ЯМР-ИССЛЕДОВАНИЕ ГРАДИЕНТА ЭЛЕКТРИЧЕСКОГО ПОЛЯ В ПАРАМАГНИТНОЙ ФАЗЕ СОЕДИНЕНИЙ $M_3V_2O_8$ (M = Co, Ni)

А. Г. Смольников^а, В. В. Оглобличев^а^{*}, А. Ф. Садыков^а, Ю. В. Пискунов^а,

А. П. Геращенко^а, С. В. Верховский^а, А. Ю. Якубовский^b, С. Н. Барило^c,

Г. Л. Бычков^с, С. В. Ширяев^с

^а Институт физики металлов Уральского отделения Российской академии наук 620990, Екатеринбург, Россия

> ^b Российский научный центр «Курчатовский институт» 123182, Москва, Россия

^с Институт физики твердого тела и полупроводников Национальной академии наук Белоруссии 220072, Минск Белоруссия

Поступила в редакцию 26 ноября 2010 г.

Выполнены эксперименты по измерению спектров ЯМР и затухания сигнала спинового эха ядер ванадия, ⁵¹V, в монокристаллах со структурой кагоме-лестницы Co₃V₂O₈ (CVO) и Ni₃V₂O₈ (NVO) в области температур 30–300 K в магнитном поле $H_0 = 20$ кЭ. Из анализа ориентационных зависимостей формы линии ЯМР ⁵¹V определены параметры градиента электрического поля (ГЭП): квадрупольная частота ν_Q и параметр асимметрии η . Для NVO и CVO значения этих величин составили соответственно $\nu_Q = 180(10)$ кГц, $\eta = 0.5(1)$ и $\nu_Q = 130(10)$ кГц, $\eta = 0.6(1)$. Сравнение результатов расчета тензоров ГЭП в модели точечных зарядов и ЯМР-данных показало, что в соединениях Ni₃V₂O₈ и Co₃V₂O₈ кристаллографически эквивалентные атомы ванадия, тем не менее, различаются ориентациями осей ГЭП. Обнаружено, что в кристаллах $M_3V_2O_8$ имеются позиции ванадия V1 и V2, у которых оси z, задающие направление главного значения ГЭП, V_{zz} , лежат в плоскости bc, но составляют с осью c угол либо +51(5)° (V₁), либо -51(5)° (V₂). Установлено, что в области температур 30–300 K в оксидах NVO и CVO значения компонент тензора ГЭП и локальная симметрия зарядового окружения позиций ванадия существенно не изменяются.

Геометрически фрустрированные магнитные системы с общей структурной формулой $M_3V_2O_8$ (M = Ni, Co) активно изучаются в последнее время из-за открытия в них целого спектра фазовых переходов, включающих как несоразмерные, так и ферроэлектрическую фазы [1–7]. Эти системы с кристаллической структурой кагоме-лестницы чрезвычайно чувствительны к относительно слабым взаимодействиям и, таким образом, могут демонстрировать новые и необычные примеры дальнего и ближнего магнитного порядка.

Изучаемые в нашей работе ванадаты $Ni_3V_2O_8$ (NVO) и $Co_3V_2O_8$ (CVO) имеют орторомбическую кристаллическую структуру Cmca (рис. 1) [8]. Ионы

 M^{2+} (Ni, Co), находящиеся в октаэдрах MO_6 , формируют множество кагоме-лестниц, которые разделены между собой немагнитными слоями из тетраэдров VO₄. Кагоме-лестница включает в себя две позиции атомов M^{2+} : M(S) — хребтовые (spine) и M(C) — поперечные (cross tie). Ионы ванадия находятся в немагнитном состоянии V⁵⁺ и не имеют атомов металла в первой координационной сфере. Ближайшее окружение ванадия в этой структуре — неправильный тетраэдр из атомов кислорода. Из анализа параметров тензора ГЭП можно получать информацию о зарядовом окружении ядра ванадия и деформации тетраэдра VO₄ [9, 10]. Знание компонент тензора ГЭП и направлений его главных осей в кристалле позволяет дать правдоподобную интерпретацию теоретических расчетов элек-

^{*}E-mail: ogloblichev@imp.uran.ru

Рис.1. Кристаллическая структура соединений ${
m M}_3{
m V}_2{
m O}_8$

тронной структуры CVO и NVO. В настоящей работе представлены результаты исследования особенностей параметров ГЭП методами ядерного магнитного резонанса (ЯМР) на ядре ⁵¹V.

В парамагнитной области, T > 20 К, в монокристаллах $Ni_3V_2O_8$ и $Co_3V_2O_8$ форму линии ЯМР на ядре ванадия ⁵¹V определяют случайное распределение сверхтонких полей и квадрупольное уширение первого порядка. В наших ранних работах [11, 12] были измерены спектры ЯМР ⁵¹V при температуре T = 300 К и направлениях магнитного поля $H_0 = 94$ кЭ вдоль трех главных кристаллографических осей a, b, c. Для ⁵¹V со спином I = 7/2 и электрическим квадрупольным моментом ${}^{51}Q = 0.0515 |e| 10^{-24} \ \mathrm{cm}^2$ должны наблюдаться 2I = 7 линий: одна, соответствующая центральному переходу $(-1/2 \leftrightarrow 1/2)$, и шесть так называемых сателлитов. При измерениях в сильном поле 94 кЭ, направленном вдоль осей *a*, *b*, *c*, эти линии в значительной степени перекрываются и определить параметры квадрупольного взаимодействия крайне затруднительно. Более того, из анализа ориентационной зависимости формы спектра в сильном поле (угол

поворота больше 25°) можно было предположить наличие в кристалле монокристаллических плоскостей ac, разориентированных друг относительно друга на 8° .

Для получения дополнительной информации о параметрах квадрупольного взаимодействия была измерена подробная зависимость формы линии ЯМР ⁵¹V от направления магнитного поля ($H_0 \parallel bc$, $H_0 \parallel ac, H_0 \parallel ab)$ в кристаллах NVO и CVO (рис. 2). Спектры ⁵¹V ЯМР (${}^{51}\gamma = \nu_0/H_0 = 1.1198 \text{ M}\Gamma \mathfrak{q}/ \text{ к} \Im$) были получены с использованием методики спинового эха ($\pi/2-\pi$ -эхо) в режиме развертки магнитного поля при фиксированных частотах облучения $\nu_0 =$ = 23 МГц для NVO и ν_0 = 22.9 МГц для CVO, что соответствует магнитному полю $H_0 \approx 20$ кЭ. Полученные спектры $\mathrm{SMP}^{-51}\mathrm{V}$ переводились в частотную область в соответствии с формулой $\nu = H/^{51}\gamma$. Монокристаллы $Ni_3V_2O_8$ и $Co_3V_2O_8$ были выращены по методике, описанной в работах [5, 11, 12].

На рис. 2 видно, что при направлении магнитного поля вдоль плоскости *bc* и углах β относительно оси *c* равных 51(5)° и -51(5)° наблюдается максимальная ширина спектров ЯМР ⁵¹V как для NVO, так и для CVO. Максимальное удаление сателлитов от линии центрального перехода соответствует направлению внешнего магнитного поля вдоль главной оси тензора ГЭП. С другой стороны, если магнитное поле направлено под «магическим» углом, равным 54°, к главной оси тензора ГЭП, то все линии в спектре ЯМР схлопываются в одну. Эволюция спектров ЯМР ⁵¹V в NVO и CVO между этими двумя крайними случаями и представлена на рис. 2.

Зависимость резонансной частоты перехода $m \rightarrow m-1$ от углов θ и φ для ядер со спином I и асимметричного тензора ГЭП ($\eta = (V_{yy} - V_{xx})/V_{zz} \neq 0$) во внешнем магнитном поле имеет вид [9, 10]

$$\nu(m \to m-1) = \nu_0 - \frac{\nu_Q}{2} \left(m - \frac{1}{2}\right) \times \left(3\cos^2\theta - 1 - \eta\sin^2\theta\cos 2\varphi\right), \quad (1)$$

где $\nu_Q = [3eV_{zz}Q]/[2I(2I-1)h]$ — квадрупольная частота, θ — угол между направлением внешнего магнитного поля H_0 и главной осью тензора ГЭП $(V_{zz}), \varphi$ — угол между проекцией направления магнитного поля на плоскость xy и осью тензора ГЭП (V_{xx}) . Для определения параметров квадрупольного взаимодействия использовалась специальная программа моделирования спектров, численно рассчитывающая энергетические уровни и вероятности переходов между ними на основе диагонализации мат-

Рис.2. Угловые зависимости форм линий ЯМР ⁵¹V (спин I = 7/2) в соединениях $Ni_3V_2O_8$ (вверху) и $Co_3V_2O_8$ (внизу), полученные при T = 300 К и поле $H_0 = 20$ кЭ, магнитное поле H_0 поворачивалось в трех плоскостях (слева направо): $H_0 \parallel bc$, $H_0 \parallel ac$, $H_0 \parallel ab$; β — угол между полем H_0 и осью кристалла c в плоскостях bc и ac или осью b в плоскости ab

ричных элементов полного гамильтониана (квадрупольного H_Q и зеемановского H_M) ядерной системы. На рис. З приведен пример такого моделирования (сплошные линии) экспериментальных спектров ⁵¹V (точки) в образцах NVO и CVO при $H_0 \parallel bc$ и $\beta = 50^{\circ}$. В качестве варьируемых параметров использовались значения θ , η , ν_Q . Каждый спектр удовлетворительно описывался тремя кривыми, из которых 1 и 2 соответствуют квадрупольно расщепленным линиям ванадия, а положение ($^{51}K = 0$) и

Рис. 3. Спектры ЯМР 51 V в соединениях $Ni_3V_2O_8$ и $Co_3V_2O_8$, записанные при комнатной температуре в магнитном поле $H_0 = 20$ кЭ, направленном под углом $\beta = 50^\circ$ к оси c в плоскости bc, и температуре T = 300 К. Спектр описывается тремя кривыми -1, 2, 3

форма линии 3 не менялись с температурой и ориентацией кристалла в магнитном поле. Как и ранее [11, 12], мы связываем кривую 3 с наличием примесной фазы — окисла ванадия V₂O₅, из которого был приготовлен образец. В дальнейшем эта линия рассматриваться не будет.

На рис. 4 представлены зависимости расстояния между сателлитами $\Delta \nu$ для кривых 1 и 2 от угла $\beta = 51^{\circ} - \theta$ между направлением магнитного поля и кристаллографической осью *с* в соединениях Ni₃V₂O₈ и Co₃V₂O₈ в ориентации $H_0 \parallel bc$. Данные для обеих кривых хорошо экстраполируются двумя функциями (1), с одинаковыми значениями $\nu_Q = 180(10)$ кГц, $\eta = 0.5(1)$ для NVO и $\nu_Q =$ = 130(10) кГц, $\eta = 0.6(1)$ для CVO, но сдвинутыми относительно друг друга на 102° по углу θ . Это свидетельствует либо о существовании в образце монокристаллов, повернутых друг относительно друга на некоторый угол, либо о присутствии двух позиций ванадия с различными ориентациями осей тензора ГЭП относительно кристаллографических осей.

Анализ результатов расчета тензоров ГЭП $V_{\alpha\beta}$ на атомах ванадия в модели точечных зарядов по-

казал, что имеются две позиции ванадия V1 и V2 с разной ориентацией осей тензора ГЭП: оси z, задающие направление главного значения ГЭП, V_{zz} , лежат для обеих этих позиций в плоскости bc, но составляют с осью c угол либо $+51(5)^{\circ}$ (V1), либо $-51(5)^{\circ}$ (V2). Что касается расчетных значений квадрупольной частоты $\nu_Q \propto V_{zz}$, то они получаются одинаковыми для всех атомов ванадия в элементарной ячейке, будучи при этом на порядок величины меньше наблюдаемых в эксперименте.

Суммируя экспериментальные и расчетные данные и рассматривая кристаллографическую структуру соединений $M_3V_2O_8$, можно выделить два неэквивалентных типа атомов ванадия V1 и V2 с различной ориентацией главных осей ГЭП, соответствующих различным повернутым друг относительно друга тетраэдрам VO₄ (см. рис. 1). Несоответствие экспериментальных и расчетных данных для квадрупольных частот позволяет утверждать, что в $M_3V_2O_8$ помимо решеточного имеется значительный валентный вклад в ГЭП.

С понижением температуры возможно изменение зарядового окружения ядра ванадия, что, в

9 ЖЭТФ, вып.6

Рис. 4. Угловые зависимости расстояния между сателлитами $\Delta \nu(\beta)$ для кривой 1 (•) и кривой 2 (Δ) в соединениях $Ni_3V_2O_8$ и $Co_3V_2O_8$ в ориентации $H_0 \parallel bc$. Сплошными кривыми показаны результаты экстраполяции функцией (1)

Рис. 5. Зависимость амплитуды спинового эха E от удвоенной задержки между импульсами 2t на ядре 51 V в монокристаллах $Ni_3V_2O_8$ при температуре T = 30 K и $Co_3V_2O_8$ при T = 85 K в двух ориентациях $H_0 \parallel a$ и $H_0 \parallel c$

свою очередь, может привести к изменению параметров ГЭП. При *T* < 150 К проследить эволюцию параметров ГЭП из анализа спектров не удается по причине значительного неоднородного магнитного уширения линий и исчезновения тонкой структуры спектров ЯМР. Однако, как показано в работах [13, 14], если неоднородность магнитного поля меньше квадрупольного взаимодействия, то возникают осцилляции в затухании спинового эха и период таких осцилляций определяется квадрупольной частотой.

На рис. 5 представлена зависимость амплитуды спинового эха E(2t) от удвоенной задержки между импульсами 2t в монокристаллах $Ni_3V_2O_8$ и $Co_3V_2O_8$ при температурах T = 30 К и T = 85 К в двух ориентациях кристалла, $H_0 \parallel a$ и $H_0 \parallel c$. Как видно на рисунке, E(2t) представляет собой экспоненциально затухающее синусоидальное колебание. Сплошная линия — результат аппроксимации данных E(2t) выражением вида [13, 14]

$$E(2t) \propto \exp(-2t/T_2) \left[1 + A\cos(\pi\omega t)\right]$$
(2)

при следующих значениях параметров для NVO: A < 1 — амплитуда модуляции, $T_2 = 40(6)$ мкс, $\omega(H_0 \parallel a) = 56(5)$ кГц, $\omega(H_0 \parallel c) = 29(4)$ кГц; для CVO: $T_2 = 60(5)$ мкс, $\omega(H_0 \parallel a) = 45(5)$ кГц, $\omega(H_0 \parallel c) = 19(4)$ кГц.

Частоты модуляции $\omega(H_0 \parallel a)$ и $\omega(H_0 \parallel c)$ при 25 К < T < 120 К совпадают в пределах погрешности с квадрупольными частотами, полученными из симуляции спектров в направлениях $H_0 \parallel a$ и $H_0 \parallel c$ при температурах T > 150 К. Эти данные свидетельствуют о том, что никаких изменений зарядового окружения ядер ванадия при понижении температуры не возникает, следовательно, не происходит и деформации тетраэдра VO₄.

Таким образом, в данной работе экспериментально — методами ЯМР — и теоретически — расчетами в модели точечных зарядов — исследованы параметры градиента электрического поля на ядрах ванадия в соединениях с общей формулой $M_3V_2O_8$ (Ni, Co).

Несоответствие экспериментальных и расчетных данных квадрупольных частот и параметров асимметрии позволяет утверждать, что в оксидах MVO помимо решеточного вклада в ГЭП имеется значительный валентный вклад. Работа выполнена при финансовой поддержке РФФИ (гранты №№ 10-02-90011-Бел, 09-02-00310а, 08-02-00789-а), БРФФИ (гранты №№ Ф08Р-177, Ф09Р-017), Уральского отделения РАН (грант 5-М) и гранта Президента РФ (МК-1232.2011.2).

ЛИТЕРАТУРА

- Y. Chen, J. W. Lynn, Q. Huang et al., Phys. Rev. B 74, 014430 (2006).
- M. Kenzelmann, A. B. Harris, A. Aharony et al., Phys. Rev. B 74, 014429 (2006).
- N. Rogado, M. Haas, G. Lawes et al., J. Phys.: Condens. Matter 15, 907 (2003).
- 4. A. B. Harris, Phys. Rev. B 76, 054447 (2007).
- А. А. Мухин, В. Ю. Иванов, А. М. Кузьменко и др., Письма в ЖЭТФ 91, 158 (2010).
- L. I. Vergara, J. Cao, L. C. Tung et al., Phys. Rev. B 81, 012403 (2010).
- Y. Yasui, Y. Kobayashi, M. Soda et al., J. Phys. Soc. Jpn. 76, 034706 (2007).
- E. E. Sauerbrei, R. Faggiani, and C. Calvo, Acta Cryst. B 29, 2304 (1973).
- 9. A. Abragam, *The Principles of Nuclear Magnetism*, Clarendon, Oxford (1961).
- C. P. Slichter, Principles of Magnetic Resonance, Harper and Row, New York (1963).
- V. Ogloblichev, K. Kumagai, S. Verkhovskii et al., Phys. Rev. B 81, 144404 (2010).
- V. Ogloblichev, K. Kumagai, A. Yakubovskii et al., J. Phys.: Conf. Ser. 150, 42148 (2009).
- 13. H. Alloul and C. Froidevaux, Phys. Rev. 163, 324 (1967).
- H. Abe, H. Yasuoka, and A. Hirai, J. Phys. Soc. Jpn. 21, 77 (1966).