ПЕРЕХОДНОЙ МАГНИТООТКЛИК ФОТОВОЗБУЖДЕННЫХ ЭЛЕКТРОНОВ: ОТРИЦАТЕЛЬНОЕ ЦИКЛОТРОННОЕ ПОГЛОЩЕНИЕ И ЭВОЛЮЦИЯ УГЛА ФАРАДЕЯ

Ф. Т. Васько^{*}, П. Н. Романец

Институт физики полупроводников Национальной академии наук Украины 03028, Киев, Украина

Поступила в редакцию 26 января 2010 г.

Теоретически изучается переходной магнитооптический отклик электронов с частично инвертированным начальным распределением, которое создается сверхкоротким оптическим импульсом вблизи энергии оптического фонона. Переходное циклотронное поглощение и фарадеевское вращение плоскости поляризации рассмотрены для объемных полупроводников (GaAs, InAs, InSb), а также для квантовой ямы на основе GaAs. В расчете учтены затухание отклика, вызванное релаксацией импульса электронов при упругом рассеянии на акустических фононах, а также эволюция электронного распределения за счет квазиупругой энергетической релаксации на акустических фононах и эффективные неупругие переходы при спонтанном испускании оптических фононов. Рассмотрены нестационарное отрицательное поглощение в условиях циклотронного резонанса и особенности фарадеевского вращения плоскости поляризации, которые обусловлены частичной инверсией начального распределения. Отмечена возможность переходного усиления пробного поля в условиях циклотронного резонанса.

1. ВВЕДЕНИЕ

Магнитооптический отклик свободных носителей — циклотронное поглощение и эффект фарадеевского вращения — рассматривался в ряде работ, изучавших как объемные материалы [1], так и гетероструктуры [2]. Как параметры этих материалов (эффективная масса и время релаксации импульса), так и особенности магнитоотклика (вклад магнитоплазмонов или поляронная перенормировка резонанса) изучены для носителей, находящихся в тепловом равновесии. Ряд результатов по циклотронному поглощению был получен при измерениях отклика оптически возбужденных электронов в объемном кремнии [3] и в сильнолегированной гетероструктуре на основе InSb [4] с временным разрешением порядка микросекунд. На таком временном масштабе особенности отклика, определяемые эволюцией начального пикового распределения фотовозбужденных электронов, не могут быть обнаружены из-за малости времени релаксации энергии по сравнению с временным разрешением. Поэтому изучение переходного магнитоотклика электронов, возбуждаемых

сверхкоротким оптическим импульсом, сейчас актуально с разрешением порядка времени энергетической релаксации в пассивной области (т. е. на наносекундных временных интервалах).

Возможность реализации режима абсолютной отрицательной проводимости при стационарном фотовозбуждении электронов с частично инвертированным распределением вблизи энергии оптического фонона обсуждалась более 40 лет назад [5]. Однако (см. работы [6]), такой режим не был реализован, и только отрицательная проводимость двумерных электронов при микроволновой накачке в квантующем магнитном поле была изучена в последние годы [7]. В работах [8,9] было предложено реализовать режим абсолютной отрицательной проводимости при сверхкоротком фотовозбуждении электронов вблизи энергии оптического фонона с энергией $\hbar\omega_0$, когда распределение на малых временах является частично инвертированным (рис. 1а). В равновесных условиях максимум циклотронного поглощения пропорционален статической проводимости [10], так что при реализации переходной отрицательной проводимости должен иметь место режим отрицательного циклотронного поглощения (этот факт от-

^{*}E-mail: ftvasko@yahoo.com

Рис. 1. а) Формирование начального распределения электронов, возбуждаемых вблизи энергии $\hbar\omega_0$ с последующим испусканием оптического фонона. δ) Эволюция частично инвертированного начального распределения для объемного образца InAs при T = 4.2 К (шаг по времени между кривыми здесь равен 4 нс). в) Геометрия взаимодействия пробного высокочастотного поля в тонкой пластине при отрицательном циклотронном поглощении (*i*, *tr* и *ref* соответствуют падающей, проходящей и отраженной волнам, другие обозначения см. ниже в тексте)

мечался в работах [8], а краткое рассмотрение такого эффекта было проведено в [11]). Кроме того, как показано ниже, в таких условиях изменяется и временная эволюция поляризации: возникают осцилляции фарадеевского угла поляризации.

В настоящей работе изучается переходной магнитоотклик электронов с частично инвертированным распределением, возбужденных сверхкоротким оптическим импульсом (см. эволюцию распределения фотовозбужденных электронов на временах порядка наносекунд, рис. 16). Переходное циклотронное поглощение и фарадеевское вращение плоскости поляризации рассмотрены для объемных полупроводников (GaAs, InAs, InSb), а также для структур, состоящих из многих квантовых ям (МКЯ) на основе GaAs. Вычислен зависящий от времени магнитоотклик и определены условия отрицательного циклотронного поглощения, а также рассмотрены особенности фарадеевого вращения с учетом квазиупругого и сильнонеупругого рассеяния на акустических и оптических фононах. Расчеты отклика проведены для области классических магнитных полей и основаны на кинетическом уравнении, которое описывает отклик объемного электронного газа или двумерных электронов. Также проведено решение волнового уравнения, описывающего взаимодействие пробного поля с электронами после их сверхбыстрого фотовозбуждения в начальный момент времени *t* = 0. Исследуется переходная эволюция интенсивности начального поля и его поляризации для случаев однородного фотовозбуждения электронов в объемном материале (например, при двухфотонных междузонных переходах) или прохождения пробного поля через тонкий слой. Получено гигантское переходное усиление пробного сигнала в условиях циклотронного резонанса и описана переходная эволюция поляризации этого сигнала. Такие эффекты наблюдаются на временах порядка 0.2 нс для объемного образца GaAs и МКЯ на основе GaAs/AlGaAs, а также до 5 нс для объемных образцов InAs и InSb.

Материал статьи изложен следующим образом. Базовые уравнения, описывающие переходной отклик электронов после сверхбыстрого фотовозбуждения, представлены в разд. 2. Временные зависимости интенсивности поля и его поляризационных характеристик для пространственно-однородного случая и тонкой пластины рассмотрены в разд. 3 и 4. Заключительные замечания и обсуждение результатов приведены в последнем разделе.

2. РЕЗОНАНСНЫЙ ОТКЛИК

Начнем с описания отклика фотовозбужденных электронов в классическом магнитном поле **H** на пробное высокочастотное электрическое поле $\operatorname{Re}(\mathbf{E}_t e^{-i\omega t})$ для случая фарадеевской геометрии $\mathbf{H}\perp\mathbf{E}_t$. Такой отклик описывается функцией распределения $f_{\varepsilon t} + \Delta f_{\mathbf{p}t}$, где ε — энергия электронов, \mathbf{p} — двумерный или трехмерный импульс, изотропная часть $f_{\varepsilon t}$ описывает эволюцию распределения фотовозбужденных электронов (начального пика распределения, заданного в момент t = 0) к равновесному максвелловскому распределению [8], причем этот процесс не зависит от **H** [9]. Пропорциональная \mathbf{E}_t асимметричная часть распределения, $\Delta f_{\mathbf{p}t}$, подчиняется линеаризованному уравнению

$$\left(\frac{\partial}{\partial t} + \left[\mathbf{p} \times \boldsymbol{\omega}_{c}\right] \cdot \frac{\partial}{\partial \mathbf{p}} - i\boldsymbol{\omega} + \boldsymbol{\nu}_{\varepsilon}\right) \Delta f_{\mathbf{p}t} = \\ = -e\mathbf{E}_{t} \cdot \frac{\partial f_{\varepsilon t}}{\partial \mathbf{p}}, \quad (1)$$

где $\omega_c = |e|\mathbf{H}/mc$ — вектор циклотронной частоты, а m — эффективная масса электрона. Здесь мы использовали приближение упругого рассеяния с частотой релаксации импульса на акустических фононах, ν_{ε} . Решение уравнения (1) аналогично решению в стационарном случае ($\omega = 0$ [8, 9]) и дается выражением

$$\Delta f_{\mathbf{p}t} = \frac{e}{m} \int_{0}^{t} dt' \exp\left[(i\omega - \nu_{\varepsilon})(t - t')\right] \times \mathbf{p} \cdot \mathbf{K}_{tt'} \left(-\frac{\partial f_{\varepsilon t'}}{\partial \varepsilon}\right), \quad (2)$$

$$\mathbf{K}_{tt'} \equiv \mathbf{E}_{t'} \cos \left[\omega_c(t-t')\right] + \frac{\omega_c \times \mathbf{E}_{t'}}{\omega_c} \sin \left[\omega_c(t-t')\right]$$

и использовано начальное условие $\Delta f_{\mathbf{p},t=0} = 0$, обусловленное отсутствием носителей при t < 0.

Плотность тока записывается в стандартном виде,

$$\mathbf{I}_t = \frac{2e}{L^\ell} \sum_{\mathbf{p}} \mathbf{v} \Delta f_{\mathbf{p}t},$$

где $\mathbf{v} = \mathbf{p}/m$ — скорость электронов, а L^{ℓ} — нормировочный объем или площадь ($\ell = 3$ или $\ell = 2$ для трехмерных или двумерных электронов). Используя асимметричную часть распределения (2), можно выразить \mathbf{I}_t через плотность состояний ρ_{ε} следующим образом:

$$\mathbf{I}_{t} = \frac{e^{2}}{m} \int_{0}^{t} dt' \, \mathbf{K}_{tt'} \times \\ \times \int_{0}^{\infty} d\varepsilon \, \rho_{\varepsilon} \varepsilon \, \exp\left[(i\omega - \nu_{\varepsilon})(t - t')\right] \left(-\frac{\partial f_{\varepsilon t'}}{\partial \varepsilon}\right), \quad (3)$$

причем $\rho_{\varepsilon} \propto \sqrt{\varepsilon}$ или $\rho_{\varepsilon} = \text{const}$ для $\ell = 3$ или $\ell = 2$. Удобно далее перейти к циркулярным координатам, когда «+»- и «-»-вклады в плотность тока разделяются:

$$I_t^{(\pm)} = \int_0^t dt' \, \sigma_{tt'}^{(\pm)} E_{t'}^{(\pm)}$$

Введенные здесь компоненты нелокального тензора проводимости $\sigma_{tt'}^{(\pm)}$ определяются соотношением

$$\begin{aligned}
\tau_{tt'}^{(\pm)} &= \frac{e^2}{m} \exp\left[i(\omega \pm \omega_c)(t - t')\right] \times \\
\times \int_{0}^{\hbar\omega_0} d\varepsilon \,\rho_{\varepsilon}\varepsilon \exp\left[-\nu_{\varepsilon}(t - t')\right] \left(-\frac{\partial f_{\varepsilon t'}}{\partial\varepsilon}\right), \quad (4)
\end{aligned}$$

где мы также пренебрегли вкладом электронов из активной области, $\varepsilon > \hbar \omega_0$.

Таким образом, отклик выражен через функцию $f_{\varepsilon t}$, которая описывает временную эволюцию распределения фотовозбужденных электронов в отсутствие пробного поля. Эти распределения, а также частоты ν_{ε} были проанализированы для трехмерных и двумерных электронов в работах [8, 9], где рассмотрена переходная проводимость фотовозбужденных электронов при наличии статического пробного поля. Особенности эволюции функции распределения $f_{\varepsilon t}$ после фотовозбуждения вблизи $\hbar\omega_0$ обусловлены процессами быстрого испускания оптических фононов из активной области, $\varepsilon > \hbar \omega_0$, и медленного квазиупругого рассеяния на акустических фононах в пассивной области, $\varepsilon < \hbar \omega_0$. При этом электроны вблизи границы активной области (где $\varepsilon \sim \hbar \omega_0$) достаточно быстро переходят в низкоэнергетическую область из-за обусловленной акустическими фононами диффузии электронов в область $\varepsilon > \hbar \omega_0$ с последующим испусканием оптического фонона. На рис. 1 δ приведена временная эволюция $f_{\varepsilon t}$ в объемном образце InAs (подобные результаты для других материалов см. в работах [8, 9]) для начального гауссова распределения

$$f_{\varepsilon}^{(ex)} = N \exp[-(\varepsilon - \hbar\omega_0)^2 / \Delta^2]$$

с шириной Δ и амплитудой N. При этом в предположении $\Delta \ll \hbar \omega_0$ на начальных этапах эволюции реализуется распределение в виде двух полупиков (см. рис. 1*a*).

Энергетические зависимости частот релаксации импульса при T = 4.2 К для квантовой ямы толщиной 10 нм на основе GaAs и для объемных образцов GaAs, InAs, InSb приведены на рис. 2. Расчеты проведены в упругом приближении с учетом пьезоэлектрического и деформационного механизмов взаимодействия с фононными модами [12]. Поскольку величина ν_{ε} слабо зависит от энергии в области $\varepsilon \sim \hbar\omega_0$, можно аппроксимировать частоту релаксации импульса высокоэнергетических электронов постоянной ν_f . Для низкоэнергетических электронов также можно аппроксимировать частоту релаксации импульса ее средним значением ν_s , получаемым при усреднении ν_{ε} по начальному распределению электронов (это значение мало изменяется на рассмот-

Рис. 2. Частоты релаксации импульса на акустических фононах при температуре T = 4.2 K для квантовой ямы толщиной 10 нм на основе GaAs (1), а также для объемных образцов GaAs(2), InSb(3), InAs (4)

ренном ниже временном интервале). При этом значение ν_s зависит от ширины начального распределения $\Delta/\hbar\omega_0$.

Далее ограничимся исследованием переходного отклика на стадии двухпиковой эволюции распределения, когда функция $f_{\varepsilon t}$ обращается в нуль в области энергий $\varepsilon \sim \hbar \omega_0/2$, и используем введенную выше модель с двумя не зависящими от энергии временами релаксации $^{1)}, \nu_s^{-1}$ и $\nu_f^{-1}.$ Вычисляя интеграл в уравнении (4) с учетом $f_{\hbar\omega_0/2,t} \approx 0$, получим нелокальную проводимость как сумму вкладов низко- и высокоэнергетических электронов:

$$\sigma_{tt'}^{(\pm)} \approx \frac{e^2}{m} \exp\left[i(\omega \pm \omega_c)(t - t')\right] \times \\ \times \left\{ \exp\left[-\nu_s(t - t')\right] n_{st'} + \exp\left[-\nu_f(t - t')\right] \left[n_{ft'} - \frac{2}{\ell}(\rho_{\varepsilon}\varepsilon f_{\varepsilon t})_{\varepsilon = \hbar\omega_0}\right] \right\}, \quad (5)$$

где n_{st} и n_{ft} — концентрации соответственно медленных и быстрых электронов, причем $n_{st} + n_{ft} = n_{ex}$ полная концентрация фотовозбужденных электронов. На временах убывания функции $f_{\hbar\omega_0,t}$ (см.

Рис. 3. Временная эволюция функции распределения на границе активной и пассивной областей для квантовой ямы толщиной 10 нм на основе GaAs (a) и для объемных образцов InAs (b), GaAs (b), InSb (г). Штриховые линии соответствуют численным результатам работ [8, 9], сплошные — экспоненциальному приближению (6) со значениями $\widetilde{\nu}$ и

Г, приведенными в сносках 1 и 2

рис. 16 и 3) концентрации n_{st} и n_{ft} изменяются мало, и поэтому $n_{st} \approx n_{ft} \approx n_{ex}/2$. Уравнение (5) в приближении экспоненциального затухания распределения на границе пассивной области упрощается:

$$f_{\hbar\omega_0,t} \approx f_{\hbar\omega_0}^{(ex)} \exp(-\widetilde{\nu}t), \tag{6}$$

как показано на рис. 3. Эффективное обратное время релаксации $\tilde{\nu}$ по порядку величины равно обратному времени релаксации импульса. Таким образом, ядра $\sigma_{tt'}^{(\pm)}$ выражаются через обратные времена релаксации, ν_s, ν_f и $\widetilde{\nu}$, а также безразмерный параметр

$$\Gamma = 2(\rho_{\varepsilon}\varepsilon)_{\varepsilon=\hbar\omega_0} \frac{f_{\hbar\omega_0}^{(ex)}}{\ell n_{ex}} \approx \frac{2\hbar\omega_0}{\sqrt{\pi}\,\ell\Delta}$$

При дальнейших расчетах используются численные значения параметров для объемных материалов и для МКЯ, вычисленные при $\Delta/\hbar\omega_0 = 0.1, 0.2, 0.3$ (в случае узкощелевых полупроводников)²⁾.

¹⁾ Обратные времена релаксации $\nu_s^{-1}, \, \nu_f^{-1}, \, \tilde{\nu}^{-1},$ используемые при аппроксимации с помощью уравнений (5) и (6), полагаем равными ν_s^{-1} = 3.3 нс, ν_f^{-1} = 2.6 нс, $\tilde{\nu}^{-1}$ = 2.7 нс для InAs; $\nu_s^{-1}=2$ нс, $\nu_f^{-1}=2.4$ нс, $\tilde{\nu}^{-1}=2.6$ нс для InSb; $\nu_s^{-1}=0.18$ нс, $\nu_f^{-1}=0.19$ нс при $\Delta/\hbar\omega_0=0.1$ или $\nu_s^{-1}=0.22$ нс, $\nu_f^{-1}=0.19$ нс при $\Delta/\hbar\omega_0=0.2$ и $\widetilde{\nu}^{-1}=0.16$ нс для GaAs; $\nu_s^{-1} \stackrel{'}{=} 0.06$ нс при $\Delta/\hbar\omega_0 = 0.1$ или $\nu_s^{-1} = 0.07$ нс при $\Delta/\hbar\omega_0 = 0.2$ и $\nu_f^{-1} = 0.08$ нс, $\tilde{\nu}^{-1} = 0.09$ нс для GaAs (квантовая яма).

 $^{^{2)}}$ Безразмерный параметр $\Gamma \approx 2 \hbar \omega_0 / \sqrt{\pi} \ell \Delta$ изменяется от $\Gamma \approx 5.6$ (при $\ell = 2$ и $\Delta/\hbar\omega_0 = 0.1$) до $\Gamma \approx 1.2$ (при $\ell = 3$ и $\Delta/\hbar\omega_0 = 0.3$).

Ниже при анализе магнитоотклика мы ограничимся резонансным приближением, когда можно пренебречь нерезонансным вкладом фотовозбужденных электронов, т.е. $\sigma_{tt'}^{(+)} \approx 0$ можно отбросить, так что решение волнового уравнения для «+»-компоненты поля дается выражением $E_i \exp(ik_\omega z - i\omega t)/2$, где $k_\omega = \omega \sqrt{\epsilon}/c$, а ϵ — диэлектрическая проницаемость среды. Далее рассмотрим временную эволюцию пробного электрического поля $E_{zt}^{(-)} \exp(-i\omega t)$, обусловленную фототоком, который описывается уравнениями (3)–(6). Волновое уравнение для огибающей $E_{zt}^{(-)}$ записывается в виде

$$\left(\frac{\partial^2}{\partial z^2} + k_{\omega}^2 + i\frac{2k_{\omega}^2}{\omega}\frac{\partial}{\partial t}\right)E_{zt}^{(-)} - \frac{i\frac{4\pi\omega}{c^2}}{\int_0^t}dt'\sigma_{tt'}^{(-)}(z)E_{zt'}^{(-)} = 0.$$
 (7)

Здесь мы пренебрегли малой производной по времени, заменяя $\partial/\partial t - i\omega$ на $-i\omega$, что предполагает медленное изменение огибающих $E_{zt}^{(-)}$ и $I_t^{(-)}$ на временах порядка $2\pi/\omega$. Мы также используем локальную зависимость от координат, когда $\sigma_{tt'}^{(-)}$ параметрически зависит от z через концентрацию $n_{ex}(z)$. Уравнение (7) должно решаться с начальными условиями при t = 0 и подходящими граничными условиями (ниже рассмотрены пространственно-однородная задача и случай тонкой пластины).

Используя решения уравнения (7), можно анализировать эволюцию вектора Пойнтинга и поляризационных характеристик отклика. Временная эволюция вектора Пойнтинга, $S_{zt} = S_i/4 + S_t^{(-)}$, определяется через введенные выше циркулярные компоненты $E_t^{(\pm)}$ согласно выражению [13]:

$$S_t^{(-)} = \frac{c^2}{16\pi\omega} \operatorname{Re}\left(iE_{zt}^{(-)}\frac{\partial E_{zt}^{(-)*}}{\partial z}\right),\tag{8}$$

где $S_i/4$ — вклад от нерезонансной «+»-компоненты. Поляризационные свойства отклика (т. е. ориентация плоскости поляризации поля) описываются углом Фарадея θ_t , определяемым соотношением

$$\operatorname{tg} \theta_t = \frac{\operatorname{Im} \left(E_i - 2E_t^{(-)} \right)}{\operatorname{Re} \left(E_i + 2E_t^{(-)} \right)}, \tag{9}$$

причем с ростом t реализуются углы θ_t , заметно превышающие 2π , т. е. имеет место многократное вращение плоскости поляризации. ЖЭТФ, том **138**, вып. 1 (7), 2010

Рассмотрим вначале однородный случай, когда уравнение (7) содержит не зависящее от z ядро $\sigma_{tt'}^{(-)}$, а начальное условие имеет вид $E_{z,t=0}^{(-)} = E_i \exp{(ik_\omega z)}/2$. Таким образом, $E_{zt}^{(-)} =$ $= E_t^{(-)} \exp{(ik_\omega z)}$, где $E_t^{(-)}$ медленно изменяется на временах порядка ω^{-1} , причем $E_{t=0}^{(-)} = E_i/2$. Подставляя такое выражение в (7), получаем для $E_t^{(-)}$ интегродифференциальное уравнение

$$\frac{\partial E_t^{(-)}}{\partial t} + \frac{2\pi}{\epsilon} \int_0^t dt' \sigma_{tt'}^{(-)} E_{t'}^{(-)} = 0.$$
(10)

При использовании приближенного выражения (5) это уравнение содержит два интегральных вклада с экспоненциальной временной зависимостью. Поэтому можно преобразовать уравнение (10) к дифференциальной форме, дважды его продифференцировав и исключив интегральные вклады из полученной системы трех уравнений. В результате приходим к дифференциальному уравнению третьего порядка:

$$\left(\frac{d}{dt} - i\Omega_f\right) \left(\frac{d}{dt} - i\Omega_s\right) \frac{dE_t^{(-)}}{dt} + \frac{\omega_p^2}{4} \left[\frac{d}{dt} - i\Omega_f + \left(\frac{d}{dt} - i\Omega_s\right)g_t\right] E_t^{(-)} = 0, \quad (11)$$

где $\Omega_{f,s} \equiv \omega - \omega_c + i\nu_{f,s}$, а также введены плазменная частота $\omega_p^2 = 4\pi n_{ex}/\epsilon m$ и функция $g_t \equiv$ $\equiv 1 - 2\Gamma \exp(-\tilde{\nu}t)$. Дифференциальное уравнение (11) эквивалентно уравнению (10), если его дополнить начальными условиями

$$E_{t=0} = \frac{E_i}{2}, \quad \frac{dE_t}{dt}\Big|_{t=0} = 0,$$

$$\frac{d^2 E_t}{dt^2}\Big|_{t=0} = -\frac{\omega_p^2}{4}(1-\Gamma)E_i,$$
(12)

содержащими неоднородные (пропорциональные E_i) вклады.

Перед рассмотрением результатов численного решения задачи (11), (12) обсудим упрощенный случай, $\nu_s \approx \nu_f \equiv \nu$, когда уравнение (11) сводится к дифференциальному уравнению второго порядка с начальными условиями для поля и его производной, а вместо g_t возникает функция $\tilde{g}_t = (1 + g_t)/2$. Далее, вводя характерное время $t_c = \tilde{\nu}^{-1} \ln \Gamma$, при котором эта функция меняет знак, аппроксимируем \tilde{g}_t ступенчатой функцией,

$$\widetilde{g}_t = \begin{cases} \widetilde{g}, & t < t_c, \\ 1, & t > t_c, \end{cases}$$
(13)

причем $\tilde{g} = (1 - \Gamma + \ln \Gamma) / \ln \Gamma$ определяет среднее значение \tilde{g}_t на интервале $t < t_c$. Решение такой упрощенной задачи имеет вид

$$E_t^{(-)} = = \begin{cases} A_+ \exp(\alpha_+ t) + A_- \exp(\alpha_- t), & t < t_c, \\ B_+ \exp(\beta_+ t) + B_- \exp(\beta_- t), & t > t_c, \end{cases}$$
(14)

где введены корни характеристического уравнения

$$\alpha_{\pm} = \frac{i\Omega}{2} \pm i\sqrt{\left(\frac{\Omega}{2}\right)^2 + \frac{\widetilde{g}\omega_p^2}{2}},$$

$$\beta_{\pm} = \frac{i\Omega}{2} \pm i\sqrt{\left(\frac{\Omega}{2}\right)^2 + \frac{\omega_p^2}{2}}.$$
(15)

Здесь $\Omega \equiv \omega - \omega_c + i\nu$, а пропорциональные E_i предэкспоненциальные коэффициенты A_{\pm} и B_{\pm} выражаются через корни (15) и экспоненты $\exp(\alpha_{\pm}t_c)$ и $\exp(\beta_{\pm}t_c)$. Легко проверить, что при условии $\omega \approx \omega_c$ и при выполнении требования $\tilde{g} < 0$ имеет место неравенство $\operatorname{Re} \alpha_+ > 0$, когда реализуется экспоненциальный рост огибающей поля на интервале $0 < t < t_c$. Это обстоятельство и приводит к гигантскому росту отклика на пробное поле в условиях циклотронного резонанса (см. рис. 4 и 5). Кроме того, на интервале $t > t_c$ при выполнении условия $\omega_p \gg \nu/\sqrt{2}$ имеет место вклад в поле, который осциллирует с частотой, близкой к $\omega_p/\sqrt{2}$.

Временные зависимости для x- и y-компонент поля, полученные при численном решении уравнения (11) с начальными условиями (12), приведены на рис. 4 для гелиевой температуры (см. параметры в сносках 1 и 2). Из-за наличия экспоненциально большого фактора $\exp(\alpha_+ t_c)$ имеет место гигантское (на несколько порядков) возрастание пробного поля E_{in} на интервале (0, t_c), тогда как при $t > t_c$ отклик затухает. Фазовый сдвиг между x- и y- компонентами обусловлен наличием в (14) расстройки частоты, $\omega_c - \omega$, а биения отклика возникают при расстройках, малых по сравнению с плазменной частотой.

Эволюция вектора Пойнтинга, определяемая при подстановке полученных компонент поля в выражение (8), показана на рис. 5. На начальных этапах величина S_t заметно меньше максимального значения S_{max} , т. е. имеет место эффект запаздывания отклика. В условиях циклотронного резонанса реализуется экспоненциальный рост S_t на временах

Рис. 4. Временные зависимости компонент электрического поля E_x (сплошная кривая) и E_y (штриховая) при однородном фотовозбуждении с расстройкой частоты $\omega_c - \omega = 10\nu_s$ для GaAs при $\Delta/\hbar\omega_0 = 0.2$, $n_{ex} = 10^{13}$ см⁻³ (a) и InAs при $\Delta/\hbar\omega_0 = 0.3$, $n_{ex} = 10^{12}$ см⁻³ (б)

 $t \sim t_c$, т.е. имеет место гигантское (так как величина S_{max} квадратична по полю) переходное усиление пробного сигнала интенсивности S_i. Вне резонанса S_{max} уменьшается, а форма отклика искажается и появляется дополнительная модуляция величины S_t , обусловленная мнимыми вкладами в корни (15), см. рис. 5. При $t \ge t_c$ происходит уменьшение отклика, которое сопровождается осцилляциями на плазменной частоте. При этом значение S_{max}/S_i резко возрастает с ростом n_{ex} и с уменьшением отношения $\Delta/\hbar\omega_0$ (см. сноску 2). При фиксированной концентрации носителей эффективность резонансного усиления возрастает с ростом ω_p , так что максимальный отклик имеет место для InSb (рис. 5г). Кроме того, запаздывание отклика более выражено для узкощелевых материалов из-за малой частоты релаксации импульса (см. рис. 2). На интервале $t \gg t_c$ экспоненциальное обращение поля в нуль идет с декрементом $\widetilde{\nu}$, т.е. затягивается примерно до времен t_{max} , определяемых соотношением $S_{max} \exp(-\tilde{\nu} t_{max}) \approx S_i$. Для GaAs и МКЯ на основе GaAs величина t_{max} составляет несколько наносекунд и $t_{max} > 50$ нс для узкощелевых полупроводников (см. рис. 6; аналогичные хвосты эволюции не показаны на рис. 5).

Эволюция угла Фарадея, получаемого при подстановке решений задачи (11), (12) в выражение (9), показана на рис. 6. Прежде всего, $\theta_t = 0$ в условиях

Рис.5. Эволюция нормированного вектора Пойнтинга S_t/S_i при однородном фотовозбуждении и расстройке $\omega_c - \omega = 0$, $5\nu_s$, $10\nu_s$, $15\nu_s$ (соответственно сплошная, штриховая, пунктирная и штрихпунктирная линии) для GaAs при $\Delta/\hbar\omega_0 = 0.2$, $n_{ex} = 5 \cdot 10^{12}$ см⁻³ (a); GaAs при $\Delta/\hbar\omega_0 = 0.2$, $n_{ex} = 10^{13}$ см⁻³ (b); GaAs при $\Delta/\hbar\omega_0 = 0.1$, $n_{ex} = 5 \cdot 10^{12}$ см⁻³ (c); InSb при $\Delta/\hbar\omega_0 = 0.3$, $n_{ex} = 10^{12}$ см⁻³ (c); InAs при $\Delta/\hbar\omega_0 = 0.3$, $n_{ex} = 10^{12}$ см⁻³ (c);

циклотронного резонанса (при $\omega_c = \omega$), поскольку решением уравнения (11) будет вещественное поле $E_t^{(-)}$. Поскольку $|\theta_t|/\pi \gg 1$, в процессе переходной эволюции имеет место многократное вращение вектора поляризации. При $t \sim t_{max}$ поле обращается в нуль, так что рост величины $|\theta_t|$ (т.е. фарадеевское вращение) прекращается. Временные зависимости угла θ_t при $t < t_c$ близки к линейным, причем $d\theta_t/dt$ возрастает с ростом плазменной частоты, так

Рис. 6. Эволюция угла поворота плоскости поляризации (угла Фарадея θ_t) для тех же условий, что и на рис. 5

что величина $|\theta_{t_{max}}|$ возрастает с увеличением концентрации как в GaAs, так и в узкощелевых полупроводниках. Имеются также осцилляционные вклады в фарадеевское вращение (с амплитудой порядка π для GaAs), обусловленные изменением $d\theta_t/dt$ из-за плазменных осцилляций поля (такие малые вклады можно выделить, используя приближение (13)). Подобные ступенчатые временные зависимости θ_t заметно возрастают для InSb и InAs (рис. 6z, d) из-за биений поля (см. рис. 5δ), и осцилляции размываются когда разность $\omega_c - \omega$ или величина ν сравнима с ω_p .

4. СЛУЧАЙ ТОНКОЙ ПЛАСТИНЫ

Рассмотрим теперь случай тонкой пластины или квантовой ямы, когда фотовозбужденные электроны локализованы вблизи плоскости z = 0 в области, ширина d которой много меньше длины волны. Для трехмерного случая ($\ell = 3$) введенная в (5) проводимость $\sigma_{tt'}^{(-)}(z)$ включает зависимость от поперечной координаты z, определяемую концентрацией $n_{ex}(z)$ фотовозбужденных электронов, локализованных в пластине, |z| < d/2. В квантовой яме возбуждается индуцированный ток с плотностью

$$I_t^{(-)}(z) = \int_0^t dt' \int dz' \sigma_{tt'}^{(-)}(z,z') E_{z't'}^{(-)}$$

При плавном изменении поля в этом выражении возникает множитель $\int dz' \sigma_{tt'}^{(-)}(z,z')$, который приближенно пропорционален плотности $|\psi_0(z)|^2$ фотовозбужденных электронов ($\psi_0(z)$ — волновая функция основного состояния). Если $|z| \gg d/2$ (приближение дальней зоны), то можно использовать уравнение (7) без токового вклада, дополненное граничным условием непрерывности поля,

$$E_{zt}^{(-)}\Big|_{-0}^{0} = 0,$$

а также условием

$$\frac{\partial E_{zt}^{(-)}}{\partial z}\bigg|_{-0}^{0} + ik_{\omega}^{2}\frac{4\pi}{\epsilon\omega}\int_{0}^{t}dt'\overline{\sigma}_{tt'}E_{z=0,t'}^{(-)} = 0, \qquad (16)$$

в котором введена эффективная проводимость слоя $\overline{\sigma}_{tt'} = \int_{(d)} dz \, \sigma_{tt'}^{(-)}(z)$ для трехмерного случая или $\overline{\sigma}_{tt'} = \int_{(d)} dz \int_{(d)} dz' \sigma_{tt'}^{(-)}(z,z')$ для двумерного. Выделив в решении задачи падающее излучение, $E_i \exp(ik_\omega z)/2$, можно искать поле в виде

$$E_{zt}^{(-)} = \frac{E_i}{2} \exp(ik_{\omega}z) + \\ + \begin{cases} E_{t+z/\overline{c}}^{(ref)} \exp(-ik_{\omega}z), & z < 0, \\ E_{t-z/\overline{c}}^{(tr)} \exp(ik_{\omega}z), & z > 0, \end{cases}$$
(17)

где введены отраженная (ref) и прошедшая (tr) компоненты поля, а \overline{c} — скорость света в среде.

Огибающие поля в выражении (16) определяются функциями, $E_{t+z/\overline{c}}^{(ref)}$ и $E_{t-z/\overline{c}}^{(tr)}$, которые находятся из граничного условия в точке z = 0. Поскольку поле непрерывно в точке z = 0, имеет место равенство $E_t^{(ref)} = E_t^{(tr)} \equiv \mathcal{E}_t$, а первое слагаемое в уравнении (16) преобразуется следующим образом:

$$\frac{\partial E_{zt}^{(-)}}{\partial z} \bigg|_{-0}^{0} = 2ik_{\omega}\mathcal{E}_{t} - \frac{1}{\overline{c}} \frac{d\mathcal{E}_{t}}{dt} \approx 2ik_{\omega}\mathcal{E}_{t}, \qquad (18)$$

так что граничные условия в точке z = 0 приводят к интегральному уравнению

$$\mathcal{E}_t + \frac{2\pi k_\omega}{\epsilon\omega} \int\limits_0^t dt' \overline{\sigma}_{tt'} \left(\mathcal{E}_{t'} + \frac{E_i}{2} \right) = 0.$$
(19)

Это уравнение может быть преобразовано к эквивалентной дифференциальной форме подобно тому, как уравнение (10) преобразовано в (11).

В результате такого преобразования получаем дифференциальное уравнение второго порядка

$$\left(\frac{d}{dt} - i\Omega_f\right) \left(\frac{d}{dt} - i\Omega_s\right) \mathcal{E}_t + \frac{\omega_{\ell D}}{4} \times \left[\frac{d}{dt} - i\Omega_f + \left(\frac{d}{dt} - i\Omega_s\right)g_t\right] \left(\mathcal{E}_t + \frac{E_i}{2}\right) = 0 \quad (20)$$

с начальными условиями

$$\mathcal{E}_{t=0} = 0, \quad \left. \frac{d\mathcal{E}_t}{dt} \right|_{t=0} = -\frac{\omega_{\ell D}}{4} (1-\Gamma) E_i, \qquad (21)$$

где для тонкой пластины и квантовой ямы введены характерные частоты

$$\omega_{2D} = \frac{4\pi n_{2D} e^2}{m\overline{c}\sqrt{\epsilon}}, \quad \omega_{3D} = \frac{\omega_p^2 k_\omega d}{\omega}$$

Для упрощенного случая $\nu_s = \nu_f \approx \nu$, когда $\Omega_s \approx \Omega_f \equiv \Omega$, уравнение (20) сводится к дифференциальному уравнению первого порядка, решение которого имеет вид

$$\mathcal{E}_{t} = -\frac{E_{i}\omega_{\ell D}}{2} \int_{0}^{t} dt'(1+g_{t'}) \times \\ \times \exp\left\{\int_{t'}^{t} d\tau \left[i\Omega - \frac{\omega_{\ell D}(1+g_{\tau})}{4}\right]\right\}, \quad (22)$$

так что описание отклика сводится к вычислению комплексных интегралов.

Временные зависимости для компонент поля E_x и E_y , получаемые с помощью численного решения задачи (20), (21) (приближенное решение (22) дает зависимости, отличающиеся от численных результатов менее чем на 20%), показаны на рис. 7. Здесь использованы приведенные выше параметры (см. сноски 1 и 2) для объемных материалов и для квантовой ямы GaAs толщиной 10 нм при T = 4.2 K; толщина пластины d = 0.08 см для GaAs или d = 0.04 см

Рис.7. Временные зависимости компонент поля E_x (сплошная кривая) и E_y (штриховая) при фотовозбуждении тонкой пластины для МКЯ на основе GaAs при $\Delta/\hbar\omega_0 = 0.1$, $n_{ex} = 5\cdot 10^{10}$ см⁻², $\omega_c - \omega = 3\nu_s$ (a) и InAs при $\Delta/\hbar\omega_0 = 0.3$, $n_{ex} = 5\cdot 10^{12}$ см⁻³, $\omega_c - \omega = 10\nu_s$ (б)

для InAs, а значения n_{ex} и величины расстройки $\omega_c - \omega$ указаны в подписи к рисунку. В отличие от рассмотренного выше однородного случая, теперь отсутствуют биения отклика, обусловленные плазменными осцилляциями (ср. с рис. 5), а его максимальное значение увеличивается с ростом двумерной концентрации n_{2D} фотовозбужденных носителей или величины $n_{ex}d$ в объемном случае.

Временная эволюция вектора Пойнтинга, получаемая в результате подстановки численного решения задачи (20), (21) в (8), показана рис. 8. В отличие от однородного случая, характерные масштабы нарастания и спадания отклика определяются главным образом величиной $\omega_{\ell D}^{-1}$, а не временами релаксации. Поскольку рост и затухание отклика определяются одними и теми же параметрами, в резонансе реализуется пиковый режим временной эволюции вектора Пойнтинга. В отличие от однородного случая, условия гигантского усиления оказываются более жесткими, так что этот режим реализуется лишь для параметров рис. 8г, причем имеет место резкий порог усиления (ср. рис. 8 в и 8 г) переходного отклика. Стационарные значения S_t/S_i на больших временах согласуются с расчетом линейного отклика для гармонического возбуждения. Вне резонанса возникают осцилляции S_t/S_i, обусловленные осцилляциями поля, см. рис. 7а и 8а.

Рис. 8. Временная эволюция относительной величины вектора Пойнтинга при фотовозбуждении тонкой пластины для МКЯ на основе GaAs при $\Delta/\hbar\omega_0 = 0.2, n_{ex} = 5\cdot 10^{10}$ см⁻² (a) и $\Delta/\hbar\omega_0 = 0.1, n_{ex} = 5\cdot 10^{10}$ см⁻² (b); для объемного образца GaAs при $\Delta/\hbar\omega_0 = 0.2, n_{ex} = 10^{13}$ см⁻³ (b) и $\Delta/\hbar\omega_0 = 0.1, n_{ex} = 10^{13}$ см⁻³ (c); для объемных образцов InSb при $\Delta/\hbar\omega_0 = 0.3, n_{ex} = 5\cdot 10^{12}$ см⁻³ (d) и InAs при $\Delta/\hbar\omega_0 = 0.3, n_{ex} = 5\cdot 10^{12}$ см⁻³ (e). Сплошная, штриховая, пунктирная и штрихпунктирная кривые соответствуют расстройкам $\omega_c - \omega = 0, \nu_s, 2\nu_s, 3\nu_s$ (a, b) и $\omega_c - \omega = 0, 5\nu_s, 10\nu_s, 15\nu_s$ (6-c)

Рис. 9. Эволюция угла поворота плоскости поляризации (угла Фарадея θ_t) для тех же условий, что и на рис. 8

Временные зависимости угла Фарадея, определяемого соотношением (9) и решениями задачи (20), (21) построены на рис. 9. Как и в однородном случае, при циклотронном резонансе $\theta_t = 0$, поскольку решение (22) дает действительное поле при $\omega_c = \omega$. В отличие от однородного случая, теперь $|\theta_t|$ не превышает нескольких π , если не реализуется режим гигантского усиления (на рис. 9*г*, соответствующем рис. 8*г*, $|\theta_t|$ возрастает примерно до 40 π). Переход на стационарный режим для GaAs идет на временах того же порядка, что и эволюция S_t/S_i . Стационарные значения $\theta_{t\to\infty}$ также согласуются с результатами расчета для гармонического возбуждения. Поскольку осцилляции компонент поля определяются расстройкой частоты, имеет место вращение плоскости поляризации, когда величина $|\omega_c - \omega|$ сравнима с $\omega_{\ell D}$. Кроме того, скачки θ_t обусловлены почти одновременным изменением знаков *x*- и *y*-компонент поля (например, кривые на рис. 76 при $t \approx 1.2$ нс соответствует скачку θ_t на рис. 9*e*).

5. ЗАКЛЮЧЕНИЕ

Рассмотрены особенности высокочастотного магнитоотклика электронов при переходном процессе от фотовозбужденного начального распределения, частично инвертированного вблизи границы пассивной области, к равновесному распределению. Рассчитан резонансный отклик для области классических магнитных полей. На начальных временах обнаружено гигантское отрицательное циклотронное поглощение. Такой эффект имеет место как для объемных образцов GaAs, InAs и InSb, так и для МКЯ на основе GaAs и обусловлен реализацией режима абсолютной отрицательной проводимости аналогично случаю отклика на статическое пробное поле [5]. Кроме того показано, что вне резонанса имеет место немонотонный переходной процесс поворота плоскости поляризации.

Обсудим теперь приближения, использованные в этом расчете. Основное ограничение связно с рассмотрением области низких концентраций фотовозбужденных электронов, когда электрон-электронное рассеяние не влияет существенно на переходную эволюцию распределения. Это требование соответствует рассмотренной выше области концентраций, не превышающих 10^{13} см⁻³ для трех- или 10^{10} см⁻² для двумерных электронов. Такие оценки соответствуют объемным материалам [12,14] (для узкощелевых материалов граничные концентрации несколько возрастают из-за малости эффективной массы) и МКЯ [15] (использованные в расчете концентрации соответствуют пяти-десятислойным структурам) на основе GaAs. Здесь проведено лишь классическое описание отклика, т. е. считается, что характерный масштаб неравновесного распределения превышает энергии $\hbar \omega$ и $\hbar \omega_c$ (аналогичные особенности имеют место и для квантующих магнитных полей, когда необходимо специальное рассмотрение). Использован также ряд стандартных ограничений, упрощающих описание. Во-первых, нелокальная проводимость (4) записана через частоты релаксации и, во-вторых, рассмотрен лишь предельный случай прохождения через тонкую пластину, когда интерференционные эффекты несущественны.

Кроме того, в разд. 3 рассмотрены переходное нарастание заданного в начальный момент поля и его последующее затухание в пространственно-однородном случае. Такой подход лишь демонстрирует механизм гигантского усиления³⁾, когда возможна неустойчивость отклика, для описания которой необходимо решение нелинейной задачи при неоднородной геометрии (этот случай требует специального рассмотрения). Отметим, что в недавних экспериментах [16] наблюдались особенности переходного циклотронного поглощения при фотовозбуждении германия. Однако эти измерения проведены с недостаточным временным разрешением, а их интерпретация требует расчета фотовозбуждения и релаксации для многодолинных полупроводников.

Проведенное рассмотрение может стимулировать экспериментальное изучение переходного магнитооптического отклика с целью обнаружения отрицательного циклотронного поглощения, а также может быть использовано для оценки возможности реализации переходного циклотронного излучателя.

ЛИТЕРАТУРА

- B. Lax and J. G. Mavroides, in *Solid State Physics*, Vol. 11, ed. by F. Seitz and D. Turnbull, Acad. Press, New York (1960); E. D. Palik and J. K. Furdyna, Rep. Progr. Phys. **33**, 1193 (1970), p. 261.
- R. J. Nicholas, in *Handbook on Semiconductors*, Vol. 2, ed. by M. Balkanski, Elsevier Sci. Publ., Amsterdam (1994), p. 385.
- T. Ohyama, T. Sanada, and E. Otsuka, J. Phys. Soc. Jpn. 35, 822 (1973).
- 4. G. A. Khodaparast, D. C. Larrabee, J. Kono et al., Phys. Rev. B 67, 035307 (2003).

- В. Ф. Елесин, Э. А. Маныкин, Письма в ЖЭТФ 3, 26 (1966); ЖЭТФ 50, 1381 (1966); Н. J. Stocker and H. Kaplan, Phys. Rev. 150, 619 (1966); Н. J. Stocker, Phys. Rev. Lett. 18, 1197 (1967).
- В. Ф. Елесин, УФН 175, 197 (2005); В. Ф. Гантмахер, В. Н. Зверев, УФН 175, 201 (2005).
- 7. R. Fitzgerald, Phys. Today 56, 24 (2003); A. C. Durst and S. H. Girvin, Science 304, 1762 (2004); В. И. Рыжий, УФН 175, 205 (2005); С. И. Дорожкин, УФН 175, 213 (2005).
- Ф. Т. Васько, Письма в ЖЭТФ 79, 539 (2004);
 О. Е. Raichev and F. T. Vasko, Phys. Rev. В 73, 075204 (2006).
- O. E. Raichev and F. T. Vasko, Phys. Rev. B 74, 075309 (2006).
- А. И. Ансельм, Введение в теорию полупроводников, Наука, Москва (1978).
- P. N. Romanets, F. T. Vasko, and V. I. Ryzhii, Phys. Stat. Sol. (c) 5, 269 (2008).
- 12. В. Ф. Гантмахер, И. Б. Левинсон, Рассеяние носителей тока в металлах и полупроводниках, Наука, Москва (1984).
- 13. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, Москва (1982).
- 14. T. Elsaesser, J. Shah, L. Rota, and P. Lugli, Phys. Rev. Lett. 66, 1757 (1991).
- 15. M. Hartig, J. D. Ganiere, P. E. Selbmann et al., Phys. Rev. B 60, 1500 (1999); K. Kempa, P. Bakshi, J. Engelbrecht, and Y. Zhou, Phys. Rev. B 61, 11083 (2000).
- H. E. Porteanu, O. Loginenko, and F. Koch, AIP Conf. Proc. 772, 1196 (2005); H. E. Porteanu, Rev. Sci. Instrum. 76, 035106 (2005).

³⁾ Для условий, использованных при построении рис. 5, возможно даже усиление начального поля равновесного теплового излучения до наблюдаемых значений. При гелиевой температуре и длине волны 3 мм для начального теплового потока S_0 на полосе гигантского переходного усиления циклотронного резонанса имеем оценку $S_0 \sim 10^{-(11 \div 14)} \, {\rm Br/cm}^2 \cdot {\rm c}$, так что величина S_{max} достигает значений от мкВт/см² · с для объемного GaAs до более ${\rm Br/cm}^2 \cdot {\rm c}$ для узкощелевых материалов.