МОДУЛИРОВАННАЯ МАГНИТНАЯ СТРУКТУРА В КВАЗИОДНОМЕРНОМ КЛИНОПИРОКСЕНЕ NaFeGe₂O₆

Т. В. Дрокина^{*a,b**}, Г. А. Петраковский^{*a,b*}, Л. Келлер^{*c***}, Й. Шефер^{*c****}, А. Д. Балаев^а, А. В. Карташев^а, Д. А. Иванов^а

^а Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> ^b Сибирский Федеральный университет 660074, Красноярск, Россия

^c Laboratory for Neutron Scattering, ETH Zürich and Paul Scherrer Institut CH-5232, Villigen PSI, Switzerland

Поступила в редакцию 2 июня 2010 г.

Изложены результаты экспериментального изучения магнитной структуры моноклинного соединения NaFeGe₂O₆, полученные методом упругого рассеяния нейтронов. При температуре 1.6 К обнаружена несоизмеримая магнитная структура, представляющая собой антиферромагнитную спираль, сформированную из пар спинов ионов ${
m Fe}^{3+}$ с геликоидальной модуляцией в плоскости ac кристаллической решетки. Определен волновой вектор магнитной структуры, исследовано его поведение при изменении температуры. Изучение температурных зависимостей теплоемкости и восприимчивости, а также изотерм полевой зависимости намагниченности позволило обнаружить существование наряду с магнитным фазовым переходом порядок–беспорядок в точке $T_N=13~{
m K}$ дополнительного магнитного фазового перехода в точке $T_c = 11.5$ K, который предположительно является ориентационным.

1. ВВЕДЕНИЕ

Пироксены, характеризующиеся общей формулой ABX_2O_6 (A — катион одновалентного или двухвалентного металла Na, Li, Ca; В — катионы Mg, Cr, Cu, Ni, Co, Fe, Mn, Al, Ga, Ti, Sc, In, V,... и X катионы Ge, Si), образуют широкий класс соединений. Их исследование представляет интерес, прежде всего, с точки зрения возможностей, во-первых, формирования разнообразных магнитных структур и, во-вторых, обнаружения и изучения природы явления взаимодействия магнитной и электрической подсистем (мультиферроики — перспективные материалы спинтроники) [1-8]. Эти возможности осуществимы вследствие того, что в соединениях со структурой пироксена установлено наличие конкурирующих обменных взаимодействий [1]. В этом аспекте особый интерес представляет обнаружение и исследование модулированных магнитных структур [9,10], в частности, из-за предполагаемой связи их природы с механизмом взаимодействия магнитной и электрической подсистем [3, 11].

Низкая магнитная размерность, проявляющаяся в пироксенах, вызывает также интерес исследователей из-за возможности обнаружения в них таких квантовых эффектов как синглетизация основного магнитного состояния, формирование энергетической щели в спектре элементарных возбуждений, квантовое сокращение спина [12, 13].

Сказанное выше определяет актуальность детального исследования свойств и магнитной структуры пироксенов различного состава.

Одним из представителей пироксенов является соединение NaFeGe₂O₆. Рентгеноструктурное исследование NaFeGe₂O₆ показало, что его кристаллическая структура изотипна структуре диопсида СаМдSi₂O₆ с заменой Са, Мд и Si на Na, Fe и Ge [14]. Кристаллическая симметрия описывается моноклинной пространственной группой С 2/с [14]. В элементарной ячейке содержатся четыре формуль-

^{*}E-mail: tvd@iph.krasn.ru

^{**}L. Keller

^{***&}lt;sup>–</sup>J. Schefer

Рис.1. Кристаллическая структура NaFeGe₂O₆ в парамагнитной области

Таблица 1. Координаты базисных атомов соединения $NaFeGe_2O_6$ при T = 300 K, [14]

Атом	x	y	z
Ge	0.2121	0.4065	0.2689
Fe	0	0.098	0.250
Na	0	0.696	0.250
OI	0.391	0.418	0.363
OII	0.145	0.228	0.197
OIII	0.141	0.492	0.513

ные единицы (рис. 1). Рентгенографическое определение параметров моноклинной ячейки NaFeGe₂O₆ при комнатной температуре дает a = 10.0100 Å, b = 8.9400 Å, c = 5.5200 Å, $\beta = 108.0000^{\circ}$ [14]. Координаты ионов Na, Fe, Ge и O приведены в табл. 1.

Как показали наши исследования ядерного γ -резонанса, проведенные при комнатной температуре с источником $\mathrm{Co}^{57}(\mathrm{Cr})$ на порошках толщиной 5–10 мг/см² по естественному содержанию железа, ионы железа Fe^{3+} в NaFeGe₂O₆ находятся в высокоспиновом состоянии (S = 5/2) и октаэдри-

ческом кислородном окружении (изомерный сдвиг 0.40 мм/с), полиэдры вокруг атомов Fe искажены (квадрупольное расщепление Q = 0.34 мм/с) [15].

В кристаллической структуре натриевого пироксена на основе железа октаэдры посредством общих ребер связаны в непрерывные зигзагообразные ленты, тянущиеся вдоль кристаллической оси c. Тетраэдры GeO₄ связаны между собой вершинами и образуют также цепочки, вытянутые вдоль оси c. Два вида цепочек чередуются вдоль кристаллической оси b.

Магнитные измерения соединения NaFeGe₂O₆, выполненные при помощи СКВИД-магнитометра в магнитном поле 100 Э, показали, что при высоких температурах (T > 15 K) в NaFeGe₂O₆ реализуется парамагнитное состояние, характеризуемое асимптотической температурой Нееля $\theta = -135$ K; обратная восприимчивость при температурах выше T = 100 K описывается законом Кюри–Вейсса [15]. При температуре ниже 15 К образец переходит из парамагнитного состояния в состояние с дальним магнитным порядком, формирующимся преимущественно антиферромагнитным взаимодействием.

Анализ структурных особенностей показал, что в пироксене NaFeGe₂O₆ возможны два вида обменных взаимодействий ближайших соседей. С одной стороны, взаимодействия, осуществляемые через связи Fe–O–Fe, а, с другой стороны, межцепочечные обменные взаимодействия Fe–O–Ge–O–Fe, принадлежащие как одному слою ab, так и межслойные. Особенности топологии обменных взаимодействий в NaFeGe₂O₆, их конкуренция могут привести к нетривиальной магнитной структуре данного соединения.

В этой связи в настоящей работе авторы поставили перед собой задачу изучить магнитную структуру пироксена NaFeGe₂O₆.

2. ПРИГОТОВЛЕНИЕ ОБРАЗЦА И ТЕХНИКА ЭКСПЕРИМЕНТА

Поликристаллический NaFeGe₂O₆ синтезирован методом твердотельной реакции с отжигами при температурах 800°–900 °С на воздухе в четыре этапа, каждый длительностью по 24 ч. Использовались реагенты 16 % Na₂CO₃, 23 % Fe₂O₃, 61 % GeO₂. Параметры решетки, определенные методом рентгеноструктурного анализа, составляют a = 10.008 Å, b = 8.948 Å, c = 5.523 Å, $\beta = 107.59^{\circ}$, что находится в согласии с данными [14]. На рентгенограмме присутствовали следы немагнитной примесной фазы Na₄Ge₉O₂₀. Для выполнения работы в качестве основного метода исследования выбран метод упругого рассеяния нейтронов. Эксперименты по рассеянию нейтронов с длиной волны $\lambda = 2.4576$ Å были выполнены в области температур 1.6–100 К на дифрактометре DMC (SINQ, Швейцария) [16,17]. Образец в цилиндрическом ванадиевом контейнере помещался в гелиевый криостат. Данные обрабатывались с использованием пакета программ FULLPROF [18]. Для определения магнитной структуры необходимое выделение магнитной составляющей из ядерной осуществлялось вычитанием из картины нейтронной дифракции при T = 1.6 К картины при температуре 30 К, при которой в образце реализуется парамагнитное состояние.

Магнитные измерения осуществлены на автоматизированном вибрационном магнитометре со сверхпроводящим соленоидом в полях до 8 Тл и температурах 4.2–300 К (Институт физики им. Л. В. Киренского, Красноярск).

Калориметрические исследования выполнены на установке Quantum Design PPMS 6000 Центра коллективного пользования Красноярского научного центра в интервале температур 2.0–300 К в магнитных полях до 9 Тл.

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ИХ ОБСУЖДЕНИЕ

Нейтронографическое исследование магнитной структуры поликристалла NaFeGe₂O₆ показало, что нейтронограмма при температуре ниже 13 К, соответствующей переходу образца в антиферромагнитное состояние, содержит большое число магнитных пиков, обусловленных дальним магнитным порядком. На рис. 2 приведена температурная зависимость высоты наиболее интенсивного магнитного пика $(0, 1, 0) \pm \mathbf{k}$ на нейтронограмме NaFeGe₂O₆, показывающая установление дальнего магнитного порядка при температуре T = 13 К. Этот результат находится в соответствии с магнитными измерениями, проведенными на СКВИД-магнитометре [15]. Интегральная интенсивность магнитной составляющей рассеяния нейтронов с ростом температуры уменьшается. При наименьшей температуре T = 1.6 K насыщение не достигается.

Анализ расположения магнитных рефлексов позволяет заключить, что в исследуемом веществе NaFeGe₂O₆ существует несоизмеримая магнитная структура. При температуре T = 1.6 К волновой вектор структуры $\mathbf{k} = (0.3357(4), 0, 0.0814(3)).$

С целью определения ориентации магнитных моментов атомов относительно друг друга в магнитной

Рис.2. Температурная зависимость относительной интегральной интенсивности брэгговского магнитного пика $(0, 1, 0) \pm \mathbf{k}$ на нейтронограмме соединения $\mathrm{NaFeGe_2O_6}$. Температура Нееля $T_N \approx 13$ К. I_0 — интенсивность при T = 1.6 К

структуре и по отношению к кристаллографическим осям проведена обработка экспериментальных данных при T = 1.6 К согласно работе [18]. Результаты моделирования показали, что для исследуемого образца возможно существование двух моделей, способных описать как положение, так и интенсивности брэгговских магнитных пиков на зависимости интенсивности рассеяния нейтронов от угла θ магнитного рассеяния. Обе модели предполагают, что в несоизмеримой структуре NaFeGe₂O₆ магнитные моменты ионов железа образуют антиферромагнитно связанные пары с модуляцией вдоль вектора распространения k. Одна модель описывает синусоидальную модуляцию магнитных моментов, а другая — геликоидальную модуляцию. В табл. 2 показаны результаты обработки данных нейтронографического исследования магнитной структуры в NaFeGe₂O₆, соответствующие синусоидальной и геликоидальной модуляциям спинов. Модель, соответствующая геликоидальной модуляции спинов, дает лучшее согласие с экспериментальными данными.

Результаты обработки нейтронограммы при T = 1.6 К с учетом вычета данных при T = 30 К для геликоидальной модуляции магнитных моментов представлены на рис. 3. На нем содержатся рефлексы, обусловленные только магнитным упорядочением образца. На рис. 3 видно, что модель магнитной структуры с геликоидальной модуляцией хорошо совпадает с экспериментальными данными, содержащими большое число магнитных пиков, для всего диапазона углов магнитного

Магнитная структура кристалла	Несоизмеримая структура с геликоидальной модуляцией антиферромагнит-	Несоизмеримая структура с синусоидальной модуляцией антиферромагнитно-связанных пар	
	но-связанных пар		
Вектор распространения магнитной структуры	$\mathbf{k} = (0.3357(4), 0, 0.0814(3))$	$\mathbf{k} = (0.3357(4), 0, 0.0814(3))$	
Магнитный момент иона Fe ³⁺	$M = 2.55(1)\mu_B$	$M = 2.53(2)\mu_B$	
Ориентация	в плоскости ас	в плоскости ас	
магнитных	(малая компонента	(компонента вдоль	
моментов	вдоль оси b)	оси b отсутствует)	
Достоверность факторов обработки результатов	$R_p = 4.5, \ \chi^2 = 4.43$	$R_p = 6.5, \ \chi^2 = 13.2$	

Таблица 2. Нейтронографические данные для магнитной структуры в $NaFeGe_2O_6$ при T=1.6 K

Рис. 3. Нейтронограмма магнитного рассеяния нейтронов от поликристаллического образца NaFeGe₂O₆ при T = 1.6 K, полученная с учетом вычета данных при 30 K (•). Линии соответствуют модельному вычислению интенсивности рефлексов для геликоидальной модуляции магнитных моментов и отклонению экспериментальных данных от расчетных (нижняя кривая)

рассеяния. Поэтому можно сделать вывод, что в NaFeGe₂O₆ при T = 1.6 К реализуется несоизмеримая магнитная структура с геликоидальной модуляцией магнитных моментов железа вдоль вектора распространения **k**. При T = 1.6 К магнитный момент иона Fe³⁺ составляет 2.55(1) μ_B .

Расположение магнитных моментов в элементарной химической ячейке образца показано на рис. 4*a*. Магнитные моменты модулированной структуры располагаются, главным образом, в плоскости *ac*, и имеется только небольшая составляющая вдоль оси *b*. Магнитную структуру можно представить как длинноволновую модуляцию антиферромагнитной структуры (рис. 4*б*).

Микроскопические механизмы, ответственные за модуляцию магнитных структур, в основном известны [9]. По-видимому, геликоидальная магнитная структура в метагерманате NaFeGe₂O₆ реализуется в результате «конкуренции» обменных взаимодействий между различными атомными соседями в цепочках магнитоактивных ионов и между ними. Из-за «конкуренции» обменных взаимодействий магнитные моменты Fe³⁺ через плоскость поворачиваются на некоторый угол α (в соседних плоскостях моменты антипараллельны), образуя несоизме-

Рис. 4. Магнитная структура в $NaFeGe_2O_6$ (T = 1.6 K): a — расположение магнитных моментов железа в кристаллической ячейке (вид вдоль оси c в плоскости ab); δ — расположение магнитных моментов железа в ряде кристаллических ячеек (плоскость ac). Магнитная структура в $NaFeGe_2O_6$ образована антиферромагнитно связанными парами ионов Fe^{3+}

Рис.5. Температурная зависимость волнового вектора магнитной структуры для $NaFeGe_2O_6$. Вертикальные отрезки у точек показывают погрешность измерений

римую геликоидальную магнитную структуру.

Исследовано поведение волнового вектора магнитной структуры при изменении температуры. Результаты представлены на рис. 5. Волновой вектор в основном монотонно изменяется в зависимости от температуры, принимая несоизмеримые с периодом кристаллической решетки значения. С ростом температуры волновой вектор уменьшается. При достижении значений $k_x \approx 0.0325$ и $k_z \approx 0.0775$ в области 9.5 К < T < 10.5 К его снижение замедляется, что, видимо, соответствует эффекту запирания (lock in) [9].

Поведение температурной зависимости вектора распространения позволяет предположить, что в об-

Рис. 6. Температурная зависимость теплоемкости поликристаллического соединения $NaFeGe_2O_6$ в отсутствие поля и в магнитных полях H = 5,9 Тл. На вставке показана зависимость температуры Нееля T_N (\blacksquare) и температуры спиновой переориентации T_c (\bullet) от магнитного поля

ласти температур замедления изменения волнового вектора геликоидальная модулированная магнитная структура изменяется.

С целью дальнейшего исследования магнитных фазовых переходов проведено измерение теплоемкости C_P соединения NaFeGe₂O₆ в интервалах температур 2.0–300 К и магнитных полей 0–9 Тл. На рис. 6 показан температурный ход C_P вблизи точки Нееля. В отсутствие внешнего магнитного поля (H = 0) на зависимости теплоемкости от температуры наблюдаются два максимума: первый при $T_1 = 11.5$ К и второй при $T_2 = 13$ К. Отметим, что положение первого максимума на кривой зависимости $C_P(T)$ в отличие от второго зависит от величины магнитного поля. Максимальный его сдвиг в поле H = 9 Тл составляет примерно 0.5 К.

Особенности поведения температурной зависимости намагниченности при уменьшении температуры в NaFeGe₂O₆ [15] позволяют однозначно интерпретировать максимум при T_2 на температурной зависимости теплоемкости как фазовый переход порядок-беспорядок ($T_2 = T_N = 13$ K). Этот вывод подтверждается также нейтронографическими исследованиями (рис. 2). Природа аномалии на кривой $C_P(T)$ при $T_1 = 11.5$ K не столь очевидна. Так как изменений кристаллической структуры в соединении NaFeGe₂O₆ в низкотемпературной области не наблюдается, то фазовый переход при $T_1 \equiv T_c = 11.5$ K, скорее всего, соответствует изменению макроскопического состояния магнитной

Рис.7. Температурные зависимости магнитной восприимчивости χ и ее производной $d\chi/dT$ в $\mathrm{NaFeGe_2O_6}$ (максимальное значение $d\chi/dT$ достигается при температуре T=11.5 K)

подсистемы образца (T_c — температура переориентации магнитной подсистемы). Это предположение подтверждается фактами влияния магнитного поля на положение низкотемпературного пика теплоемкости (рис. 6), существования явления пришпиливания волнового вектора при близком к данному значению температуры (рис. 5), а также аномалией на кривой температурной зависимости восприимчивости $\chi(T)$ (рис. 7). На вставке к рис. 6 приведены зависимости температуры Нееля и температуры предполагаемого спин-переориентационного перехода от внешнего магнитного поля.

Измерение полевых зависимостей восприимчивости $\chi(H)$ и намагниченности поликристалла NaFeGe₂O₆ при различных температурах показало, что в области магнитного упорядочения при каждой температуре существует критическое поле H_c , при котором происходит изменение наклона кривой $\chi(H)$, что может быть обусловлено переориентацией магнитных моментов. Вблизи критической точки $H_c(T)$ наблюдается аномалия зависимости восприимчивости $\chi(H) = d\sigma/dH$ (рис. 8). Она исчезает при нагреве образца до температуры T = 12 K.

По результатам измерений намагниченности и теплоемкости в магнитном поле построена фазовая диаграмма магнитного состояния образца NaFeGe₂O₆ (рис. 9). В области IV образец парамагнитен. Из данных исследования намагничивания следует, что при увеличении магнитного поля низкотемпературная геликоидальная несоизмеримая структура, обнаруженная нейтронографическими исследованиями в отсутствие магнитного поля реализуется, по-видимому, во всей области II. В

Рис. 8. Полевые зависимости восприимчивости (∇) и намагниченности (\circ) поликристалла NaFeGe₂O₆ при различных температурах: T = 4.2 К (критическое поле перестройки магнитной подсистемы образца $H_c = 32$ кЭ), T = 8 К ($H_c = 33$ кЭ), T = 12 К (аномалия отсутствует)

магнитном поле $H = H_c$ происходит ее изменение. При $H > H_c$ устанавливается иная магнитная структура (область I). Особенности поведения температурной зависимости теплоемкости в магнитном поле (рис. 6) позволяют предположить, что при температурах выше $T_c = 11.5$ K (H = 0) до температуры перехода порядок-беспорядок также имеет место спиновая переориентация в

Рис.9. Фазовая диаграмма магнитного состояния поликристалла $\operatorname{NaFeGe_2O_6}$ (построена по результатам измерений намагниченности и теплоемкости в магнитном поле): области I, III — магнитная структура неизвестна, область II — несоизмеримая геликоидальная магнитная структура, область IV — парамагнетик

метагерманате NaFeGe₂O₆ (область III). Уточнение картины магнитного порядка в областях I, III, а также природы низкотемпературного магнитного фазового перехода при T_c требует дополнительных нейтронографических исследований.

4. ВЫВОДЫ

Методом магнитной нейтронографии, калориметрических и магнитных измерений изучена магнитная структура и обнаружены магнитные фазовые переходы в соединении NaFeGe₂O₆.

Нейтронограмма поликристаллического Na. Fe-метагерманата при температурах ниже T_N = = 13 К содержит дополнительные (магнитные) пики среди основных (ядерных) рефлексов. На основе анализа магнитных пиков в картине нейтронной дифракции установлено, что в NaFeGe₂O₆ при температуре T = 1.6 К реализуется магнитная структура, образованная антиферромагнитно связанными парами ионов Fe³⁺ с геликоидальной модуляцией в плоскости (ас) и незначительной составляющей по оси b. Эта структура характеризуется периодом модуляции, имеющим несоизмеримое с периодом кристаллической решетки значение, в частности, при T = 1.6 К волновой вектор $\mathbf{k} = (0.3357(4), 0, 0.0814(3)).$ С ростом температуры волновой вектор структуры монотонно уменьшается, в области 9.5 К < T < 10.5 К монотонность нарушается и наблюдается эффект запирания.

Из анализа результатов измерений температурных зависимостей теплоемкости и восприимчивости, изотерм полевой зависимости намагниченности следует существование наряду с магнитным фазовым переходом порядок-беспорядок в точке $T_N = 13$ К дополнительного магнитного фазового перехода в $T_c = 11.5$ К, который предположительно является ориентационным.

ЛИТЕРАТУРА

- S. V. Streltsov and D. I. Khomskii, Phys. Rev. B 77, 064405 (2008).
- 2. А. А. Катанин, В. Ю. Ирхин, УФН 177, 639 (2007).
- S. Jodlauk, P. Becker, J. A. Mydosh et al., J. Phys.: Cond. Matter 19, 432201 (2007).
- S. V. Streltsov, J. McLeod, A. Moewes et al., Phys. Rev. B 81, 45118 (2010).
- P. J. Baker, H. J. Lewtas, S. J. Blundell et al., Phys. Rev. B 81, 214403 (2010).
- G. Nenert, I. Kim, M. Isobe et al., Phys. Rev. B 81, 184408 (2010).
- A. N. Vasiliev, O. L. Ignatchik, A. N. Sokolov et al., Phys. Rev. B 72, 012412 (2005).
- M. Isobe, E. Ninomiya, A. N. Vasiliev et al., J. Phys. Soc. Jpn. 71, 1423 (2002).
- Ю. А. Изюмов, Дифракция нейтронов на длиннопериодических структурах, Энергоатомиздат, Москва (1987).
- L. E. Svistov, L. A. Prozorova, A. A. Bush et al., J. Phys.: Conf. Ser. 200, 022062 (2010).
- E. Golovenchits and V. Sanina, J. Phys.: Cond. Matter 16, 4325 (2004).
- **12**. В. В. Вальков, С. Г. Овчинников, ТМФ **50**, 466 (1982).
- Z. S. Popović, Ž. V. Šljivančanin, and F. R. Vukajlović, Phys. Rev. Lett. 93, 036401 (2004).
- Л. П. Соловьева, В. В. Бакакин, Кристаллография 12, 591 (1967).
- 15. Т. В. Дрокина, О. А. Баюков, Г. А. Петраковский и др., ФТТ 50, 2050 (2008).
- P. Fischer, L. Keller, J. Schefer et al., Neutron News 11, 19 (2000).
- 17. W. E. Fischer, Physica B 234-236, 1202 (1997).
- 18. J. Rodriguez-Cravajal, Physica B 192, 55 (1993).