СТРУКТУРНАЯ ОРГАНИЗАЦИЯ МЕТАЛЛИЧЕСКОГО СТЕКЛА Cu₈₀Zr₂₀

А. В. Король^а^{*}, А. Т. Косилов^а, А. В. Миленин^а, А. В. Евтеев^b, Е. В. Левченко^b

^а Воронежский государственный технический университет 394026, Воронеж, Россия

> ^b The University of Newcastle NSW 2308, Callaghan, Australia

Поступила в редакцию 21 ноября 2010 г.

Методом молекулярно-динамического моделирования с использованием статистико-геометрического анализа на основе построения многогранников Вороного и кластерного анализа изучены закономерности перестройки атомной структуры металлического стекла $Cu_{80}Zr_{20}$ в процессе закалки из жидкого состояния. Изучены морфология политетраэдрических нанокластеров и распределение их по размерам в структуре стекла.

1. ВВЕДЕНИЕ

Структурная организация металлических стекол (МС) относится к одной из основных и до конца не решенных проблем физики неупорядоченных систем. Исследования этих материалов методами рентгеновской дифрактометрии, XAFS [1-3], позволяют провести анализ ближнего порядка в расположении атомов, их симметрии, построить функции радиального распределения, определить плотность. Предложенные на основе установленных структурных функций атомные модели стекол указывают, как правило, лишь на икосаэдрическую симметрию окружения отдельных атомов и тенденции в формировании «среднего порядка» в расположении атомов. При этом остаются открытыми вопросы о закономерностях сопряжения структурных единиц с икосаэдрической симметрией в МС и формировании на их основе укрупненных структурных единиц на новых иерархических уровнях. В этой связи компьютерный эксперимент благодаря возможности изучения пространственно-временных срезов атомных структур относится к наиболее эффективному методу анализа структурной организации неупорядоченных систем, в том числе и металлических стекол [4].

Ранее было показано [5-11], что в процессе стек-

Рис.1. Концентрационная зависимость числа икосаэдров в металлических стеклах системы Cu-Zr

лования чистого железа [5–9], Ag–Ni [10,11] формируется политетраэдрическая кластерная структура, обладающая фрактальной геометрией. Перколяционный кластер, образованный взаимопроникающими и контактирующими между собой икосаэдрами, является фундаментальной основой структурной организации MC [4–17]. Было также замечено [10,11], что в системе Ag–Ni центры икосаэдров заняты преимущественно меньшими по размеру атомами Ni, что в отличие от однокомпонентного железа снижает уровень внутренних напряжений в икосаэдрах и повышает склонность системы к аморфизации. Для системы Ag–Ni величина размерного несоответствия

^{*}E-mail: avk.vrn@gmail.com

Рис.2. Поведение потенциальной энергии U_0 и ее производной (*a*), а также произведения давления на объем P_0V и его производной (*б*) в процессе закалки сплава $Cu_{80}Zr_{20}$

Рис. 3. Парная функция радиального распределения атомов g(r) модели МС сплава $Cu_{80}Zr_{20}$ после статической релаксации при разных температурах

атомов составляет $\Delta a/a = 0.139$, при этом перколяционный кластер сформирован как взаимопроникающими икосаэдрами, так и контактирующими по граням, ребрам и вершинам.

Атомное размерное несоответствие компонентов сплава и их концентрация являются, по-видимому, определяющими факторами формирования структуры локального атомного окружения, структуры и морфологии перколяционного кластера. В настоящей работе с целью установления влияния указанных факторов на структурные характеристики MC исследования были проведены на системе Cu–Zr, размерное несоответствие атомов Cu и Zr которой составляет $\Delta a/a = 0.2$, т.е. примерно на 30 % больше, чем для системы Ag–Ni.

Сплавы системы Cu–Zr относятся к категории хорошо аморфизуемых. Первое сообщение о получении аморфной фазы этой системы в широком концентрационном диапазоне составов датируется 60-ми годами прошлого века [18]. Диаграмма состояния ее достаточно сложна — она содержит несколько эвтектик и интерметаллидных соединений [19], что обеспечивает широкий концентрационный диапазон аморфизации сплавов этой системы [20]. При содержании циркония от 30 до 70 ат. % сплавы приобретают полностью аморфную структуру при закалке из расплава, а использование магнетронного напыления позволяет расширить концентрационный диапазон от 18 до 75 ат. % Zr [20].

2. ОПИСАНИЕ МОДЕЛИ И МЕТОДИКА ЭКСПЕРИМЕНТА

Модели содержали 100000 атомов в основном кубе с периодическими граничными условиями. Взаимодействие между атомами рассчитывалось в рамках метода погруженного атома [21]. Исходные модели имели случайную плотную упаковку атомов и были построены при T = 2300 K.

Методика молекулярно-динамического расчета состояла в численном интегрировании уравнений движения с временным шагом $\Delta t = 1.5 \cdot 10^{-15}$ с по скоростному алгоритму Верле [22].

Исследования структуры проводились как в условиях изотермического отжига, так и в процессе закалки из жидкого состояния.

Изотермический отжиг проводился по следующей методической схеме. Система выдерживалась при температуре 2300 К в течение 10⁴ временных шагов, далее температуру понижали до 1000 К и выдерживали при этой температуре еще 10⁴ вре-

Таблица. Изменение доли многогранников Вороного в процессе закалки модели $Cu_{80}Zr_{20}$

Многогранник	Координа- ционное число	Доля, % T = 2300 K	Доля, % T = 0
(0-0-12-0)	12	4.22	13.73
(0-1-10-2)	13	6.17	10.53
(0-3-6-4)	13	7.32	6.55
(0-2-8-4)	14	4.38	5.09
(0-2-8-2)	12	4.59	4.48
(0-1-10-5)	16	1.78	3.76
(0-2-8-3)	13	2.78	3.01
(0-1-10-3)	14	1.64	2.55
(0-3-6-5)	14	3.27	2.55
(1-0-9-3)	13	1.34	2.35
(0-0-12-4)	16	0.44	2.26
(0-1-10-4)	15	1.50	2.25

Рис. 4. Зависимость числа атомов, находящихся в центрах икосаэдров, N_I , и атомов, задействованных в их построении, N_I' , от температуры в процессе закалки модели $Cu_{80}Zr_{20}$; пунктирная линия соответствует температуре максимальной скорости роста числа икосаэдров

менных шагов. Затем методом статической релаксации фиксировались равновесные положения атомов и проводился статистико-геометрический анализ на основе построения многогранников Вороного (MB) [23].

Закалка модели проводилась со скоростью

Рис.5. *а*) Парная функция радиального распределения $g_{ii}(r)$ атомов, находящихся в центрах икосаэдров: сплошная кривая соответствует общей g_{ii} , точки отвечают парциальным g_{ii} (\circ — контакт по вершине, \Box — контакт по ребру, \triangle — контакт по грани, \Diamond — взаимное проникновение, \times — контакт отсутствует); δ) число N_I^{max} таких атомов в наибольшем по размеру кластере с расстояниями между соседями, меньшими либо равными r при разных значениях температуры «окружающей среды»

 $6.67 \cdot 10^{11}$ К/с. Процедура закалки имела циклический характер и сводилась к ступенчатому понижению температуры на $\Delta T = 20$ К, поддержанию этой температуры в системе на протяжении $10^3 \cdot \Delta t$ и последующему отжигу в адиабатических условиях в течение $1.9 \cdot 10^4 \cdot \Delta t$. Таким образом, продолжительность одного цикла составляла $2.0 \cdot 10^4 \cdot \Delta t$ или $3 \cdot 10^{-11}$ с. Температура рассчитывалась путем усреднения полученных данных в течение последних $1.6 \cdot 10^4 \cdot \Delta t$ каждого цикла.

После каждого цикла методом статической релаксации атомы переводились в равновесные положения, что давало возможность фиксировать состояние системы при T = 0. Для статически релаксированных моделей рассчитывались потенциальная энергия U_0 , произведение давления на объем P_0V , а также в рамках статистико-геометрического и кластерного анализа изучалась атомная структура сплава на всех этапах ее перестройки в процессе закалки.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Икосаэдры лежат в основе формирования структуры металлического стекла для сплавов типа металл-металл [5–12, 24–27], поэтому в качестве критерия стеклообразующей способности системы Cu–Zr было выбрано количество атомов, задействованных в построении икосаэдров. Для поиска оптимального соотношения компонентов сплава был проведен предварительный анализ стеклообразующей способности си_x–Zr_{100-x} ($x = 0, 10, 20, \ldots, 100$).

Формирование структуры MC для каждого состава проводилось в условиях изотермического отжига при T = 1000 К. На рис. 1 показана зависимость числа атомов, находящихся в центрах икосаэдров N_I , и числа атомов, задействованных на их построение N'_I , от состава сплава Cu–Zr. Максимальное количество икосаэдров приходится на состав сплава Cu₈₀Zr₂₀, при этом примерно на 8 % атомов, находящихся в центрах икосаэдров, приходится около 57.5 % атомов, задействованных в их построении. Сплав Cu₈₀Zr₂₀ был выбран для дальнейшего изучения эволюции его атомной структуры в процессе закалки.

Чувствительными индикаторами структурной перестройки конденсированной среды являются ее термодинамические функции. Поведения построенных функций потенциальной энергии U_0 (рис. 2a) и произведения давления на объем P_0V_0 (рис. 2b) в процессе закалки модели, а также первых производных от этих величин свидетельствуют о переходе системы вблизи $T \approx 1260$ К в новое энергетически более устойчивое состояние.

Функции радиального распределения атомов (ФРРА) g(r) в расплаве при T = 2300 К и в МС после закалки системы $Cu_{80}Zr_{20}$ приведены на рис. 3. О структурном переходе расплав-металлическое стекло свидетельствует расщепление второго максимума ФРРА после закалки. Пики первого расщепленного максимума ФРРА при T = 0 соответствуют расстояниям между атомами соответственно в парах Cu-Cu, Cu-Zr, Zr-Zr.

Для изучения закономерностей организации атомной структуры ближнего порядка в расплаве и ее перестройки в процессе закалки был проведен статистико-геометрический анализ моделей путем построения многогранников Вороного. В таблице приведены данные по изменению в результате закалки количественного состава основных многогранников Вороного, доля которых превышает 2 %.

Наиболее интенсивно происходит увеличение доли атомов, находящихся в центрах многогранников Вороного (0–0–12–0) и (0–1–10–2), которым соответствуют координационные многогранники — икосаэдр и топологически близкий к нему многогранник, сформированный добавлением к икосаэдру еще одного атома. Менее интенсивно увеличивается число MB (0–1–10–5), (0–1–10–3), (1–0–9–3), (0–0–12–4), (0–1–10–4). Отмечено снижение числа MB (0–3–6–4), (0–3–6–5) и (0–4–4–6). Доля остальных координационных многогранников не претерпевает значительных изменений. Напомним, что многогранник Вороного описывается совокупностью чисел n_a , равных

Рис. 6. Распределение нанокластеров N_C , образованных взаимопроникающими икосаэдрами, по числу образующих их атомов N в модели MC $Cu_{80}Zr_{20}$ при T=0

Рис.7. Распределение числа икосаэдров N_I по числу взаимопроникающих связей N_L

числу граней, имеющих q сторон $(n_3-n_4-n_5-...)$ или числу вершин, в которые сходятся q ребер соответствующего координационного многогранника.

Наличие у икосаэдров осей пятого порядка, несовместимых с трансляционной симметрией кристалла, затрудняет процесс атомной перестройки при кристаллизации, стабилизирует металлическое стекло. Поэтому основное внимание в настоящей работе было уделено изучению закономерностей организации икосаэдрических структурных элементов и их эволюции в процессе закалки.

После закалки число атомов N_I , находящихся в центре икосаэдров, увеличивается с 4.22 % при T == 2300 K до 13.73 % при T = 0, а число атомов N'_I , задействованных в их построении, соответственно с 37.01 % до 74.72 %. При этом среднее число атомов, принадлежащих одному икосаэдру, уменьшилось с 8.7 до 5.44 за счет увеличения доли взаимопроникающих и контактирующих между собой икосаэдров. Следует отметить, что центры всех икосаэдров за-

Рис.8. Структурные связи между центрами икосаэдров одного из наиболее крупных по размеру нанокластеров (*a*) и все атомы этого нанокластера (*б*); серые шары — атомы Cu, черные — атомы Zr

няты меньшими по размеру атомами меди. Максимальная скорость роста числа икосаэдров (точки перегиба на рис. 4) приходится на $T \approx 1260$ K.

На рис. 5*a* приведена парная функция радиального распределения атомов, находящихся в центре икосаэдров $g_{ii}(r)$. Вид этой функции практически не зависит от температуры. Первый пик функции соответствует контакту взаимопроникающих икосаэдров, второй — контакту икосаэдров по граням, третий и четвертый пики — контакту икосаэдров по ребрам и вершинам.

Для изучения закономерностей структурной организации икосаэдрических координационных многогранников при охлаждении модели $Cu_{80}Zr_{20}$ в рамках теории протекания был проведен кластерный анализ. На рис. 56 приведены зависимости числа икосаэдров в наибольшем по размеру кластере N_I^{max} с расстояниями между соседями меньшими либо равными r от величины r при различных тем-

пературах. Как видно на рис. 5*б*, при охлаждении ниже T = 1200 К в процессе закалки порог перколяции смещается в область взаимопроникающих и контактирующих по граням икосаэдров. Тем самым в MC Cu₈₀Zr₂₀ создаются предпосылки формирования более упорядоченной структуры перколяционного кластера, чем в MC железа и сплава Ag–Ni, в которых перколяционный переход формируют контакты икосаэдров не только по граням, но и по ребрам и вершинам [5–12]. Атомы, не входящие в перколяционный кластер, образуют более рыхлую структуру «квазижидкости».

Перколяционный кластер в MC Cu₈₀Zr₂₀ состоит из нанокластеров, образованных только взаимопроникающими икосаэдрами. Их морфология, распределение по размерам, характер сопряжения таких нанокластеров — это те задачи, которые позволят раскрыть закономерности структурной организации металлического стекла. На рис. 6 представлено распределение нанокластеров N_C по количеству образующих их атомов Nв статически релаксированной модели MC Cu₈₀Zr₂₀. Наибольшее число кластеров содержит 13–18 атомов и представляет собой кластеры из одиночных и двух взаимопроникающих икосаэдров. С увеличением размера число кластеров резко уменьшается. Наибольший кластер содержит 1215 атомов и состоит из 270 взаимопроникающих икосаэдров.

Для выяснения структурной организации кластеров было построено распределение координационных многогранников — икосаэдров N_I — по числу взаимопроникающих связей N_L (рис. 7). Более половины всех икосаэдров имеют 2, 3 или 4 взаимопроникающие связи, т. е. являются элементами разветвленных цепочек. Лишь незначительное число икосаэдров участвуют в 5, 6, 7 взаимопроникающих контактах. Многогранники с одной взаимопроникающей связью замыкают цепочки взаимопроникающих икосаэдров. Для изолированных икосаэдров число связей равно нулю.

На рис. 8*a* показана структура связей между атомами, находящимися в центрах икосаэдров, одного из наиболее крупных нанокластеров, а на рис. 8*б* показаны все атомы, входящие в этот нанокластер. Можно видеть, что связи образуют как непрерывные разветвленные одномерные цепочки, так и двухили трехмерные конфигурации.

4. ЗАКЛЮЧЕНИЕ

Получены данные о структурной перестройке сплава Cu₈₀Zr₂₀ в процессе закалки из жидкого состояния. Стеклование сводится к формированию перколяционного кластера только из взаимопроникающих и контактирующих по граням икосаэдров, что свидетельствует о более высокой степени упорядоченности структуры перколяционного кластера и более высокой склонности системы Cu₈₀Zr₂₀ к стеклованию в отличие от MC железа и сплава Ag–Ni.

При закалке из жидкой фазы скорость роста числа икосаэдров достигает максимума вблизи температуры 1260 К и далее монотонно убывает до T = 0.

Обнаружено, что перколяционный кластер представляет собой конгломерат плотноупакованных нанокластеров, образованных взаимопроникающими икосаэдрами, в построении которых задействовано около 74 % атомов.

Показано, что нанокластеры представляют собой преимущественно разветвленные цепи из взаимопроникающих икосаэдров. Рост таких икосаэдрических кластеров из разных зародышей сопровождается их «столкновениями» друг с другом, появлением между ними контактов. Объединение отдельных кластеров в перколяционный является ключевым этапом в формировании металлического стекла $Cu_{80}Zr_{20}$.

ЛИТЕРАТУРА

- 1. Г. В. Фетисов, Синхротронное излучение. Методы исследования структуры веществ, Наука, Москва (2007).
- Yu. A. Babanov, N. V. Ershov, V. R. Shvetsov et al., J. Non-Cryst. Sol. 79, 1 (1986).
- Yu. A. Babanov, V. R. Shvetsov, and A. F. Sidorenko, Physica B 208-209, 375 (1995).
- 4. М. И. Ожован, Письма в ЖЭТФ 79, 769 (2004).
- А. В. Евтеев, А. Т. Косилов, Е. В. Левченко, Письма в ЖЭТФ 76, 115 (2002).
- А. В. Евтеев, А. Т. Косилов, Е. В. Левченко, ЖЭТФ 126, 600 (2004).
- А. В. Евтеев, А. Т. Косилов, Е. В. Левченко, ЖЭТФ 128, 607 (2005).
- А. В. Евтеев, А. Т. Косилов, Е. В. Левченко, ФТТ 48, 768 (2006).
- Е. В. Левченко, А. В. Евтеев, С. Ю. Вахмин и др., ФММ 109, 603 (2010).
- А. Ю. Прядильщиков, А. Т. Косилов, А. В. Евтеев, ЖЭТФ 132, 1352 (2007).
- А. Ю. Прядильщиков, А. Т. Косилов, А. В. Евтеев и др., ЖЭТФ 134, 509 (2008).
- A. V. Evteev, A. T. Kosilov, E. V. Levchenko, and O. B. Logachev, Defect Diff. Forum 249, 97 (2006).
- **13**. M. I. Ojovan, Entropy Nº 10, 334 (2008).
- 14. M. I. Ojovan, Adv. Cond. Mat. Phys. 2008, ID817819 (2008).
- **15**. М. И. Ожован, ЖЭТФ **130**, 944 (2006).
- M. I. Ojovan and W. E. Lee, J. Phys.: Condens. Matter 18, 11507 (2006).
- 17. J. F. Stanzione III, K. E. Strawhecker, and R. P. Wool, doi:10.1016/j.jnoncrysol.2010.06.041.
- R. Ray, B. C. Giessen, and N. J. Grant, Scripta Metall.
 2, 357 (1968).

- H. Okamoto, J. Phase Equilibria and Diffusion 29, 204 (2008).
- 20. A. F. Marshall, R. G. Walmsley, and D. A. Stevenson, Mat. Sci. Eng. 63, 215 (1984).
- 21. M. S. Daw and M. I. Baskes, Phys. Rev. B: Sol. St. 29, 6443 (1984).
- 22. L. Verlet, Phys. Rev. 159, 98 (1967).
- 23. N. N. Medvedev, J. Comput. Phys. 67, 223 (1986).

- 24. H. Reicherd, O. Klein, H. Dosch et al., Nature 408, 839 (2000).
- 25. T. Schenk, D. Holland-Moritz, V. Simonet et al., Phys. Rev. Lett. 89, 075507 (2002).
- 26. A. Di Cicco, A. Trapananti, S. Faggioni et al., Phys. Rev. Lett. 91, 135505 (2003).
- 27. W. K. Luo, H. W. Sheng, and F. M. Alamgir, Phys. Rev. Lett. 92, 14 (2004).