ПРОБЛЕМА СТРОЕНИЯ (СОСТОЯНИЯ ГЕЛИЯ) В МАЛЫХ КЛАСТЕРАХ Не_N-CO

А. В. Потапов^{а,b*}, В. А. Панфилов^а, Л. А. Сурин^{а,b}, Б. С. Думеш^а

^а Институт спектроскопии Российской академии наук 142190, Троицк, Московская обл., Россия

^bI. Physikalisches Institut, University of Cologne 50937, Cologne, Germany

Поступила в редакцию 15 апреля 2010 г.

Теория возмущений второго порядка, развитая для расчета уровней энергии бинарного комплекса He-CO, была применена для малых кластеров He_N-CO с N = 2-4, при этом атомы гелия рассматривались как единый связанный объект. Потенциал взаимодействия между молекулой CO и He_N представлялся в виде линейного разложения по полиномам Лежандра, причем нулевым приближением был выбран предел свободных вращений, а угловая зависимость взаимодействия рассматривалась как малое возмущение. Путем сравнения расчетных вращательных переходов с экспериментальными и подбора параметров потенциала оптимальным образом достигнуто хорошее согласие рассчитанных уровней энергии с определенными из эксперимента (отклонение менее 1%). В результате получен вид угловой анизотропии потенциала взаимодействия для разных кластеров. Оказалось, что положение минимума потенциальной энергии плавно сдвигается от значения угла $\theta = 100^\circ$ между осью CO и осью кластера в He-CO к $\theta = 180^\circ$ (кислородный конец) в He_3-CO и He_4-CO . В предположении цилиндрической симметрии распределения атомов гелия относительно оси кластера форму последних можно представить как пирамиду с молекулой CO в вершине.

1. ВВЕДЕНИЕ

Изучение кластеров привлекает к себе большое внимание, поскольку позволяет связать между собой квантовый микромир отдельных атомов и молекул и термодинамический макромир конденсированных сред. Особое место занимают исследования гелиевых нанокапель (состоящих из 10³–10⁴ атомов гелия) [1] и малых гелиевых кластеров (содержащих менее 100 атомов гелия) [2] с внедренной молекулой-хромофором, направленные на более глубокое понимание одного из интереснейших квантовомеханических явлений — сверхтекучести жидкого гелия. Ответы на следующие вопросы представляют несомненный фундаментальный интерес:

1) сколько нужно атомов гелия для наступления сверхтекучести;

 какова связь между сверхтекучестью и обнаруженным уже для нескольких атомов гелия проскальзыванием вращающейся молекулы с частично присоединенными к ней атомами гелия относительно остального гелиевого окружения.

Упомянутое проскальзывание было обнаружено методами вращательной и колебательно-вращательной спектроскопии при исследовании малых гелиевых кластеров с внедренной молекулой-хромофором [3–10]. Такие кластеры создаются при расширении в вакуум сверхзвуковой газовой струи, содержащей гелий и молекулы примеси, при конечной температуре струи 0.3-0.1 К. В отличие от линий гелиевых нанокапель, линии разных кластеров легко разрешаются, и можно проследить зависимость различных физических свойств кластеров от их размера или состава. В частности, по спектрам определяется эффективный момент инерции кластера и сдвиг частоты какого-либо фундаментального колебания внедренной молекулы, обусловленный ее взаимодействием с окружающим гелием. К настоящему времени изучены системы He_N-X, где X — молекула OCS [3], CO_2 [4], N_2O [5,6], CO [7–9], HC_3N [10], a значение N плавно меняется от 2 до примерно 70.

^{*}E-mail: potapov@isan.troitsk.ru

16

14

12

10

8

6

0

 $\mathbf{2}$

6

8

10

4

Для всех систем получена немонотонная зависимость эффективной вращательной константы В (обратно пропорциональной моменту инерции кластера) от количества присоединенных атомов гелия. Начиная с определенного размера кластера (для молекулы OCS, например, с десяти атомов гелия [3]) наблюдается рост В (уменьшение момента инерции), что означает проскальзывание вращающегося хромофора с гелиевой «шубой» относительно остального кластера. Это явление напоминает эффект Андроникашвили, связанный с неувлечением сверхтекучего гелия движущимися в нем телами [11], что и позволило связать проскальзывание с проявлением сверхтекучести на микроскопическом уровне. Здесь «рекордсменом» является система He_N-CO, в которой рост В при вращении молекулы СО начинается в кластере всего из четырех атомов гелия (рис. 1) [9].

Как показывают эксперименты и теоретические расчеты для кластеров, допированных трехатомными линейными молекулами, первые пять атомов гелия образуют довольно жесткое кольцо в экваториальной плоскости молекулы-хромофора [12–16]. Атомы кольца не колеблются вместе с хромофором, но за счет ван-дер-ваальсова притяжения несколько увеличивают его жесткость, и частота колебания внедренной молекулы растет линейно с количеством присоединенных атомов гелия до N = 5. Следующие атомы располагаются на периферии хромофора и дают больший вклад в колеблющуюся массу. Со-

ответственно, частота колебания убывает также линейно, по крайней мере, до заполнения первой координационной сферы ($N \approx 14-16$). Минимум центробежного искажения для кластеров с пятью атомами гелия [3-6] также указывает на максимальную жесткость этой конфигурации. Таким образом, такое кольцо вращается вместе с хромофором и в основном определяет величину вращательной константы В в больших кластерах и нанокаплях.

Зависимость сдвига частоты колебания молекулы СО от количества атомов гелия имеет совершенно другой вид по сравнению с указанными выше трехатомными молекулами. Частота колебания СО линейно уменьшается для кластеров, содержащих как минимум до девяти атомов [17], что свидетельствует о диффузном характере строения кластера, при котором нет существенных различий в расположении разных атомов. Для получения более полной информации о структуре малых кластеров He_N-CO мы измерили дополнительно к вращательным переходам, начинающимся с самого нижнего вращательного уровня J = 0 [9], и переходы с первого возбужденного вращательного уровня J = 1 для N = 2-4 [17]. Далее мы применили теорию возмущений, развитую для бинарного комплекса Не-СО [18], для описания схемы энергетических уровней малых кластеров и определения угловой анизотропии потенциала взаимодействия в этих кластерах.

2. ЭКСПЕРИМЕНТ

Гелиевые кластеры образуются в холодной сверхзвуковой газовой струе. Для ее получения смесь из газообразного гелия с небольшой (менее 0.1%) примесью молекул хромофора СО через импульсное сверхзвуковое сопло вытекает в вакуумную камеру, где адиабатически расширяется. При стартовом давлении 50 атм и комнатной температуре сопла конечная вращательная температура в гелиевой струе доходит до 0.3 К, а при охлаждении сопла парами жидкого азота — до 0.1 К [9]. При поиске и регистрации переходов с самого нижнего уровня J = 0 стартовое давление составляло 50-80 атм, а температура сопла уменьшалась до 180 К. Для измерения «теплых» переходов с первого возбужденного уровня J = 1охлаждение сопла не использовалось, а давление газовой смеси на входе в сопло составляло 15-20 атм.

Измерения вращательных спектров для кластеров He_N -CO с N = 2-4 проводились в диапазоне частот 110-150 ГГц с помощью внутрирезонаторного спектрометра на базе оротрона [19]. Добротность колебательной системы оротрона (резонатор Фабри – Перо) $Q \approx 10^4$ обеспечивает порядка ста проходов генерируемого оротроном излучения через молекулярный пучок и обусловливает высокую чувствительность, необходимую для данных экспериментов. Точность определения частоты переходов оценивается нами в 50 кГц.

3. ПРЕДЕЛ СВОБОДНЫХ ВРАЩЕНИЙ, КВАНТОВЫЕ ЧИСЛА И ПРАВИЛА ОТБОРА

Система Не_N-СО является уникальной среди всех изученных систем He_N-молекула благодаря чрезвычайно малой энергии связи СО с гелием (9 К), сравнимой с химическим потенциалом жидкого гелия (7.5 К). В бинарном комплексе Не-СО молекула СО вращается почти свободно [18, 20, 21]. В связи с этим модель квазижесткого волчка не применима для описания его уровней энергии. Альтернативой является модель свободных вращений мономера внутри комплекса. В данной модели существуют два независимых вращения: мономера (в нашем случае СО) с угловым моментом ј и всего комплекса как единого целого с угловым моментом l. Энергия уровней в первом приближении не зависит явно от полного момента комплекса $\mathbf{J} = \mathbf{j} + \mathbf{l}$ и определяется только числами *j* и *l*:

$$E = Bl(l+1) + bj(j+1),$$
 (1)

где *B* и *b* — вращательные константы соответственно комплекса и мономера. Правила отбора при свободном вращении мономера следующие:

 $\Delta J = 0, \pm 1, \quad \Delta j = \pm 1, \quad \Delta l = 0.$

Уровни с одинаковыми j и l, но разными J в пределе свободных вращений вырождены, но любое возмущение снимает это вырождение, а смешение волновых функций за счет взаимодействия Не и СО приводит к снятию запрета для $\Delta l = \pm 1$. Соответствующая схема вращательных уровней энергии и возможные переходы для комплекса Не–СО показаны на рис. 2. Штриховыми линиями обозначены положения уровней энергии комплекса Не–СО в пределе свободных вращений.

Как видно из рис. 2, двум видам вращения (мономера и всего комплекса как единого целого) соответствуют и два типа переходов: те, которые включают изменение *j* (*b*-типа), и которые включают изменение *l* (*a*-типа). Здесь обозначения «*a*» и «*b*» соотносятся с соответствующими компонентами диполь-

Рис.2. Схема нижних вращательных уровней энергии кластеров He_N -CO с N = 1-4. Сплошными жирными линиями показаны положения уровней бимера He-CO, штриховыми линиями — положения тех же уровней в пределе свободных вращений мономера. Цифрами 2, 3, 4 в кружках отмечены уровни кластеров соответственно их размерам. Стрелками показаны серии переходов R, Q, P, которые соответствуют $\Delta J = 1, 0, -1$ и которые использовались для расчета угловой анизотропии потенциала взаимодействия; K — проекция полного вращательного момента J на ось комплекса; ν_{bend} соответствует изгибному колебанию

ного момента относительно главных осей инерции комплекса.

В кластерах He_N -CO обнаружены также две серии переходов, коррелирующих с переходами *a*- и *b*-типа бинарного комплекса [7]. Поскольку переходы *a*-типа в модели свободных вращений запрещены, в бинарном комплексе He-CO они на порядок слабее переходов *b*-типа. При увеличении размера кластера происходит перераспределение интенсивности между этими переходами (интенсивность переходов *a*-типа растет, а *b*-типа падает). По мере заполнения гелиевой оболочки разделение двух вращений теряет смысл и их частоты должны слиться [9].

4. ТЕОРИЯ ВОЗМУЩЕНИЙ

Применение теории возмущений для расчета уровней энергии бинарного комплекса Не–СО описано в деталях в работе [18]. Здесь мы распространили данный подход на малые кластеры Не_N–СО, рассматривая атомы гелия как единый связанный объект. В нулевом приближении молекула СО в кластере вращается свободно с вращательной константой *b*, а весь кластер как целое вращается с вращательной константой *B*, зависящей от *N*. Угловая зависимость взаимодействия между молекулой CO и He_N вводится как малое возмущение. Потенциал взаимодействия для каждого размера кластера представляется в виде линейного разложения по полиномам Лежандра до третьего члена:

$$V(R,\theta) = V_0(R) + V_1(R)P_1(\cos\theta) + V_2(R)P_2(\cos\theta), \quad (2)$$

где член $V_0(R)$ описывает нулевое приближение, P_i — полиномы Лежандра, θ — угол между осью молекулы СО и осью кластера, R — расстояние между центром масс молекулы СО и центром масс атомов гелия (см. вставку на рис. 3).

Теория возмущений второго порядка для вращательных уровней энергии каждого кластера дает следующее выражение:

$$E(J, j, l) = E_{jl}^{(0)} + V_2 f_2(jl, jl; J) - - \sum_{\substack{j'=j\pm 1\\l'=l\pm 1}} \frac{|V_1 f_1(j'l', jl; J)|^2}{E_{j'l'}^{(0)} - E_{jl}^{(0)}} - - \sum_{\substack{j'=j, j\pm 2\\l'=l, l\pm 2\\(j'l') \neq (jl)}} \frac{|V_2 f_2(j'l', jl; J)|^2}{E_{j'l'}^{(0)} - E_{jl}^{(0)}}.$$
 (3)

Здесь решение в нулевом приближении, $E_{jl}^{(0)}$, дается формулой (1), а f_1 и f_2 — коэффициенты Персиваля – Ситона (Percival–Seaton) выражены нами через 3j- и 6j-символы:

$$f_{\lambda}(jl,j'l';J) =$$

$$= (-1)^{j+j'-J} \sqrt{(2j+1)(2l+1)(2j'+1)(2l'+1)} \times$$

$$\times \begin{pmatrix} j & j' & \lambda \\ 0 & 0 & 0 \end{pmatrix}_{3jSym} \begin{pmatrix} l & l' & \lambda \\ 0 & 0 & 0 \end{pmatrix}_{3jSym} \times$$

$$\times \begin{pmatrix} j & l & J \\ l' & j' & \lambda \end{pmatrix}_{6jSym}.$$
(4)

Таким образом, имеются три неизвестных (подгоночных) параметра, B(N), $V_1(N)$, $V_2(N)$. Для определения этих параметров для каждого размера кластера N необходимы частоты как минимум трех вращательных переходов.

Проблема строения (состояния гелия) . . .

5. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Частоты переходов с двух нижних уровней кластера He_N -CO с N = 1-4 представлены в табл. 1. Все частоты переходов для бинарного комплекса (N = 1) измерены в работах [20,22], а частоты переходов R(0) *a*- и *b*-типа для кластеров (N = 2-4)в нашей работе [9]. Частоты «теплых» переходов R(1) и Q(1) *b*-типа для He_2 -CO измерены нами в недавней работе [17]. Недостающие частоты переходов для кластеров с N = 3-4 получены из частот соответствующих колебательно-вращательных переходов R(1) и Q(1) ($v_{\text{CO}} = 1 \leftarrow 0$) [7]. Предсказания частот переходов проводились с учетом точного значения сдвига частоты колебания CO при добавлении атомов гелия [9].

С помощью частот переходов из табл. 1 энергии вращательных уровней (J, j, l) = (1, 0, 1), (1, 1, 0),(1, 1, 1), (2, 1, 1) для кластеров с N = 1-4 и уровня (0, 1, 1) для Не₁-СО определяются с экспериментальной точностью, как указано в табл. 2 (в скобках дана ошибка в единицах последнего знака). Эти же уровни для кластеров N = 1-4 представлены выше на рис. 2 вместе с положениями уровней для He₁-CO в модели свободных вращений. Как можно видеть, при добавлении атомов гелия наблюдается только плавный сдвиг уровней энергии и схема продолжает соответствовать почти свободным вращениям молекулы CO в кластере, т.е. состояния с K = 1 (где *K* — проекция полного момента **J** на ось комплекса) находятся выше основного состояния K = 0 на величину порядка 2b, в два раза выше, чем в случае жесткого ротатора, а расщепление уровней с K = 1велико, примерно равно 2В [2]. Поэтому можно было предположить, что молекула СО вращается почти свободно, а атомы гелия действуют как единый объект, и применить теорию возмущений для расчета уровней энергии таких кластеров, как описано в предыдущем разделе.

Расчеты до второго порядка теории возмущений показали хорошее согласие с экспериментальными положениями уровней (отклонение менее 1 %), что свидетельствует о правомерности модели, в которой атомы гелия в малом кластере представляют собой единую связанную систему. Значения определенных экспериментально энергий уровней и относительные отклонения расчетных значений приведены в табл. 2.

Полученные кривые угловой зависимости анизотропии потенциала взаимодействия (см. формулу (2)) для всех четырех исследуемых кластеров представлены на рис. 3. Здесь можно отметить две

$(J^\prime,j^\prime,l^\prime){-}(J^{\prime\prime},j^{\prime\prime},l^{\prime\prime})$	N = 1	N = 2	N = 3	N = 4
(1,0,1)-(0,0,0)	17277.7268 [22]	15492.5636 [9]	14475.8956 [9]	14641.7260 [9]
(1,1,0)-(0,0,0)	119779.385 [20]	127234.352 [9]	136404.470 [9]	144173.088 [9]
(2,1,1)-(1,0,1)	124650.642 [20]	132368.279 [17]	141795*	149400*
(1,1,1)-(1,0,1)	110663.370 [20]	117414.357 [17]	_	137600*
(0,1,1)-(1,0,1)	144321.110 [20]	_	_	_

Таблица 1. Частоты использованных для расчетов переходов (в МГц)

Примечание. *Предсказаны из ИК-переходов работы [7] с учетом сдвига частоты колебания СО из работы [9].

Таблица 2. Экспериментальные значения энергий уровней кластеров He_N -CO, N = 1-4 и относительные отклонения расчетных значений

(J,j,l)	N = 1		N = 2		$N = 3^*$	N = 4	
	$E_{exp}, \mathrm{cm}^{-1}$	$\frac{ \Delta E }{E_{exp}}, \%$	$E_{exp}, \mathrm{cm}^{-1}$	$\frac{ \Delta E }{E_{exp}}, \%$	$E_{exp}, \mathrm{cm}^{-1}$	$E_{exp}, \mathrm{cm}^{-1}$	$\frac{ \Delta E }{E_{exp}}, \%$
(1,0,1)	0.57632293(56)	0.00	0.51677630(56)	0.00	0.48286390(56)	0.48839541(56)	0.00
(1,1,0)	3.9954102(17)	-0.13	4.2440812(17)	0.01	4.5499634(17)	4.8090966(17)	0.30
(1,1,1)	4.2676556(22)	0.69	4.4332977(22)	-0.01	_	5.0782(17)	-0.02
(2,1,1)	4.7342208(22)	-0.50	4.9321068(22)	-0.01	5.2126(17)	5.4718(17)	-0.21
(0,1,1)	5.3903570(22)	0.17	_	_	_		_

Примечание. *Отклонения не могут быть определены, так как в расчетах участвуют только три перехода.

особенности. Во-первых, как видно из рисунка, глубина потенциальной ямы слегка увеличивается при изменении N от 1 до 4. Это поведение согласуется с теоретическим расчетом квантовым методом Монте-Карло энергии связи атомов гелия в кластерах Не_N-СО в работе [23], в которой показан ее рост до N = 4, 5. Во-вторых, оказалось, что положение минимума потенциальной энергии плавно сдвигается от значения угла $\theta = 100^\circ$ в He–CO к $\theta = 180^\circ$ (кислородный конец) в Не₃-СО и Не₄-СО, т. е. атомы гелия все больше смещаются к атому кислорода. Это поведение также подтверждается теоретическим расчетом распределения плотности гелия в кластерах He_N-CO [23], который показал предрасположенность атомов гелия локализоваться у кислородного конца молекулы СО в малых кластерах и постепенное заполнение области углеродного конца при N = 10-14. Недавний анализ изотопических зависимостей переходов а-типа в кластерах Не_N-¹³С¹⁶О, Не_N-¹²С¹⁸О, Не_N-¹³С¹⁸О [17] дал по-

хожий результат, позволяющий сделать вывод, что атомы гелия аккумулируются вблизи атома кислорода до N = 6, а далее занимают позиции в области атома углерода. При N = 15 происходит заполнение первой координационной сферы [23]. Также мы можем отметить, что полученное значение $\theta = 126^{\circ}$ при N = 2 хорошо совпадает с соответствующим значением из недавних квантово-химических расчетов для комплекса He₂–CO [24].

К недостаткам полученных здесь угловых зависимостей потенциала взаимодействия в He_N -CO можно отнести трудности объяснения наблюдающегося роста частоты переходов *b*-типа («свободное вращение» CO) при присоединении атомов гелия до N = 6[9]. Такой рост предположительно вызван увеличением угловой анизотропии с ростом кластера [7], что не наблюдается явно (см. кривые на рис. 3). Возможно, эти изменения анизотропии слишком малы, чтобы воспроизводиться в рамках данного подхода.

Предполагая цилиндрическую симметрию рас-

Рис.3. Угловая анизотропия потенциала взаимодействия для кластеров $\mathrm{He}_N-\mathrm{CO}$ с N=1-4. На вставке показана геометрия кластера $\mathrm{He}_N-\mathrm{CO}$ и определение угла θ

пределения атомов гелия относительно оси кластера, из полученных зависимостей угловой анизотропии мы можем сделать вывод о том, что кластеры He_3-CO и He_4-CO имеют форму пирамиды с молекулой CO в вершине. Такая форма кластера способствует почти свободному вращению молекулы CO, так как атомы гелия сближаются друг с другом и взаимодействие He-CO с ростом N уступает место взаимодействию He-He, которое становится определяющим для энергии связи кластера, и вращение молекулы CO остается лишь слегка заторможенным.

Представляется интересным распространить подход теории возмущений, представленный в данной работе, на бо́льшие кластеры (N > 4) при получении новых экспериментальных данных по «теплым» вращательным переходам. По мере заполнения гелиевой оболочки в кластере следует ожидать уменьшения угловой анизотропии потенциала, т.е. минимум зависимости потенциальной энергии от угла θ должен заметно уплощаться.

Тот факт, что в малых гелиевых кластерах происходит почти свободное вращение молекулы-хромофора лишь с частичным увлечением гелиевого окружения, безусловно, имеет отношение к обсуждаемому в последнее время явлению «микроскопической» сверхтекучести (см., например, работы [5,9]). Однако вопрос о его связи с макроскопическим эффектом, присущим жидкому гелию, остается открытым. Здесь ситуацию может прояснить исследование аналогичных кластеров из фермионов ³Не, в которых при заданных температурах эксперимента сверхтекучесть невозможна.

6. ВЫВОДЫ

Теория возмущений второго порядка применена для расчета нижних вращательных уровней энергии малых гелиевых кластеров Не_N-СО с N = 1-4. При этом в качестве нулевого приближения используется свободное вращение мономера СО в кластере, а атомы гелия рассматриваются как единый объект. Получено хорошее согласие с соответствующими экспериментальными значениями энергий уровней. Определена угловая зависимость потенциала взаимодействия, из которой следует, что положение минимума потенциальной энергии плавно сдвигается от значения угла между осью молекулы CO и осью кластера $\theta = 100^{\circ}$ в He–CO к $\theta = 180^{\circ}$ (кислородный конец) в He₃-CO и He₄-CO. Полученные результаты позволяют сделать вывод, что в кластерах He_N -CO с N = 2-4, как и в бинарном комплексе, сохраняется почти свободное вращение молекулы-хромофора СО, а атомы гелия действуют как единая связанная система.

А. В. Потапов, В. А. Панфилов и Л. А. Сурин посвящают эту статью памяти Бориса Самуиловича Думеша, который, к сожалению, не успел написать ее сам.

Работа выполнена при финансовой поддержке РФФИ (гранты №№ 09-02-00813, 10-02-91337-ННИО_а) и ННИО (гранты SCHL 341/8-1, SU 579/1).

ЛИТЕРАТУРА

- J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).
- **2**. Б. С. Думеш, Л. А. Сурин, УФН **176**, 1137 (2006).
- A. R. W. McKellar, Y. Xu, and W. Jäger, J. Phys. Chem. A 111, 7329 (2007).
- 4. A. R. W. McKellar, J. Chem. Phys. 128, 044308 (2008).
- Y. Xu, N. Blinov, W. Jäger et al., J. Chem. Phys. 124, 081101 (2006).
- A. R. W. McKellar, J. Chem. Phys. 127, 044315 (2007).
- J. Tang and A. R. W. McKellar, J. Chem. Phys. 119, 754 (2003).

- A. R. W. McKellar, J. Chem. Phys. 125, 164328 (2006).
- L. A. Surin, A. V. Potapov, B. S. Dumesh et al., Phys. Rev. Lett. 101, 233401 (2008).
- W. Topic, W. Jäger, N. Blinov et al., J. Chem. Phys. 125, 144310 (2006).
- **11**. Э. Л. Андроникашвили, ЖЭТФ **16**, 780 (1946); **18**, 424 (1948).
- J. Tang, A. R. W. McKellar, F. Mezzacapo et al., Phys. Rev. Lett. 92, 145503 (2004).
- S. Moroni, A. Sarsa, S. Fantoni et al., Phys. Rev Lett. 90, 143401 (2003).
- 14. F. Paesani and K. B. Whaley, J. Chem. Phys. 121, 5293 (2004).
- 15. F. Paesani and K. B. Whaley, J. Chem. Phys. 121, 4180 (2004).
- S. Moroni, N. Blinov, and P.-N. Roy, J. Chem. Phys. 121, 3577 (2004).

- 17. P. L. Raston, Y. Xu, W. Jäger et al., Phys. Chem. Chem. Phys. 12, 8260 (2010).
- C. E. Chuaqui, R. J. Le Roy, and A. R. W. McKellar, J. Chem. Phys. 101, 39 (1994).
- L. A. Surin, B. S. Dumesh, F. Lewen et al., Rev. Sci. Instrum. 72, 2535 (2001).
- 20. L. A. Surin, D. A. Roth, I. Pak et al., J. Chem. Phys. 112, 4064 (2000); Errata J. Chem. Phys. 112, 9190 (2000).
- А. В. Потапов, В. А. Панфилов, Л. А. Сурин, Б. С. Думеш и др., Опт. и спектр. 106, 215 (2009).
- 22. A. R. W. McKellar, Yu. Xu, W. Jäger, and C. Bissonnette, J. Chem. Phys. 110, 10766 (1999).
- P. Cazzato, S. Paolini, S. Moroni et al., J. Chem. Phys. 120, 9071 (2004).
- 24. X.-G. Wang, T. Carrington Jr., and A. R. W. McKellar, J. Phys. Chem. A 113, 13331 (2009).