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The nonlinear Schrédinger equation, known in low-temperature physics as the Gross—Pitaevskii equation, has
a large family of excitations of different kinds. They include sound excitations, vortices, and solitons. The
dynamics of vortices strictly depends on the separation between them. For large separations, some kind of
adiabatic approximation can be used. We consider the case where an adiabatic approximation can be used
(large separation between vortices) and the opposite case of a decay of the initial state, which is close to the
double vortex solution. In the last problem, no adiabatic parameter exists (the interaction is strong). Never-
theless, a small numerical parameter arises in the problem of the decay rate, connected with an existence of a
large centrifugal potential, which leads to a small value of the increment. The properties of the nonlinear wave
equation are briefly considered in the Appendix A.

1. INTRODUCTION

The nonlinear Schrédinger equation is probably the
simplest model where both the wave-like and “partic-
le’-like excitations—vortices and solitons — exist. The
interaction of vortices with one another and with so-
und-like excitations leads to a nontrivial dynamics of

The ground state is degenerate with respect to mul-
tiplication by an arbitrary phase factor. This degene-
racy leads to the existence of sound-like excitations.

To find these excitations, we set

= exp(ixo)(1 +u1 +iuz), (4)

vortices. where u; » are real and
We consider the simplest equation of the type
U2 K 1.
S T 0 "
ot or? It follows from Eqs. (1) and (4) that
in the two-dimensional space. The energy E corre- o w 0 92 — g
sponding to the state 1) can be defined as BN 0y = 2wy 1 + o2 w | (5)

E= %/er{<‘Z—f>2+%(1—|¢|2)2}. @)

The absolute minimum of E is reached on the state

Y = exp(ix), (3)

where Y is a constant phase.
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The general solution of Eq. (5) is a linear superpo-
sition of the type

k2
Yo —k-
( Uy > | @ sin(wt r) ’ ©)
Uz cos(wt —k - 1)

where w and k satisfy the equation

w? = k(2 + k7). (7)
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For small values of the frequency w, sound-like ex-
citations therefore exist in the system with

w=V2k. (8)

It follows from Eq. (1) that the total energy E
(Eq. (2)) is conserved and the energy flow Sg is given
by

5= -3 {5 7 o)

ay*
ot ar T _}'

ot Or
In a plane wave with |k| < 1, the main contribution
to the energy flow is due to the imaginary part of the
perturbation us (Eq. (4)).
Equation (1) also has time-independent solutions
(vortices) of the form

¥n(r) = exp(ing) fu(r), (10)

where r = |r|. .
_ If ¢u(r) is a solution of Eq. (1), then ¢,(r) and

P (r) are also solutions of Eq. (1), where

Un(r) = thn(r —a) exp(ixo), (11)

where a and yo are some constants. Solutions of
type (10) are characterized by a discrete topological
charge n.

2. NONLINEAR ADIABATIC THEORY

We now suppose that we have a system of vortices
with a large separation,

[v; — ;| > 1,
from one another. Our task is to derive a system of

equations for the positions r;(¢) of the centers of vor-
tices. For this, we define the action A as

A:/L%
L=F— /d2 (¢——¢8¢*>.

The second term in Eq. (12) can be regarded as a dy-

namical one,
1 2 50X
=3 /dt/d r|v] TR (13)

= [¢] exp(ix). (14)

(12)

where

For large distances between the vortices,
[r; — ;| > 1,

in the leading approximation, the phase y is equals to
the sum of phases of the individual vortices:

X = in, Xi = n;arctg <M) . (15)
i r — Iy

In the same approximation, the modulus of ¢ is given
by

|wF=1—<%§f. (16)

Equations (13), (15), and (16) allow writing the dy-
namical part of the action Ap as

I T G N - TN ACN )
LD_Q/drat 2/dr(1 W5 (A7)

Dgr Dgr

The integral in Eq. (17) is taken over a circle Dg of a
large radius R. In the approximation given by Eq. (15),
to the logarithmic accuracy, the last term is equal to
the quantity

orj, Jr
WZRJ ng ]k J|k2 |I‘jk|, (18)

where

rjp =r; — I

0 -1
(0 w

is the simplectic matrix. Compared to the first term,
this term has the parametric smallness r;f and is ne-
glected in what follows. For the first term in Eq. (17),
we obtain

and

n; Or;
Lp= g i 2
D 2|I‘J| ot Jr; /dgo X

7 COSp — T
x [ d . (20
0/ > + 7% = 2rrj cos (20)

The integral in Eq. (20) is given by
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rCcosyp —r;
d =
/ = + 7% = 2rrj cos g
0
r?—r? dz
= — < 2m+ J % =
rj 2r; L (z=r/rj)(z =rj/r)
zZl=
0, r>rj,
-, r<ry
rj
As a result, we obtain
™ 6I‘j
D — E;n]/dtajr] =
™ 81‘]'
J

where n; = n;(0,0,1).

In the next approximation, an outgoing wave arises
due to the vortex motion. This phenomenon can be
taken into account with the help of an additional term

0S in the action,
1 2
:) -3 (%) -

S el
-3 (% )}(M

C ot ot
where @ is a single-valued scalar function, connected
with small vibrations of the phase.
The action in (12) and (22) should take an extremal
value on a trajectory. This leads to the equation [1]

orj OFE

"ot T ar;

dps
ot

dps

ox
ot

-2 (24)

In the leading approximation of large distances between
vortices, the energy E can be written as

E= ZE +Y By,

i#j

(25)

where E; is the self energy of a separate vortex and Fj;
is the pair interaction energy. From Eqs. (2) and (15),

1 o [(Oxi Ox;\ _
%—i/d%mﬁi—
|r|<R
= ﬂninj ln <7|rl ]—%I‘j|> . (26)

Equation of motion (24) is independent of the cut
off distance R. There are some special configurations of
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vortices, where all quantities 9E/dr; vanish in the ap-
proximation (26). We call such configurations forceless.
For forceless configurations, it is necessary to evaluate
the energy E in the next approximation in the distances
|r; —r;|. The interaction energy in such a case can not
be presented as a pair interaction energy. Equation (24)
continues to hold for that case.

3. EMISSION

Equation of motion (24) does not take the emission
of excitations of type (6) into account. To do so we
write Eq. (1) in the form

|¢|2: _<8_X>2 8X+ 1 82|¢|
or 0] o2 (27)
ot 81‘2 61‘ or

From the system of equations (27), we obtain the
following equation for the phase y:

Px _,0x _
ot? or2
N N ) S N G il
Or Or |\ Or ot |¢| or?
o [(ox\" 1 W
=20 )31‘2 ot [(61‘) ol or? | (28)

We solve Eq. (28) treating the right-hand side as a per-
turbation. In the first approximation, we therefore set
the right-hand side of Eq. (28) equal to zero and search
x of the form

X=Xo+ % Xo=D_xilr—ri(t)), (29)

i

where the functions y; are given in Eq. (15) and r;(t)
are solutions of Eq. (24). In the first approximation,
we have

)ZZ—/dtlx

9?*xo(r1,t1)

« /d%la(t — ) SRR 0
where the Green’s function
2
o(t) 0, V2t < |r],
G(t,r) = (31)
21v/2 . V2t > |r),
2t2 — r?

is a solution of the equation
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PG
or?

We now consider a system of two vortices with equal
topological “charge” n = 1. We suppose that the dis-
tance between vortices is Ry. Then in the approxima-
tion Eq. (24), vortices rotate relative the “middle” point
with the frequency

0*G
o o o

—t1)8(r — ). (32)

It follows from Eqgs. (15), (29), and (33) that
Ixo _ Riw
o 2
RZ/4 —r% cos(2(p — wt)) (34)

4+ R§/16 — r2(R3/2) cos(2(p — wt))

Expression (34) can be expanded into a series in
cos(2k(p —wt)), k =0,1,2... Simple calculations give

dxo

B = Iycos(2(p —wt)) +...+
+ Iy cos(2n(p — wt)), (35)
where
R2w _7'_27 r> R[)/Q,
I =2 ) (36)
2 167
R—87 r< R0/2

The contribution from other harmonics to Y is small
and is not included.

From Egs. (30), (32), and (35), in the wave zone

r > w™!, we obtain
91/4 1/2
X = ﬂ cos [\/iw (r—ﬂt) +290—E] X
2r1/2 4

X /dplpllg(pl,w)Jg (ﬂwpl), (37)

where J5 is the Bessel function and

r = r(cos ¢, sin @) (38)

is the observation point.
In Eq. (37), only the domain where p; > Ry/2 is
essential and simple calculations give

24 (rw) PwR2
rl/2
X COS [\/ﬁw (r - \/ﬁt) +2p — %] . (39)

X
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Similarly, it is possible to find all higher harmonics of
X. With the help of Egs. (30), (34), and (35), in the
wave zone, we obtain

X = i X2n COS (ﬁnw (r—\/it) +2ngo—%) , (40)

X2n =

”*121/4\/7mw
) /dplpl-[2n fnwpl)

The first term in Eq. (40) coincides with expression
(37). Only large values of p; ~ (nw)~! > Ry are es-
sential in the integral in Eq. (40). In this domain from
Eqgs. (34) and (35), we obtain

R
Ly ~ —2w <47g> (41)
Finally, we obtain
_ n21/4 n—1) R2
o = (-) Vnw w(nw)? Ry (42)
VT '(2n) 8

It follows from Eq. (42) that the amplitude of higher
harmonics very rapidly decreases as n increases.

The right-hand side of Eq. (24) is localized near the
circle of the radius p = Rp/r. Essential distances in
the kernel in Eqgs. (30) and (37) are of the order of the
wave length p ~ w~!. As a result, the correction to
the value of Y given by Eq. (40) due to right-hand side
of Eq. (28) is small. The order of magnitude of this
correction can be estimated as follows. In the leading
approximation, we have

ox 4r?

(5) - rt+R3/16—1r2(R2 /2) cos(2(p—wt)) -

- ;_% {ﬂ l}cos(Q(go—wt)) 4o

|rt — R4 /16
Using Eqs. (37) and (43), we obtain the correction to
the phase Y that comes from the term

(43)

2 (9x\’
ot \ or
in Eq. (28)
W2
oY ~ 75 (WR3)w? In Ry x

X COS [ﬁw(r —V2t) + 2 — % . (44)

Because of the small expansion parameter w?In Ry,
this correction is smaller than the leading contribution
given by Eq. (34).
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We now consider the correction to the phase y as-
sociated with the term

0 0 (00 0 9 ()
or or \ or or or \ or

This term and the similar one originate from the term

ox @ (9x)’
Or Or \ Or

in Eq. (28).
We find
O 0 ()" O 0 (0% _
Or ar \ or dr or \ or B
_ —2r2R2 sin[2(¢p—wt)] _ 16 "
[r*+R} /16 r?R%/2cos(2(p—wt))]>  r?R3
r+R/16 ] .
[1 | —R3/16|] sin(2(¢ —wt)) +...  (45)
From Eqs. (28), (37), and (47) we obtain

Y
X ~ Y (w

X sin [\/iw(r —V2t) + 20 —@o| . (46)

2 lnRg) X

This correction is of the same order as the one in
Eq. (44). The correction in Eq. (40) to the phase Y
decays at large distances as r~'/? and leads to emis-
sion of sound-like excitations. As a result, the distance
between two vortices increases with time. To find the
dependence Ry(t) we first derive the energy flow (Sg)
averaged over the period of motion. It follows from
Eq. (9) that

re’Rg x 32 x (47)

32 2 R§ r?

The energy conservation law and Eqs. (26) and (47)
) [

(Sk) =

give the following equation for the quantity Ry(t) [2]:
6R0 3271’
—_— = —. 48
ot R} (48)

LA s (AFN? (1)
<f0) 4 64 36\ 64
=C;
Ja B2 o
2—07'+ (r®)

where () are arbitrary constants. We put below
Cy = 1. The coefficients B,Cs are found in Ap-
pendix B.

—232> +0(r®)

The general solution of Eq. (48) is

R(t) = R (to) + 32 - 67(t — to), (49)
which means that R(t) is a linear function of time.
Equation (49) is valid only in the range Ry > 1.

4. DECAY OF A DOUBLE VORTEX

We now consider the opposite limit case Ry < 1,
the initial stage of the decay of a double vortex. In this
range, we can search for a solution of Eq. (1) in the
form

¥ = fo(r)e* + fo(r)e™ ™ + fi(r)et e, (50)
where f> is a double vortex solution of Eq. (1) and fo 4

are small, |fo4] < 1. In the linear approximation we
obtain

_%% <7"%f0) (1 =2f3)fo + f3fs = Ao,
10 ( 0fa (51)
‘W( m)*ﬁfr

—(1=2f3) fa + f3 fo = =Afa.
We should find solution of system (51) subject to the
boundary condition that fy 4 are finite for r — 0, and
an outgoing wave exists for r — co.

The function f»(r) is a solution of the Eq. (10) with
the topological charge n = 2. For r < 1, we have (see
Appendix B)

B B
_p2 4 6
fa(r) = Br —121“ + —3847' (52)

and

2
10 12
—1007' +0(r?)
+ Oy ) (53)

1-A
4 _ 6 8
r 2O?"-I-O(r)

In the range r > 1, we have (see Appendix B)

fa(r) = 1—%—%— E—f-l—%exp (-v2r) (59
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and

(5)-a3(0) =99, o

where (34 are constants. The functions S, S, and
a, &, 3,3 are found in Appendix B:

1+2(1—2)\)

1/2 Q T 12
S:(1+1/1+A2) 7‘+8¢X

rv1++v1+ 22

1
. (1 T ir e m) - (56)

1+2(1—2)\)

~ 1/2 ) T2
S’:(1/1+)\2_1) T‘-I-MX

rvV1+A2 -1

x |1+ ! ,
2rv/vV1i+ A2 -1

and
(5)= (v )t
B)  \ A+VIFA2
LA 2 LHVI+ A
(14 22)r2 I+ A2
X<1—(A+\/1+>\2)>’ 57

1

122
1+ 222

(

().

21vVV1I+ A2 -1 "
rv1+ \2

1
) ( A+ VIF R ) '
We note that the equation
19 ([ df . .
o <T8—0> — fo(1 =2£3(r)) = Afo (58)

r

has a negative eigenvalue
A = —0.399689. (59)

On the other hand, in the range of values of r where
the function f> is essentially different from 1 the cen-
trifugal potential in Eq. (51) for the function f, is large.

As a result, the functions fp and fy in Eq. (51) overlap
weakly, and we can hope that Eq. (51) has an eigen-
value of A with a small imaginary part and with the
real part close to . Matching the numerical solution
of Eq. (51) starting from values given by (53) for r < 1
with values given by Eq. (55) for r >> 1, we obtain all
coefficients (A, C2, Cs3,Cy). These coefficients are given
in Appendix B. Specifically,

A = —0.443673 4 ¢ 0.004937. (60)

The imaginary part of A is nearly hundred times smaller
then its real part. Such a high quality of oscillation in
the system is related to the high value of the centrifugal
potential in the “localization” range of the function fy.

5. EXITATIONS OF THE SOLITON TYPE

We next consider the third-type exitations, solitons.
For a long-wavelength soliton of small amplitude, we
obtain from system of Egs. (27) that [2]

0> 9? d (dx\’
Va2 (%)

otz “or2 T ot \or
ox 9*>y 1 9% 9%y
oo 202 o OV
We search a solution of Eq. (60) in the form
x = x(x — vt). (62)
For the quantity
ox .
2= T =ux—ut, (63)

we then obtain the equation

2 92
5 5 v? 0%z
—2)z=3vz" — — —. 64
(2 =2z =302 - T 2 (64)
This equation with the boundary condition z — 0 as
T — +00 is equivalent to the equation

(v? —2)2% — 202° + ﬁ <%>2 =0 (65)
2 \oz)

The solution of Eq. (65) is

A
z TN (66)
ch”(B%)
where
2 —v? 2 —v?
2 —_ —
= 202 A v (67)
Equations (61) and (65) are valid only in the range
0<V2-v<l. (68)

544



KITD, Tom 139, Bhm. 3, 2011

Long-time relaxation processes . ..

6. CONCLUSIONS

The dynamics of vortex states essentially depends
on the type of the equation. It is quite different for
the nonlinear Schrédinger and wave equations. For the
nonlinear Schrodinger equation, there exists an adia-
batic parameter, the distance |r; ;| between vortices.
In the leading approximation in this parameter, emis-
sion of sound-like exitations is weak and the equation
of motion of the vortices is given by simple Eqs. (24),
of the first order in time. In such an approximation,
the energy of a vortex state is conserved. In the next
approximation, the motion of vortices can lead to emis-
sion of sound-like exitations. We note that even if the
adiabatic parameter is missing (the initial state of the
double vortex decays), the increment is numerically
small due to a large value of the centrifugal poten-
tial. Two vortices of opposite vorticity (charge) at
large distances move together with a velocity smaller
than the sound velocity (/2 in our case) and hence do
not radiate. If the distance between such vortices is
smaller than some critical value (r.. ~ 1), then such
vortices collapse, annihilating each other and produ-
cing a shock wave [2]. Recently, the interest in vortex
dynamics in the time-dependent Schrodinger equation
was increasing very rapidly. Numerical simulations
of different vortex configurations have been reported
[3], in particular, the time dependence of the distance
Ry(t) between two equal-charge vortices (see Eq. (51))
was confirmed to a high accuracy. Also a collapse of
two vortices of the opposite charge and shock wave for-
mation at r < re, were found [3]. Equation (1) also has
solutions in the form of a two-dimensional soliton [4—6].

The research of Yu. N. O. was supported under the
grant EOARD Ne(097006 and the Programm of DFS,
RAS. The research of I. M. S. was supported under the
NSERC (grant NeNA 7901).

APPENDIX A

In this Appendix, we find an action for the equation

5% 8%y
o = {5 - Py}

We suppose that in the state given by the function
1), there is a certain number of vortices with zeros at
points a; and with vorticities n;. If the distances bet-
ween the vortices are large, |a; —a;| > 1 for each pair
i # j, then the vortices can be considered particles.

(A1)

9 ZKOT®, Brim. 3

The dynamics of the vortex motion can be described
with the help of the action

A:/Ldt

(A.2)
with

1[5, ||ow
_i/dr{ﬁ_ } (A.3)

We suppose that we have only one moving vortex.
Because Eq. (A.1) is Lorentz invariant, a solution for
the moving vortex can be found with the help of the
Lorentz transformation

(1) - ‘

i t—vx ,_ x—ut
V1—0? V102 (A.4)
y=y', z2=12,

where v is the vortex velocity. It means that vortices
are “heavy” with the masses

m = Ey;, (A.5)
where
9 R
Epn; =mnjIn Tl + C(nj) (A.6)
nj
is the energy of the vortex state (see [7]). In Eq. (A.6),

R is radius of cut-off circle, and n; is the vorticity of the
vortex. In the nonrelativistic case (v < 1), we obtain
from Eqs. (A.3) and (A.6) that

L = E(a) - % ZEn (a;)” —
_ —/d2 (ai Vi) (a;Ve;), (A7)
i#]

where ¢; is the phase of jth vortex, a; is the position
of a zero, and a = {aj,n;}. The energy E(a) is equal
to [7]

Z En; + Z nin; ln

i

+ Rem. (A.8)
- a]|

The last term in Eq. (A.8) is of the order of O (Ina/a?)
aj|, ¢ # j), and it can not be presented
as a pair interaction only.

For the last term in Eq. (A.7), we obtain

(¢ = min |a; —
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/d2 r(a;Vy;)(a;Ve;) =

(a; - a; /drrx

2
X /d sin® ¢ (Jajai)(Jajai)

| e Peos %

27T o}
X /d99/dr r cos(2p) — |ai;| cos p (A.9)
r2 +a 2|a”|rCOSQD
0 0
where a;; = |a; — a;|, |a; ;| = /(as;)?.

The integrals in Eq. (A.9) can easy be calculated,
with the result

T 1 1
_ m(a: . 1
2 L zn](al )<2+ Il| z]|>+

+ 3 an]% (A.10)

i#j ij

Equation (A.1) also has excitations of two types: vibra-
tions of the phase, and vibrations of the modulus of .
The spectrum of the former excitations is w? = k2, and
of the second ones, w? = 2 + k2. In the low-frequency
limit, we can describe these excitations with the addi-
tional term in the action

1
=3 / dt x
J(%) - () ) wn
or ot ot Ot

where g is a single-valued scalar function that gives
the change of the phase function v due to small vibra-
tions of the phase, and g is the phase of vortices. The
lagrangian L in Eq. (A.10) contains standard terms of
the form of charge—charge and current—current interac-
tions.

But it also contain two nonstandard terms. One is
given by the term Rem in Eq. (A.8), and second by the
last term in Eq. (A.10). Rem leads to a multiparticle
interaction. The additional term given by Eq. (A.11)
leads to the excitation of waves due to the vortex mo-
tion. For large distances between vortices, this term

can be taken into account with the help of the pertur-
bation theory.

The equation of motion for a “particle” is

0A

This equation leads to the following equation of mo-
tion for “particles”

! —|—nj1nRZniéii +
i

i#j It
1
+4 ( 21 _+C(n])) N
| ]| T
1 1
+n]2nl [a,( +In >:|+
i#] ot | l]|
A aﬂ
+ Zn n;(a a2
iZj Ji
aji(Jazaz;)(Jaza;)
_2njzni J ;4” At LU
i#] Ju
(Ja;)(Jaaji) + (Ja;)(Jaja; i)
+n]’2ni J J ) J I
i#£] Jji
Jaii)(Jaa;;
—n]Zmat [%] =0. (A13)
i Ji

We now consider the simplest case of two vortices
with
—Ng = N1 = 1.
It is easy to see that there exist solutions of the system
of Egs. (A.12) of the type

—as = a; = a(coswt, sinwt). (A.14)

Inserting expression (A.14) in Eq. (A.13), we obtain

-1
w2={a2 [QInR—I—l—l—@—I—lni]} . (A.15)
™ 2a

The velocity of motion given by Eq. (A.15) is small
only due to the large value of the rest mass.

According to Eq. (A.3), the energy inside the do-
main D is given by

1
EDZE/d2rX
D

{(‘Z—w) b+ (%—f)} (A.16)

Hence, we have
0Ep _ 1 O oY~
ot _2/ds{at ar T

S

o 6—¢}. (A.17)

ot Or
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It follows from Eq. (A.17) that the energy flow density
Sg is equal to

__Ll[ov oy 0y 0y
Se="3 { ot or | ot or (4.18)
At large distances from vortices, we find
_ Ops Ops
Sp=-— % or (A.19)

The equation of motion for the phase pg follows from
Eq. (A.11),

DPps 05 )
— =— . A2
ot? or? ot? (4.20)
This equation is solved by
t
o (t) = — / dtl/d2r1G(t—t1,r—r1) y
2
o Poolr,ty) (A.21)

ot? ’

where Green’s function G is the solution of the equation

0’G  9°G
The explicit form of G is
0, t<|r|
G(t,r) = @ (A.23)
2 1 ;
T >
Rotation of two vortices with different charge

(Eq. A.13)) leads to emission of excitations. As a re-
sult, two vortices of different charge collapse.

APPENDIX B

We find the solution of Eqs. (51) that is finite as
r — 0 and has the form of an outgoing wave for r — oco.
The function f»(r) is a solution of Eq. (10) with topo-
logical charge n = 2.

For r <« 1, the function f>(r) is given by expan-
sion (52). The function f2(r) is an analytical function
of r and series (52) is convergent inside the circle with
the radius equal to the distance to the nearest pole of
function f>(r) on the imaginary axis of r.

For large values of r > 1, we have (54). To ob-
tain the coefficient B, we solve Eq. (10) numerically,
starting from small values of r (Eq. (52)), and match
it with an expression (54) for r > 1. In this way, we
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obtain the exact value of B and an approximate value
of C'. To obtain a more accurate value of coefficient C,
we solve Eq. (10), starting from large values, r > 1,
and match the solution such found with values of the
function f»(r), given by expansion (52) for r ~ 0.1. In
this way, we obtain the coefficients B and C' with high
accuracy:

B =0.15289, C = —16.69. (B.1)
Using expansion (52), we find the general solution of
the system of Eqs. (51), finite as r — 0, in form (53).
At large distances r >> 1, we seek a solution of Eqs. (51)
in form (55).

In the leading approximation, we then obtain

- (Z—f>2 (g) (ot B) G) - A( fﬁ). (B.2)

Multiplying both sides of Eq. (B.2) by (=23, a), we ob-
tain the following equation for a and f3:
a® — %+ 2 af = 0. (B.3)

There are two linearly independent solutions, which

satisfy boundary condition at the infinity. The first
solution is

a=1, B=A+V1+2,

a8 1/2 (B.4)

92 (1+\/1+/\2) .

or
The second solution is

B=1, d:—(A+\/1+A2),
= (B.5)

0% —i(vivw-1)”

or
Corrections to expressions (B.4) and (B.5) can be found

in the usual way via the perturbation theory. For this,
we write Eq. (B.2) taking the terms

(5) () =(5)%()
“\or) \p ar) or\p
1 2s  9? @ 1
(gt am) (5) +ern(y) +
16 /0 4 8 2a+ B\ Q
2 (5) - () Giia) () we
in the asymptotic expansion into account.
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For the first linearly independent solution (B.4), we
find

(5)= (oo vim) + (5)~

(1+ )< (A+‘1/1+—X2)) (B.7)

S = (1+\/1+—)\2)1/27’+(%) (1+%),

where ;2,34 are constants. From the first two equa-
tions in (B.7), we easily obtain the useful relations

o= 2= —2(A+ V14X x
[A+271 (1+¥)}
S= (A VIHN) x (B.8)

[1+2—(1+ )\/H—V]

8= (+V1+R2) {

2Ml (1+ 72)]

Multiplying Eq. (B.7) by the (—f,«a) and using
Eq. (B.8), we obtain the coefficiets v 2:

2024 1))
=T e
(B.9)
— 2
Yo = — 1+ 1+)\2

VIFAZ

Inserting the values of the functions a, 8 and S from
Eq. (B.7) in the first Eq. (B.6), we obtain the coeffi-
cients v3,4:

- 1 F+2(1—2>\)]
T Vir Vit e Vi+x ]
(B.10)
1
M= ——
2V/1+V1+ A2

We similarly find for the second linearly indepen-
dent solution (B.5)

(5)-Co)-

M Vo 1
— = B.11
+r2 (1+r>(/\+\/1—|—/\2>’ ( )

gzi{r\/me%(lﬂL%)}.

From the first two equations (B.11) we obtain the use-
ful relations

—52:2</\+\/1+—/\2)><

Dl T
—_

- X
At VIEN (B.12)

[1+27 1+/\2( %)]
- (A+\/1+7) <1+2i‘—27~1 <1+%>> .

As previously, multiplying Eqs. (B.6) by (—3,&) and
using Eqs. (B.12), we easily obtain the coefficients 1 »:

. 224N
14227

Y1 ==
21 /
Vg = ———\//1+ X2 - 1.
2 1+ )2

Inserting the values of the functions &, B and S from
Eq. (B.11) in the first Eq. (B.6), we obtain the coeffi-
cients 73 4:

(B.13)

o 1 {_1+2(1—2A)}
BT NVire—oil 8 Viea ]

(B.14)

Vo= ——F
2VV1I+ A2 -1

As a result, for 7 > 1, the general solution of Eqgs. (51)
that satisfies the boundary condition as r — oo can be
presented in the form
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Y _ G S ey W82 2 WVIER [ 1
(f4>_ﬁ p{ PV rvV 14+ V14 N\ (1 2r\/1+\/1+A2>]}X
1 2(2+ \) W1+ VIF N [—(A+VIF+A2)
X{</\+\/1+/\2)+(1+)\2)r2 (1_ 1+ A2 )( 1 )}+
G ) A1 (=1/8+2(1—2X)/V1+A2%) i
*ﬁ‘”’{ Y E (“Z«Ji\mz_lﬂ}x
- (A+V1I+A2) 22+ )\) 2ivVV1+ X -1 1

1

ACHTT)-

To obtain the value of complex coefficients A, Cs,
C3, and Cy, we solve Eqs. (51) numerically, starting
from expression (53) for r < 1 and matching the solu-
tion thus found with expression (B.15) for r > 1. As
a result, we obtain the value of the coefficients A, Cs,
and Cy with high accuracy and the approximate coeffi-
cient C3 (in front of the exponentially decreasing term
as r — oo in expression (B.15)). To obtain a more
accurate value of C3, we solve Eqs. (51), starting from
expression (B.15) for » > 1 and matching this solution
with expression (53) for r ~ 1. As a result, we obtain
high-precision values for all the coefficients A, Cs, C3,
and 042

A = —0.443673 + ¢ 0.004937,
Cy = —0.00734 4 i 0.0001494,
Cy = 99.88 — i 33.12,

Cy = 0.12618 4+ 7 0.0275.

(B.16)
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