О ПЕРКОЛЯЦИОННОЙ ПРИРОДЕ ПЕРЕХОДА ОТ 60 К- к 90 К-ФАЗЕ В ${ m YBa_2Cu_3O_{6+\delta}}$

С. Ю. Гаврилкин, О. М. Иваненко, В. П. Мартовицкий, К. В. Мицен^{*}, А. Ю. Цветков

Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

Поступила в редакцию 3 июля 2009 г.

Проведены измерения температурной зависимости теплоемкости в ВТСП $YBa_2Cu_3O_{6+\delta}$ в интервале 1.8-300 К и в диапазоне допирования $0.70 < \delta < 0.86$. Полученные результаты дают основание полагать, что переход от 60 К- к 90 К-фазе в $YBa_2Cu_3O_{6+\delta}$ имеет перколяционную природу, а недодопированная 60 К-фаза представляет собой гетерофазную структуру, в которой множество сверхпроводниковых нанокластеров погружены в изолирующую матрицу.

1. ВВЕДЕНИЕ

Отличительными особенностями купратных ВТСП являются наличие псевдощели в спектре возбуждений [1] в нормальном состоянии и электронная наномасштабная пространственная неоднородность [2]. Оба этих явления были подробно изучены, однако, несмотря на многолетние усилия как экспериментаторов, так и теоретиков, вопрос о природе и взаимосвязи этих необычных явлений остается до сих пор открытым. Также невыясненной остается связь обоих этих явлений с механизмом высокотемпературной сверхпроводимости.

Как известно, и псевдощель, и пространственная неоднородность наиболее отчетливо проявляются в недодопированной фазе ВТСП и исчезают с ростом допирования при переходе в передопированную фазу. Области концентраций носителей, соответствующих недодопированной, оптимально допированной и передопированной фазам определяются концентрацией допантов. Однако в большинстве ВТСП-соединений этот параметр трудно независимо контролировать, в связи с чем для определения уровня допирования р данного образца используют эмпирическую формулу [3], связывающую р с изменением T_c образца относительно его максимального значения в оптимально допированной фазе. Одним из немногих исключений в этом отношении является ВТСП $YBa_2Cu_3O_{6+\delta}$, где допант (кислород в «цепочечных» плоскостях) имеет определенную кристал-

лографическую позицию и его концентрация может определяться независимо. Это позволяет построить реальную фазовую диаграмму $T_c(p)$ этого соединения, используя в качестве переменной концентрацию кислорода б. Вид такой фазовой диаграммы $T_c(\delta)$ существенно отличается от куполообразной кривой, даваемой формулой из работы [3]. На реальной фазовой диаграмме YBa₂Cu₃O_{6+δ} [4] можно выделить две области концентраций δ : область недодопирования $0.4 < \delta < 0.75$ (50 K $< T_c < 70$ K) и область оптимального допирования $0.8 < \delta < 1.0$ $(T_c \approx 90 \text{ K})$. Составы, относящиеся к этим интервалам концентраций, относят, соответственно, к так называемым 60 К- и 90 К-фазам. Однако их природа, а также причины различия T_c в этих фазах так до конца и не поняты.

Между тем существует множество указаний на корреляцию между пространственным распределением электронной плотности и величины псевдощели с одной стороны и картиной распределения допантов с другой [5]. При этом существенное изменение свойств происходит на масштабах около 10–15 Å. Формирование в образце таких нанокластеров предполагает зависимость электронных свойств от локальной (на наномасштабах) концентрации или/и от взаимного расположения ближайших атомов допанта.

Вывод о кластерной структуре недодопированной фазы косвенно подтверждается измерениями мейсснеровского объема в зависимости от допирования, выполненными на различных ВТСП [6, 7]. Эти

^{*}E-mail: mitsen@lebedev.ru

измерения показали, что «мейсснеровский объем» в недодопированной фазе уменьшается с уменьшением допирования, обращаясь в нуль одновременно с T_c . Однако вследствие наличия джозефсоновских связей между сверхпроводящими кластерами, а также из-за пиннинга магнитного потока, невозможно связать измеряемый мейсснеровский объем с объемом сверхпроводящих кластеров. Это затрудняет сравнение полученных данных с различными теориями, предполагающими подобную неоднородность.

В настоящей работе мы исследовали зависимость изменения объема сверхпроводящей фазы в YBa₂Cu₃O_{6+ δ} в области перехода от 60 К- к 90 К-фазе от уровня допирования, измеряя зависимость величины скачка теплоемкости ΔC в точке сверхпроводящего перехода как функцию δ . Полученные результаты дают основание полагать, что переход от 60 К- к 90 К-фазе имеет перколяционную природу, а недодопированная 60 К-фаза представляет собой гетерофазную структуру, в которой множество сверхпроводниковых нанокластеров погружены в изолирующую матрицу.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для измерений использовались поликристаллические образцы $YBa_2Cu_3O_{6+\delta}$, приготовленные по стандартной керамической технологии. Изменение содержания кислорода достигалось путем отжига полностью окисленных образцов при различных температурах в воздушной атмосфере с последующей закалкой в жидком азоте. С целью определения содержания кислорода были выполнены прецизионные (с точностью ± 0.0005 нм) измерения параметров *а* и *с* кристаллической решетки полученных образцов на дифрактометре PANAlytical MRD. Далее, используя литературные данные [8] о зависимости параметров решетки $YBa_2Cu_3O_{6+\delta}$ от содержания кислорода, определялось значение δ для каждого исследуемого образца.

Измерения температурной зависимости полной теплоемкости C(T) в интервале 1.8 K–300 K проводились на установке PPMS-9 фирмы Quantum Design. Результаты измерений для образцов YBa₂Cu₃O_{6+ δ} с различным содержанием кислорода, $0.70 < \delta < 0.86$, приведены на рис. 1. Обращает на себя внимание необычное поведение (в зависимости от допирования) скачка теплоемкости $\Delta C/T$, отвечающего переходу в сверхпроводящее состояние. В достаточно узком интервале $0.8 < \delta < 0.86$ величина скачка уменьшается в два раза при практически

Рис. 1. Температурные зависимости теплоемкости образцов $YBa_2Cu_3O_{6+\delta}$ с различным содержанием кислорода. Значения δ указаны на рисунке. Кривые для разных значений δ смещены для наглядности последовательно вверх

неизменных положении скачка и его температурной ширине. При дальнейшем понижении содержания кислорода скачок размывается, смещаясь в область более низких температур, и становится неразличимым (при данном экспериментальном разрешении) при $\delta < 0.7$. Данные результаты согласуются с результатами, полученными ранее [9].

Отмеченное поведение находится в очевидном противоречии с предположением о стандартном механизме сверхпроводимости при условии однородного допирования. Как известно, в модели БКШ скачок электронной теплоемкости $\Delta C/T$ при сверхпроводящем переходе равен 1.43 γ , где γ — плотность электронных состояний на поверхности Ферми. Поэтому уменьшение величины скачка в области 0.8 < δ < 0.86 при условии однородного допирования должно было бы означать уменьшение γ . Последнее, однако, противоречит постоянству критической температуры в этой области значений δ , поскольку такое уменьшение γ в соответствии с БКШ моделью должно было приводить к значительному понижению T_c . В работе [10] в рамках модели псев-

Рис.2. а) Электронный спектр недопированной CuO_2 -плоскости, U_H — энергия отталкивания двух электронов на ионе Cu. Щель Δ_{ct} для возбуждения с наименьшей энергией соответствует переносу электрона с кислорода на ближайший ион Cu с образованием дырки, распределенной по четырем окружающим ионам кислорода (δ); ϵ) энергия двух таких псевдоатомных возбуждений может быть понижена на ΔE_U , если они находятся рядом и образуют псевдомолекулу (ϵ)

дощелевого состояния, вызванного флуктуациями ближнего порядка диэлектрического типа, исследована зависимость скачка теплоемкости в точке перехода от эффективной величины псевдощели для различных типов спаривания. Однако в рамках данной модели не удается объяснить наблюдаемого в эксперименте двукратного уменьшения ΔC при постоянной T_c .

В то же время наблюдаемое поведение согласуется с моделью [11], в которой при $0.8 < \delta < 1.0$ сверхпроводящая фаза образует перколяционный кластер с $T_c \approx 92$ К. С понижением δ мощность перколяционного кластера уменьшается и в соответствии с этим уменьшается и величина скачка теплоемкости. При уменьшении δ ниже порога перколяции δ_c (что должно соответствовать в двумерном случае уменьшению относительной доли сверхпроводящей фазы ниже 0.5) перколяционный кластер распадается на конечные кластеры различного размера, связанные джозефсоновской связью. Рассмотрим подробнее, какой должна быть зависимость $\Delta C/T(\delta)$, исходя из предложенной модели [11].

Исходный пункт данной модели состоит в том, что в недопированных купратах (изоляторах) каждая пара соседних медных ионов в CuO_2 плоскости представляет собой -U-центр (NUC), т.е. энергия, необходимая двум электронам, чтобы перейти с ионов кислорода на два иона меди, будет меньше, если последние находятся на соседних узлах (рис. 2). Понижение энергии оказывается возможным за счет образования связанного состояния (гайтлер-лондоновского типа) двух электронов на соседних ионах Си и двух дырок, возникающих в ближайшей окрестности этой пары катионов.

Это предполагает существование парного электронного состояния ниже дна $Cu3d^{10}$ зоны (рис. 2). Роль допирования при этом сводится к регулированию положения этого парного уровня NUC относительно потолка валентной зоны таким образом, чтобы сделать возможными двухэлектронные переходы между ними. Такие NUC мы будем называть активными. Взаимодействие электронов валентной зоны с активными NUC полагается основным каналом электронного рассеяния, и именно оно является механизмом, обеспечивающим сверхпроводящее спаривание.

Существенно, что допированные заряды полагаются локализованными в окрестности допанта. Для формирования одного активного NUC на данной паре ионов Cu необходимо иметь два соответствующих допированных заряда, расположенных на ближайших от каждого из них кислородных ионах [11]. Каждый такой заряд понижает энергию состояния Cu⁺¹ соответствующего иона Cu на необходимую величину.

С увеличением допирования NUC объединяются в кластеры. Кластером NUC мы называем замкнутую область CuO₂-плоскости, в которой NUC занимают все Cu-узлы. Для YBa₂Cu₃O_{6+ δ}, предполагая случайное заполнение кислородных позиций в цепочках, мы рассчитали количество активных NUC и определили зависимость концентрации носителей от температуры и допирования [11]. Полученная зависимость оказалась в отличном согласии с экспериментом без использования масштабных подгоночных параметров.

В нашей модели сверхпроводимость появляется в кластерах и, если концентрация допанта меньше той, которая соответствует порогу перколяции по кластерам NUC, то образец представляет собой среду, объемная сверхпроводимость в которой устанавливается за счет джозефсоновской связи между кластерами. Кластеры не отличаются друг от друга по концентрации носителей, но отличаются размерами. За размер кластера S мы будем принимать число включенных в него Cu-узлов.

Как было показано [11], такая кластерная структура недодопированной фазы в сочетании с особым механизмом спаривания могут приводить к

Рис. 3. Зависимости температур T^* и T_c от размера S кластера NUC в $YBa_2Cu_3O_{6+\delta}$ при случайном заполнении кислородных позиций в цепочках (на решетке 500×500): a - S < 250000, $\delta - S < 100$

появлению так называемых псевдощелевых аномалий. Дело в том, что в отличие от обычного сверхпроводника с электрон-фононным взаимодействием, где сверхпроводящая щель закрывается за счет тепловых возбуждений над поверхностью Ферми, уменьшающих число состояний, куда могут рассеиваться электронные пары, в нашем случае механизмом, приводящим к подавлению когерентного сверхпроводящего состояния, является заполнение NUC реальными электронами. Поэтому флуктуационное уменьшение заселенности парного электронного уровня будет приводить к флуктуационному «включению» сверхпроводимости при $T^* > T > T_{c\infty}$ (здесь $T_{c\infty}$ — равновесное значение T_c для бесконечного кластера из NUC). В то же время флуктуационное увеличение заселенности парного уровня будет приводить к флуктуационному «выключению» сверхпроводимости при $T_c < T < T_{c\infty}$.

Большие флуктуации заселенности NUC, соответствующие существенному отклонению T^* и T_c от $T_{c\infty}$ возможны в недодопированных образцах, когда значительная часть NUC принадлежит конечным кластерам. С уменьшением допирования средний размер конечных кластеров уменьшается и относительные флуктуации заселенности NUC в этих кластерах нарастают (т. е. T^* растет, а T_c падает). С другой стороны, в передопированном образце, который можно рассматривать как единый бесконечный проводящий кластер, большие флуктуации становятся невозможны. В работе [11], исходя из предложенной модели, для конкретного соединения YBa₂Cu₃O_{6+ δ} были рассчитаны зависимости температур T^* и T_c от размера кластера NUC (рис. 3). В данной модели

Рис.4. Зависимости числа N кластеров NUC от их размера S для различных δ при случайном заполнении кислородных позиций в цепочках. Зависимости N(S) для различных δ сдвинуты последовательно вверх для наглядности. Квадратные скобки на рисунке объединяют группы кластеров с N = 1, 2, 3

обе эти температуры получаются, как два решения одного квадратного уравнения.

Предполагая случайное распределение кислорода в цепочечных плоскостях, мы рассчитали статистику кластеров NUC в CuO₂-плоскости для различных значений δ . Расчет проводился методом Монте-Карло для решетки 500 × 500 Cu-узлов. На рис. 4 приведены полученные зависимости числа кластеров N от их размера S для различных δ . Определенное таким методом значение порога перколяции

Рис. 5. Зависимости относительного объема сверхпроводящей фазы Σ от температуры для различных значений δ . Каждая точка на кривых $\Sigma(T)$ соответствует переходу одного кластера в сверхпроводящее состояние при данной температуре

 δ_c по кластерам NUC составило $\delta_c = 0.78$. Обратим внимание, что если в диапазоне $0 < \delta < 0.78$ средний размер кластеров увеличивается с ростом δ , то в диапазоне $0.78 < \delta < 1$ средний размер конечных (неперколирующих) кластеров уменьшается. Кроме того, как видно на рис. 4, большинство конечных кластеров имеют размеры в диапазоне 10–100 узлов, что, согласно рис. 3, соответствует $T_c = 50$ K–70 K. Это и есть так называемая 60 К-фаза!

Как ранее отмечалось, кластеры NUC не отличаются друг от друга по концентрации носителей, но из-за различия в размерах (т. е. в количестве NUC), они будут иметь различные T_c (рис. 3). Это приводит к тому, что при понижении температуры в образце с данным δ кластеры NUC будут переходить в сверхпроводящее состояние постепенно, начиная с *T* = *T*_{c1} — температуры перехода кластера максимального размера S₁. В соответствии с этим, с понижением температуры ниже T_{c1} будет расти объем сверхпроводящей фазы. На рис. 5 приведены полученные зависимости относительного объема сверхпроводящей фазы Σ от температуры для различных значений δ . Каждая точка на кривых $\Sigma(T)$ соответствует переходу одного кластера в сверхпроводящее состояние при данной температуре.

При таком подходе экспериментально наблюдаемый скачок теплоемкости (при $T = T_{\Delta C}$) на образце с данным значением δ естественно связать с переходом в сверхпроводящее состояние при $T = T_{c1}$ кластера NUC максимального размера S_1 . При этом величина скачка $\Delta C/T$ для данного δ будет пропор-

Рис. 6. Сравнение зависимостей экспериментально измеренного скачка теплоемкости $\Delta C/T$ и рассчитанного размера S_1 максимального кластера NUC от степени допирования δ

Рис.7. Сравнение зависимостей экспериментально измеренной температуры скачка теплоемкости $T_{\Delta C}$ и рассчитанной температуры сверхпроводящего перехода кластера NUC максимального размера T_{c1} от степени допирования δ

циональна S_1 . На рис. 6 сравниваются результаты измерений $\Delta C/T(\delta)$ (в относительных единицах) с зависимостью $S_1(\delta)$. Видно, что обе зависимости достаточно хорошо согласуются друг с другом: и ΔC , и S_1 обращаются в нуль при $\delta < 0.73$. Аналогичное согласие можно видеть и из сравнения зависимостей от допирования температуры скачка теплоемкости $T_{\Delta C}$ и расчетной температуры сверхпроводящего перехода кластера максимального размера

 T_{c1} (рис. 7). Некоторое расхождение при промежуточных значениях δ на рис. 6 объясняется несколько большим значением экспериментального порога перколяции по сравнению с расчетным из-за наличия в цепочках медных вакансий (около 3%), которые не принимались во внимание при расчете, а также взаимодействием кислородных атомов в цепочках и между цепочками, что может приводить к отклонению распределения атомов кислорода в цепочках от случайного.

Переход в сверхпроводящее состояние остальных кластеров, составляющих практически непрерывный спектр размеров (и следовательно, имеющих широкий спектр T_c), проявляется лишь как выпуклость на фоне резкого спада теплоемкости. Со стороны высоких температур эта выпуклость будет ограничена T_{c2} — температурой перехода второго по величине кластера. С уменьшением δ разность $T_{c1}-T_{c2}$ уменьшается.

Таким образом, предложенная модель позволяет дать качественное и количественное объяснение как особенностям поведения скачка теплоемкости в $YBa_2Cu_3O_{6+\delta}$ в зависимости от допирования, так и наличию 90 К- и 60 К-плато на фазовой диаграмме этого соединения.

3. ЗАКЛЮЧЕНИЕ

В настоящей работе выполнены подробные измерения температурной зависимости теплоемкости ВТСП $YBa_2Cu_3O_{6+\delta}$ в диапазоне допирования $0.7 < \delta < 0.84$, соответствующем переходу от 60 К-к 90 К-фазе. Главным результатом работы является вывод о перколяционном характере этого перехода. При этом 90 К-плато соответствует температуре сверхпроводящего перехода перколяционного кластера, в котором относительные флуктуации малы и не влияют на T_c кластера. В то же время так называемое 60 К-плато обязано своим существова-

нием тому факту, что подавляющее большинство конечных кластеров (объединенных джозефсоновскими связями) имеют размеры менее 10 нм, для которых относительные флуктуации достаточно велики и приводят к понижению T_c до 50 K–70 K в зависимости от уровня допирования δ .

Авторы благодарят Ю. В. Копаева и В. М. Пудалова за полезное обсуждение и ценные замечания.

Работа выполнена при финансовой поддержке РФФИ (грант № 08-02-00881).

ЛИТЕРАТУРА

- T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
- K. McElroy, J. Lee, J. A. Slezak et al., Science 309, 1048 (2005).
- M. R. Presland, J. L. Tallon, R. G. Buckley et al., Physica C 176, 95 (1991).
- K. Segawa and Y. Ando, Phys. Rev. Lett. 86, 4907 (2001).
- R. Ofer, S. Levy, A. Kanigel, and A. Keren, Phys. Rev. B 73, 012503 (2006).
- К. В. Мицен, О. М. Иваненко, С. Ю. Буркин, Кратк. сообщ. по физике 6, 18 (2007).
- Y. Koike, T. Adachi, Y. Tanabe et al., J. Phys.: Conf. Ser. 108, 12003 (2008).
- Y. Nakazawa and M. Ishikawa, Physica C 158, 381 (1989).
- J. W. Loram, K. A. Mirza, J. R. Cooper, and W. Y. Liang, Phys. Rev. Lett. 71, 1740 (1993).
- **10**. М. В. Садовский, ЖЭТФ **125**, 854 (2004).
- 11. К. В. Мицен, О. М. Иваненко, ЖЭТФ 135, 1153 (2008).