasons to expet theresult to be di�erent for more omplex potentials.We onsidered the ase k2 > u0 above. If k2 < u0,then k0(u) = ik00(u), where k00(u) = pu� k2, andr(k; u) = k � ik00(u)k + ik00(u) ; r(k; u�) = 1r�(k; u) : (50)5 ÆÝÒÔ, âûï. 3 481



V. K. Ignatovih, Yu. V. Nikitenko ÆÝÒÔ, òîì 137, âûï. 3, 2010Nevertheless, it an be proved again that �(x) = ��(x),i. e., sattering on a omplex potential is time re-versible. The proof is a good exerise for the readers,and we do not therefore present it here.It an be shown similarly that sattering of a spinorpartile on an arbitrary magneti potential is time re-versible, even if the nulear optial potential of theneutron-matter interation ontains an imaginary part.6. CONCLUSIONUsing simple examples, we have shown, in a simplesheme of a neutron re�etometry experiment, how aT-odd orrelation an appear that an be interpreted asthe T- or P-parity violation, although it does not vio-late T- and P-invarianes. The experiment to hek thetheoretial preditions an be easily realized with twomagneti �lms of di�erent oerivities evaporated uponnonmagneti substrate. After magnetization to satura-tion of the high-oerivity �lm, the external magneti�eld an be dereased and the sample rotated throughan angle '. The result is a system lose to the oneshown in Fig. 1.At the same time, it is shown that if the spae on-tains a ouple of nonollinear magneti �elds, then thesattering of neutrons from this ouple does not sat-isfy the detailed balane priniple. This means thatthe neutron gas in the presene of two magneti mir-rors with nonollinear magnetizations has an equilib-rium with an entropy that is not absolutely maximal.We found some interesting features in onsideringneutron sattering on a nonollinear magneti system.We an expet to �nd interesting features in onsider-ing a three-layer magneti system with nonomplanarmagneti �elds B1, B2, and B3. In this system, we anexpet T-odd orrelation like(B1 � [B2 �B3℄); (51)

whih at the same time violate reiproity at transmis-sion, but this subjet, will be disussed elsewhere [11℄.This work was supported by the RFBR grant08-02-00467a. The authors are grateful to A. A. Fraer-man for his suggestions, and to G. Petrov, Yu. Chuvil-skiy, and V. Bunakov for their interest and disussions.REFERENCES1. Â. Ê. Èãíàòîâè÷, Èçâ. ÂÓÇ. �àäèî�èçèêà, XVIII,1551 (1975).2. Þ. À. Èçþìîâ, Ñ. Â. Ìàëååâ, ÆÝÒÔ 41, 1644(1961).3. Ñ. Â. Ìàëååâ, Â. �. Áàðüÿõòàð, �. À. Ñóðèñ, ÔÒÒ 4,3461 (1962).4. M. Blume, Phys. Rev. 130, 1670 (1963).5. Â. �. Áàðüÿõòàð, Ñ. Â. Ìàëååâ, ÔÒÒ 5, 1173 (1965).6. Â. Ë. Àêñåíîâ, Â. Ê. Èãíàòîâè÷, Þ. Â. Íèêèòåíêî,Êðèñòàëëîãðà�èÿ 51, 23 (2006).7. F. Radu and V. K. Ignatovih, Physia B 267�268,175 (1999).8. Â. Ë. Àêñåíîâ, Â. Ê. Èãíàòîâè÷, Þ. Â. Íèêèòåíêî,Ïèñüìà â ÆÝÒÔ 84, 563 (2006).9. M. Calvo, Phys. Rev. B 18, 5073 (1978).10. À. À. Ôðàåðìàí, Î. �. Óäàëîâ, ÆÝÒÔ 131, 71(2007).11. Þ. À. Èçþìîâ, ÆÝÒÔ 42, 1673 (1962).12. V. K. Ignatovih, F. V. Ignatovith, and D. R. Ander-sen, Partiles and Nulei Lett. 3, 48 (2000).13. Â. Ê. Èãíàòîâè÷, ßÔ 62, 792 (1999).14. Â. Ê. Èãíàòîâè÷, Þ. Â. Íèêèòåíêî, À. À. Ôðàåð�ìàí, ÆÝÒÔ 137(5) (2010).

482


