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LONG-TIME RELAXATION PROCESSESIN THE NONLINEAR SCHRÖDINGER EQUATIONYu. N. Ov
hinnikov a;b*, I. M. Sigal 
;d**aMax-Plan
k Institute for Physi
s of Complex System01187, Dresden, GermanybLandau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es117334, Mos
ow, Russia
University of Toronto, Toronto CanadadUniversity of Notre Dame, IN USARe
eived June 30, 2010The nonlinear S
hrödinger equation, known in low-temperature physi
s as the Gross�Pitaevskii equation, hasa large family of ex
itations of di�erent kinds. They in
lude sound ex
itations, vorti
es, and solitons. Thedynami
s of vorti
es stri
tly depends on the separation between them. For large separations, some kind ofadiabati
 approximation 
an be used. We 
onsider the 
ase where an adiabati
 approximation 
an be used(large separation between vorti
es) and the opposite 
ase of a de
ay of the initial state, whi
h is 
lose to thedouble vortex solution. In the last problem, no adiabati
 parameter exists (the intera
tion is strong). Never-theless, a small numeri
al parameter arises in the problem of the de
ay rate, 
onne
ted with an existen
e of alarge 
entrifugal potential, whi
h leads to a small value of the in
rement. The properties of the nonlinear waveequation are brie�y 
onsidered in the Appendix A.1. INTRODUCTIONThe nonlinear S
hrödinger equation is probably thesimplest model where both the wave-like and �parti
-le�-like ex
itations�vorti
es and solitons � exist. Theintera
tion of vorti
es with one another and with so-und-like ex
itations leads to a nontrivial dynami
s ofvorti
es.We 
onsider the simplest equation of the typei� �t = ���2 �r2 + (1� j j2) � (1)in the two-dimensional spa
e. The energy E 
orre-sponding to the state  
an be de�ned asE = 12 Z d2r(�� �r�2 + 12(1� j j2)2) : (2)The absolute minimum of E is rea
hed on the state = exp(i�); (3)where � is a 
onstant phase.*E-mail: ov
�itp.a
.ru**E-mail: sigal�math.toronto.edu

The ground state is degenerate with respe
t to mul-tipli
ation by an arbitrary phase fa
tor. This degene-ra
y leads to the existen
e of sound-like ex
itations.To �nd these ex
itations, we set = exp(i�0)(1 + u1 + iu2); (4)where u1;2 are real andju1;2j � 1:It follows from Eqs. (1) and (4) that��t  u1u2 ! = �2u1 01 !+ �2�r2  �u2u1 ! : (5)The general solution of Eq. (5) is a linear superpo-sition of the type u1u2 ! = Ak;!0B� k2! sin(!t� k � r)
os(!t� k � r) 1CA ; (6)where ! and k satisfy the equation!2 = k2(2 + k2): (7)539
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hinnikov, I. M. Sigal ÆÝÒÔ, òîì 139, âûï. 3, 2011For small values of the frequen
y !, sound-like ex-
itations therefore exist in the system with! = p2 k: (8)It follows from Eq. (1) that the total energy E(Eq. (2)) is 
onserved and the energy �ow SE is givenby SE = �12 �� �t � ��r + � ��t � �r � : (9)In a plane wave with jkj � 1, the main 
ontributionto the energy �ow is due to the imaginary part of theperturbation u2 (Eq. (4)).Equation (1) also has time-independent solutions(vorti
es) of the form n(r) = exp(in') fn(r); (10)where r = jrj.If  n(r) is a solution of Eq. (1), then ~ n(r) and~ �n(r) are also solutions of Eq. (1), where~ n(r) =  n(r� a) exp(i�0); (11)where a and �0 are some 
onstants. Solutions oftype (10) are 
hara
terized by a dis
rete topologi
al
harge n.2. NONLINEAR ADIABATIC THEORYWe now suppose that we have a system of vorti
eswith a large separation,jri � rj j � 1;from one another. Our task is to derive a system ofequations for the positions ri(t) of the 
enters of vor-ti
es. For this, we de�ne the a
tion A asA = Z Ldt;L = E � i4 Z d2r� � � �t �  � ��t � : (12)The se
ond term in Eq. (12) 
an be regarded as a dy-nami
al one, AD = 12 Z dt Z d2rj j2 ���t ; (13)where  = j j exp(i�): (14)

For large distan
es between the vorti
es,jri � rj j � 1;in the leading approximation, the phase � is equals tothe sum of phases of the individual vorti
es:� =Xi �i; �i = ni ar
tg� y � yix� xi� : (15)In the same approximation, the modulus of  is givenby j j2 = 1�����r�2 : (16)Equations (13), (15), and (16) allow writing the dy-nami
al part of the a
tion AD asLD = 12 ZDR d2r���t � 12 ZDR d2r(1� j j2)���t : (17)The integral in Eq. (17) is taken over a 
ir
le DR of alarge radius R. In the approximation given by Eq. (15),to the logarithmi
 a

ura
y, the last term is equal tothe quantity�Xj 6=k n2jnk �rjk�t Jrjkjrjk j2 ln jrjk j; (18)where rjk = rj � rkand J =  0 �11 0 ! (19)is the simple
ti
 matrix. Compared to the �rst term,this term has the parametri
 smallness r�2ij and is ne-gle
ted in what follows. For the �rst term in Eq. (17),we obtainLD = �Xj nj2jrj j �rj�t Jrj 2�Z0 d'�� RZ0 dr r r 
os'� rjr2 + r2j � 2rrj 
os': (20)The integral in Eq. (20) is given by540



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Long-time relaxation pro
esses : : :2�Z0 d' r 
os'� rjr2 + r2j � 2rrj 
os' == i2rj 8><>:2�i+ r2 � r2j2rj Ijzj=1 dz(z � r=rj)(z � rj=r)9>=>; ==8><>: 0; r > rj ;�2�rj ; r < rj : (21)As a result, we obtainAD = �2 Xj nj Z dt�rj�t Jrj == �2 Xj Z dt�nj �rj � �rj�t �� dt; (22)where nj = nj(0; 0; 1).In the next approximation, an outgoing wave arisesdue to the vortex motion. This phenomenon 
an betaken into a

ount with the help of an additional termÆS in the a
tion,ÆS = 12 Z dt Z d2r(��'s�r �2 � 12 ��'s�t �2 �� �'�t ���t � 12 ����t �2) ; (23)where 's is a single-valued s
alar fun
tion, 
onne
tedwith small vibrations of the phase.The a
tion in (12) and (22) should take an extremalvalue on a traje
tory. This leads to the equation [1℄nj �rj�t = � 1�J �E�rj : (24)In the leading approximation of large distan
es betweenvorti
es, the energy E 
an be written asE =Xi Ei +Xi 6=j Eij ; (25)where Ei is the self energy of a separate vortex and Eijis the pair intera
tion energy. From Eqs. (2) and (15),Eij = 12 Zjrj<R d2r���i�r ��j�r � == �ninj ln� Rjri � rj j� : (26)Equation of motion (24) is independent of the 
uto� distan
e R. There are some spe
ial 
on�gurations of

vorti
es, where all quantities �E=�ri vanish in the ap-proximation (26). We 
all su
h 
on�gurations for
eless.For for
eless 
on�gurations, it is ne
essary to evaluatethe energyE in the next approximation in the distan
esjri� rj j. The intera
tion energy in su
h a 
ase 
an notbe presented as a pair intera
tion energy. Equation (24)
ontinues to hold for that 
ase.3. EMISSIONEquation of motion (24) does not take the emissionof ex
itations of type (6) into a

ount. To do so wewrite Eq. (1) in the formj j2 = 1�����r�2 � ���t + 1j j �2j j�r2 ;��j j2�t = 2j j2 �2��r2 + 2���r �j j2�r : (27)From the system of equations (27), we obtain thefollowing equation for the phase �:�2��t2 � 2�2��r2 == �2���r ��r "����r�2 + ���t � 1j j �2j j�r2 #�� 2(1� j j2)�2��r2 � ��t "����r�2 � 1j j �2j j�r2 # : (28)We solve Eq. (28) treating the right-hand side as a per-turbation. In the �rst approximation, we therefore setthe right-hand side of Eq. (28) equal to zero and sear
h� of the form� = �0 + ~�; �0 =Xi �i(r� ri(t)); (29)where the fun
tions �i are given in Eq. (15) and ri(t)are solutions of Eq. (24). In the �rst approximation,we have~� = � Z dt1 �� Z d2r1G(t� t1; r� r1)�2�0(r1; t1)�t21 ; (30)where the Green's fun
tionG(t; r) = �(t)2�p2 8><>: 0; p2t < jrj;1p2t2 � r2 ; p2t > jrj; (31)is a solution of the equation541
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hinnikov, I. M. Sigal ÆÝÒÔ, òîì 139, âûï. 3, 2011�2G�t2 � 2�2G�r2 = Æ(t� t1)Æ(r � r1): (32)We now 
onsider a system of two vorti
es with equaltopologi
al �
harge� n = 1. We suppose that the dis-tan
e between vorti
es is R0. Then in the approxima-tion Eq. (24), vorti
es rotate relative the �middle� pointwith the frequen
y ! = 4R20 : (33)It follows from Eqs. (15), (29), and (33) that��0�t = R20!2 �� R20=4� r2 
os(2('� !t))r4 +R40=16� r2(R20=2) 
os(2('� !t)) : (34)Expression (34) 
an be expanded into a series in
os(2k('�!t)), k = 0; 1; 2 : : : Simple 
al
ulations give��0�t = I2 
os(2('� !t)) + : : :++ I2n 
os(2n('� !t)); (35)where I2 = R20!2 8>><>>: � 1r2 ; r > R0=2;16r2R40 ; r < R0=2: (36)The 
ontribution from other harmoni
s to ~� is smalland is not in
luded.From Eqs. (30), (32), and (35), in the wave zoner � !�1, we obtain~� = 21=4(�!)1=22r1=2 
os hp2! �r�p2 t�+2'��4 i�� 1Z0 d�1�1I2(�1; !)J2 �p2!�1� ; (37)where J2 is the Bessel fun
tion andr = r(
os'; sin') (38)is the observation point.In Eq. (37), only the domain where �1 � R0=2 isessential and simple 
al
ulations give~� = �21=4(�!)1=2!R208r1=2 �� 
os hp2! �r �p2t�+ 2'� �4 i : (39)

Similarly, it is possible to �nd all higher harmoni
s of~�. With the help of Eqs. (30), (34), and (35), in thewave zone, we obtain~� = 1Xn=1�2n 
os�p2n! �r�p2t�+2n'��4� ; (40)�2n = (�)n+121=4p�n!2pr 1Z0 d�1�1I2n �p2n!�1� :The �rst term in Eq. (40) 
oin
ides with expression(37). Only large values of �1 � (n!)�1 � R0 are es-sential in the integral in Eq. (40). In this domain fromEqs. (34) and (35), we obtainI2n � �2!� R204r2�n : (41)Finally, we obtain�2n = (�)n21=4p�n!pr !(n!)2(n�1)�(2n) �R208 �n : (42)It follows from Eq. (42) that the amplitude of higherharmoni
s very rapidly de
reases as n in
reases.The right-hand side of Eq. (24) is lo
alized near the
ir
le of the radius � = R0=r. Essential distan
es inthe kernel in Eqs. (30) and (37) are of the order of thewave length � � !�1. As a result, the 
orre
tion tothe value of ~� given by Eq. (40) due to right-hand sideof Eq. (28) is small. The order of magnitude of this
orre
tion 
an be estimated as follows. In the leadingapproximation, we have����r�2 = 4r2r4+R40=16�r2(R20=2) 
os(2('�!t)) == 16R20 � r4 +R40=16jr4 �R40=16j � 1� 
os(2('� !t)) + : : : (43)Using Eqs. (37) and (43), we obtain the 
orre
tion tothe phase ~� that 
omes from the term��t ����r�2in Eq. (28):Æ ~� � !1=2r1=2 (!R20)!2 lnR0 �� 
os hp2!(r �p2t) + 2'� �4 i : (44)Be
ause of the small expansion parameter !2 lnR0,this 
orre
tion is smaller than the leading 
ontributiongiven by Eq. (34).542



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Long-time relaxation pro
esses : : :We now 
onsider the 
orre
tion to the phase ~� as-so
iated with the term��2�r ��r ���1�r �2 + ��1�r ��r ���2�r �2 :This term and the similar one originate from the term���r ��r ����r�2in Eq. (28).We �nd��2�r ��r ���1�r �2+��1�r ��r ���2�r �2 == �2r2R20 sin[2('�!t)℄[r4+R40=16�r2R20=2 
os(2('�!t))℄2 = 16r2R20 �� �1� r4 +R40=16jr4 �R40=16j� sin(2('� !t)) + : : : (45)From Eqs. (28), (37), and (47) we obtainÆ ~� � !1=2r1=2 (!2 lnR0)�� sin hp2!(r �p2t) + 2'� '0i : (46)This 
orre
tion is of the same order as the one inEq. (44). The 
orre
tion in Eq. (40) to the phase ~�de
ays at large distan
es as r�1=2 and leads to emis-sion of sound-like ex
itations. As a result, the distan
ebetween two vorti
es in
reases with time. To �nd thedependen
e R0(t) we �rst derive the energy �ow hSEiaveraged over the period of motion. It follows fromEq. (9) that hSEi = �!5R4032 rr2 = 32�R60 rr2 : (47)The energy 
onservation law and Eqs. (26) and (47)give the following equation for the quantity R0(t) [2℄:�R0�t = 32�R50 : (48)

The general solution of Eq. (48) isR60(t) = R60(t0) + 32 � 6�(t� t0); (49)whi
h means that R60(t) is a linear fun
tion of time.Equation (49) is valid only in the range R0 � 1.4. DECAY OF A DOUBLE VORTEXWe now 
onsider the opposite limit 
ase R0 � 1,the initial stage of the de
ay of a double vortex. In thisrange, we 
an sear
h for a solution of Eq. (1) in theform = f2(r)e2i' + f0(r)e�i�t + f�4 (r)e4i'ei��t; (50)where f2 is a double vortex solution of Eq. (1) and f0;4are small, jf0;4j � 1. In the linear approximation weobtain�1r ��r �r�f0�r �� (1� 2f22 )f0 + f22 f4 = �f0;�1r ��r �r�f4�r �+ 16r2 f4 ��(1� 2f22 )f4 + f22 f0 = ��f4: (51)We should �nd solution of system (51) subje
t to theboundary 
ondition that f0;4 are �nite for r ! 0, andan outgoing wave exists for r !1.The fun
tion f2(r) is a solution of the Eq. (10) withthe topologi
al 
harge n = 2. For r � 1, we have (seeAppendix B)f2(r) = Br2 � B12r4 + B384r6 : : : (52)and�f0f4� = C10BB� 1�1+�4 r2+(1+�)264 r4� r636 � (1+�)364 �2B2�+O(r8)B220 r6+O(r8) 1CCA+ C20BB� B2100r10 +O(r12)r4 � 1� �20 r6 +O(r8) 1CCA ; (53)where C1;2 are arbitrary 
onstants. We put belowC1 = 1. The 
oe�
ients B;C2 are found in Ap-pendix B. In the range r � 1, we have (see Appendix B)f2(r) = 1� 2r2 � 6r4 � 68r6 + Cpr exp��p2r� (54)543
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hinnikov, I. M. Sigal ÆÝÒÔ, òîì 139, âûï. 3, 2011and�f0f4� = C3 exp(�S)pr ����+ C4 exp(�i ~S)pr �~�~��; (55)where C3;4 are 
onstants. The fun
tions S; ~S, and�; ~�; �; ~� are found in Appendix B:S = �1 +p1 + �2�1=2 r + 18 + 2(1� 2�)p1 + �2rp1 +p1 + �2 �� 1� 12rp1 +p1 + �2! ; (56)~S = �p1 + �2 � 1�1=2 r + �18 + 2(1� 2�)p1 + �2rpp1 + �2 � 1 �� 1 + i2rpp1 + �2 � 1! ;and���� =  1�+p1 + �2 !++ 4 + 2�(1 + �2)r2  1� 2p1 +p1 + �2rp1 + �2 !�� � ��+p1 + �2 �1 ! ; (57)�~�~�� =  � ��+p1 + �2 �1 !�� 4 + 2�(1 + �2)r2  1 + 2ipp1 + �2 � 1rp1 + �2 !�� 1�+p1 + �2 ! :We note that the equation�1r ��r  r� ~f0�r !� ~f0(1� 2f22 (r)) = ~� ~f0 (58)has a negative eigenvalue~� = �0:399689: (59)On the other hand, in the range of values of r wherethe fun
tion f2 is essentially di�erent from 1 the 
en-trifugal potential in Eq. (51) for the fun
tion f4 is large.

As a result, the fun
tions f0 and f4 in Eq. (51) overlapweakly, and we 
an hope that Eq. (51) has an eigen-value of � with a small imaginary part and with thereal part 
lose to ~�. Mat
hing the numeri
al solutionof Eq. (51) starting from values given by (53) for r � 1with values given by Eq. (55) for r � 1, we obtain all
oe�
ients (�;C2; C3; C4). These 
oe�
ients are givenin Appendix B. Spe
i�
ally,� = �0:443673+ i 0:004937: (60)The imaginary part of � is nearly hundred times smallerthen its real part. Su
h a high quality of os
illation inthe system is related to the high value of the 
entrifugalpotential in the �lo
alization� range of the fun
tion f0.5. EXITATIONS OF THE SOLITON TYPEWe next 
onsider the third-type exitations, solitons.For a long-wavelength soliton of small amplitude, weobtain from system of Eqs. (27) that [2℄�2��t2 � 2�2��r2 = �2 ��t ����r�2 �� 2���t �2��r2 � 12 �2�t2 �2��r2 : (61)We sear
h a solution of Eq. (60) in the form� = �(x� vt): (62)For the quantityz = ���~x ; ~x = x� vt; (63)we then obtain the equation(v2 � 2)z = 3vz2 � v22 �2z�~x2 : (64)This equation with the boundary 
ondition z ! 0 as~x! �1 is equivalent to the equation(v2 � 2)z2 � 2vz3 + v22 ��z�~x�2 = 0: (65)The solution of Eq. (65) isz = � A
h2(�~x) ; (66)where �2 = 2� v22v2 ; A = 2� v22v : (67)Equations (61) and (65) are valid only in the range0 < p2� v � 1: (68)544



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Long-time relaxation pro
esses : : :6. CONCLUSIONSThe dynami
s of vortex states essentially dependson the type of the equation. It is quite di�erent forthe nonlinear S
hrödinger and wave equations. For thenonlinear S
hrödinger equation, there exists an adia-bati
 parameter, the distan
e jri;j j between vorti
es.In the leading approximation in this parameter, emis-sion of sound-like exitations is weak and the equationof motion of the vorti
es is given by simple Eqs. (24),of the �rst order in time. In su
h an approximation,the energy of a vortex state is 
onserved. In the nextapproximation, the motion of vorti
es 
an lead to emis-sion of sound-like exitations. We note that even if theadiabati
 parameter is missing (the initial state of thedouble vortex de
ays), the in
rement is numeri
allysmall due to a large value of the 
entrifugal poten-tial. Two vorti
es of opposite vorti
ity (
harge) atlarge distan
es move together with a velo
ity smallerthan the sound velo
ity (p2 in our 
ase) and hen
e donot radiate. If the distan
e between su
h vorti
es issmaller than some 
riti
al value (r
r � 1), then su
hvorti
es 
ollapse, annihilating ea
h other and produ-
ing a sho
k wave [2℄. Re
ently, the interest in vortexdynami
s in the time-dependent S
hrödinger equationwas in
reasing very rapidly. Numeri
al simulationsof di�erent vortex 
on�gurations have been reported[3℄, in parti
ular, the time dependen
e of the distan
eR0(t) between two equal-
harge vorti
es (see Eq. (51))was 
on�rmed to a high a

ura
y. Also a 
ollapse oftwo vorti
es of the opposite 
harge and sho
k wave for-mation at r < r
r were found [3℄. Equation (1) also hassolutions in the form of a two-dimensional soliton [4�6℄.The resear
h of Yu. N. O. was supported under thegrant EOARD � 097006 and the Programm of DFS,RAS. The resear
h of I. M. S. was supported under theNSERC (grant �NA7901).APPENDIX AIn this Appendix, we �nd an a
tion for the equation��2 �t2 = ���2 �r2 + (1� j j2) � : (A.1)We suppose that in the state given by the fun
tion , there is a 
ertain number of vorti
es with zeros atpoints aj and with vorti
ities nj . If the distan
es bet-ween the vorti
es are large, jai � aj j � 1 for ea
h pairi 6= j, then the vorti
es 
an be 
onsidered parti
les.

The dynami
s of the vortex motion 
an be des
ribedwith the help of the a
tionA = Z Ldt (A.2)withL = 12 Z d2r(����� �r ����2+12(1�j j2)2� ����� �t ����2) : (A.3)We suppose that we have only one moving vortex.Be
ause Eq. (A.1) is Lorentz invariant, a solution forthe moving vortex 
an be found with the help of theLorentz transformationt0 = t� vxp1� v2 ; x0 = x� vtp1� v2 ;y = y0; z = z0; (A.4)where v is the vortex velo
ity. It means that vorti
esare �heavy� with the massesm = Enj ; (A.5)where Enj = �n2j ln� Rjnj j�+ C(nj) (A.6)is the energy of the vortex state (see [7℄). In Eq. (A.6),R is radius of 
ut-o� 
ir
le, and nj is the vorti
ity of thevortex. In the nonrelativisti
 
ase (v � 1), we obtainfrom Eqs. (A.3) and (A.6) thatL = E(a)� 12Xj Enj ( _aj)2 �� 12 Z d2rXi 6=j ( _air'i)( _ajr'j); (A.7)where 'j is the phase of jth vortex, aj is the positionof a zero, and a = faj ; njg. The energy E(a) is equalto [7℄E(a) =Xj Enj +Xi 6=j ninj ln Rjai � aj j +Rem: (A.8)The last term in Eq. (A.8) is of the order of O �ln a=a2�(a = min jai � aj j, i 6= j), and it 
an not be presentedas a pair intera
tion only.For the last term in Eq. (A.7), we obtain9 ÆÝÒÔ, âûï. 3 545
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hinnikov, I. M. Sigal ÆÝÒÔ, òîì 139, âûï. 3, 2011Z d2r( _air'i)( _ajr'j) = ( _ai � _aj) RZ0 dr r �� 2�Z0 d' sin2 'r2+a2ij�2jaij j2 
os'+(J _aiaij)(J _ajaij)a2ij �� 2�Z0 d' 1Z0 dr r 
os(2')� jaij j 
os'r2 + a2ij � 2jaij jr 
os'; (A.9)where aij = jai � aj j, jai;j j =p(aij)2.The integrals in Eq. (A.9) 
an easy be 
al
ulated,with the resultL = E(a)� �2 0�Xj nj _aj1A2 lnR�� �2 Xj �jn2j ln 1jnj j + C(nj)� � _a2j �� �2 Xi 6=j ninj( _ai � _aj)�12 + ln 1jaij j�++ �2 Xi 6=j ninj (J _aiaij)(J _ajaij)a2ij : (A.10)Equation (A.1) also has ex
itations of two types: vibra-tions of the phase, and vibrations of the modulus of  .The spe
trum of the former ex
itations is !2 = k2, andof the se
ond ones, !2 = 2 + k2. In the low-frequen
ylimit, we 
an des
ribe these ex
itations with the addi-tional term in the a
tionÆA = 12 Z dt��(��'s�r �2 ���'s�t �2 � 2�'s�t �'0�t ) ; (A.11)where 's is a single-valued s
alar fun
tion that givesthe 
hange of the phase fun
tion  due to small vibra-tions of the phase, and '0 is the phase of vorti
es. Thelagrangian L in Eq. (A.10) 
ontains standard terms ofthe form of 
harge�
harge and 
urrent�
urrent intera
-tions.But it also 
ontain two nonstandard terms. One isgiven by the term Rem in Eq. (A.8), and se
ond by thelast term in Eq. (A.10). Rem leads to a multiparti
leintera
tion. The additional term given by Eq. (A.11)leads to the ex
itation of waves due to the vortex mo-tion. For large distan
es between vorti
es, this term
an be taken into a

ount with the help of the pertur-bation theory.

The equation of motion for a �parti
le� isÆAÆaj = 0: (A.12)This equation leads to the following equation of mo-tion for �parti
les�:� 2njXi 6=j niajia2ji + nj lnRXi ni�ai ++ �aj �n2j ln 1jnj j + C(nj)� �++ njXi 6=j ni ��t � _ai �12 + ln 1jaij j��++Xi 6=j ninj( _ai � _aj)ajia2ji �� 2njXi 6=j ni aji(J _aiaji)(J _ajaji)a4ji ++ njXi 6=j ni (J _aj)(J _aiaji) + (J _ai)(J _ajaji)a2ji �� njXi 6=j ni ��t " (Jaji)(J _aiaji)a2ji # = 0: (A.13)We now 
onsider the simplest 
ase of two vorti
eswith �n2 = n1 = 1:It is easy to see that there exist solutions of the systemof Eqs. (A.12) of the type�a2 = a1 = a(
os!t; sin!t): (A.14)Inserting expression (A.14) in Eq. (A.13), we obtain!2 = �a2 �2 lnR + 1 + C(1)� + ln 12a���1 : (A.15)The velo
ity of motion given by Eq. (A.15) is smallonly due to the large value of the rest mass.A

ording to Eq. (A.3), the energy inside the do-main D is given byED = 12 ZD d2r��(�� �r �2 + 12(1� j j2)2 +�� �t �2) : (A.16)Hen
e, we have�ED�t = 12 ZS ds�� �t � ��r + � ��t � �r � : (A.17)546



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Long-time relaxation pro
esses : : :It follows from Eq. (A.17) that the energy �ow densitySE is equal toSE = �12 �� �t � ��r + � ��t � �r� : (A.18)At large distan
es from vorti
es, we �ndSE = ��'s�t �'s�r : (A.19)The equation of motion for the phase 's follows fromEq. (A.11), �2's�t2 � �2's�r2 = ��2'0�t2 : (A.20)This equation is solved by's(t) = � tZ�1 dt1 Z d2r1G(t� t1; r� r1)�� �2'0(r1; t1)�t21 ; (A.21)where Green's fun
tion G is the solution of the equation�2G�t2 � �2G�r2 = Æ(t� t1)Æ(r� r1): (A.22)The expli
it form of G isG(t; r) = �(t)2� 8>><>>: 0; t < jrj1pt2 � r2 ; t > jrj: (A.23)Rotation of two vorti
es with di�erent 
harge(Eq. A.13)) leads to emission of ex
itations. As a re-sult, two vorti
es of di�erent 
harge 
ollapse.APPENDIX BWe �nd the solution of Eqs. (51) that is �nite asr ! 0 and has the form of an outgoing wave for r !1.The fun
tion f2(r) is a solution of Eq. (10) with topo-logi
al 
harge n = 2.For r � 1, the fun
tion f2(r) is given by expan-sion (52). The fun
tion f2(r) is an analyti
al fun
tionof r and series (52) is 
onvergent inside the 
ir
le withthe radius equal to the distan
e to the nearest pole offun
tion f2(r) on the imaginary axis of r.For large values of r � 1, we have (54). To ob-tain the 
oe�
ient B, we solve Eq. (10) numeri
ally,starting from small values of r (Eq. (52)), and mat
hit with an expression (54) for r � 1. In this way, we

obtain the exa
t value of B and an approximate valueof C. To obtain a more a

urate value of 
oe�
ient C,we solve Eq. (10), starting from large values, r � 1,and mat
h the solution su
h found with values of thefun
tion f2(r), given by expansion (52) for r � 0:1. Inthis way, we obtain the 
oe�
ients B and C with higha

ura
y: B = 0:15289; C = �16:69: (B.1)Using expansion (52), we �nd the general solution ofthe system of Eqs. (51), �nite as r ! 0, in form (53).At large distan
es r � 1, we seek a solution of Eqs. (51)in form (55).In the leading approximation, we then obtain���S�r �2����+ (�+ �)�11� = �� ����: (B.2)Multiplying both sides of Eq. (B.2) by (��; �), we ob-tain the following equation for � and �:�2 � �2 + 2��� = 0: (B.3)There are two linearly independent solutions, whi
hsatisfy boundary 
ondition at the in�nity. The �rstsolution is � = 1; � = �+p1 + �2;�S�r = �1 +p1 + �2 �1=2 : (B.4)The se
ond solution is~� = 1; ~� = ���+p1 + �2 � ;� ~S�r = i�p1 + �2 � 1�1=2 : (B.5)Corre
tions to expressions (B.4) and (B.5) 
an be foundin the usual way via the perturbation theory. For this,we write Eq. (B.2) taking the terms���S�r �2����+ 2��S�r � ��r����++�� 14r2 + �2S�r2 � �2�r2�����+ (� + �)�11�++ 16r2�0���� 4r2 + 8r4��2�+ �2� + �� = �� ���� (B.6)in the asymptoti
 expansion into a

ount.547 9*



Yu. N. Ov
hinnikov, I. M. Sigal ÆÝÒÔ, òîì 139, âûï. 3, 2011For the �rst linearly independent solution (B.4), we�nd���� = � 1�+p1 + �2�+ �
1r2 ��� �1 + 
2r ��� ��+p1 + �2 �1 �;S = �1 +p1 + �2 �1=2 r + �
3r ��1 + 
4r � ; (B.7)
where 
1;2;3;4 are 
onstants. From the �rst two equa-tions in (B.7), we easily obtain the useful relations�2 � �2 = �2��+p1 + �2 ��� ��+ 2
1r2 �1 + 
2r �� ;�� = ��+p1 + �2 ��� �1 + 2
1r2 �1 + 
2r �p1 + �2 � ;�� = ��+p1+�2 ��1� 2�
1r2 �1 + 
2r �� :

(B.8)
Multiplying Eq. (B.7) by the (��; �) and usingEq. (B.8), we obtain the 
oe�
iets 
1;2:
1 = 2(2 + �)1 + �2 ;
2 = �q1 +p1 + �2 2p1 + �2 : (B.9)Inserting the values of the fun
tions �, � and S fromEq. (B.7) in the �rst Eq. (B.6), we obtain the 
oe�-
ients 
3;4:
3 = 1p1 +p1 + �2 �18 + 2(1� 2�)p1 + �2 � ;
4 = � 12p1 +p1 + �2 : (B.10)

We similarly �nd for the se
ond linearly indepen-dent solution (B.5)�~�~�� = �� ��+p1 + �2 �1 �++ ~
1r2 �1 + ~
2r �� 1�+p1 + �2�;~S = i�rqp1 + �2 � 1 + ~
3r �1 + ~
4r �� : (B.11)
From the �rst two equations (B.11) we obtain the use-ful relations~�2 � ~�2 = 2��+p1 + �2 ��� ��� 2 ~
1r2 �1 + ~
2r �� ;~�~� = � 1�+p1 + �2 �� �1 + 2 ~
1r2 p1 + �2�1 + ~
2r �� ;~�~� = ���+p1+�2 ��1+2� ~
1r2 �1+ ~
2r �� :

(B.12)
As previously, multiplying Eqs. (B.6) by (�~�; ~�) andusing Eqs. (B.12), we easily obtain the 
oe�
ients ~
1;2:~
1 = �2(2 + �)1 + �2 ;~
2 = 2ip1 + �2qp1 + �2 � 1: (B.13)Inserting the values of the fun
tions ~�, ~� and ~S fromEq. (B.11) in the �rst Eq. (B.6), we obtain the 
oe�-
ients ~
3;4:~
3 = 1pp1 + �2 � 1 ��18 + 2(1� 2�)p1 + �2 � ;~
4 = i2pp1 + �2 � 1 : (B.14)As a result, for r � 1, the general solution of Eqs. (51)that satis�es the boundary 
ondition as r !1 
an bepresented in the form548



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Long-time relaxation pro
esses : : :�f0f4� = C3pr exp(�"rq1 +p1 + �2 + 1=8 + 2(1� 2�)=p1 + �2rp1 +p1 + �2  1� 12rp1 +p1 + �2 !#)��(� 1�+p1 + �2�+ 2(2 + �)(1 + �2)r2  1� 2p1 +p1 + �2rp1 + �2 !��(�+p1 + �2)1 �)++ C4pr exp(�i"rqp1 + �2 � 1 + ��1=8 + 2(1� 2�)=p1 + �2 �rpp1 + �2 � 1  1 + i2rpp1 + �2 � 1 !#)��(�� ��+p1 + �2 �1 �� 2(2 + �)(1 + �2)r2  1 + 2ipp1 + �2 � 1rp1 + �2 !� 1�+p1 + �2�) : (B.15)To obtain the value of 
omplex 
oe�
ients �, C2,C3, and C4, we solve Eqs. (51) numeri
ally, startingfrom expression (53) for r � 1 and mat
hing the solu-tion thus found with expression (B.15) for r � 1. Asa result, we obtain the value of the 
oe�
ients �, C2,and C4 with high a

ura
y and the approximate 
oe�-
ient C3 (in front of the exponentially de
reasing termas r ! 1 in expression (B.15)). To obtain a morea

urate value of C3, we solve Eqs. (51), starting fromexpression (B.15) for r � 1 and mat
hing this solutionwith expression (53) for r � 1. As a result, we obtainhigh-pre
ision values for all the 
oe�
ients �, C2, C3,and C4: � = �0:443673+ i 0:004937;C2 = �0:00734+ i 0:0001494;C3 = 99:88� i 33:12;C4 = 0:12618+ i 0:0275: (B.16)REFERENCES1. Yu. N. Ov
hinnikov and I. M. Sigal, Nonlinearity 11,1277 (1998).
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