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We investigate the problem of adsorption (localization) of polymer chains in the system of two penetrable
interfaces within the mean-field approximation. The saturation of the polymer system in the limit case of zero
bulk concentration is studied. We find the exact solution of this mean-field polymer adsorption problem that
opens the possibility to treat various localization problems for polymer chains in such environments using the
appropriate boundary conditions. The exact solution is controlled by a single scaling variable that describes the
coupling between the interfaces due to the polymer chains. We obtain a nonmonotonic behavior of the amount
of adsorbed polymers as a function of the distance between the interfaces. This leads to a high-energy and
a low-energy phase for the double layer with respect to the amount of polymers localized. At the saturation
point, we find the total energy of the system and determine the force acting between the interfaces to be strictly
attractive and to monotonically decay to zero for interface distance increases.

1. INTRODUCTION

The localization of polymer chains at surfaces or
at penetrable interfaces is of great interest from both
theoretical and technological standpoints because of its
various applications. From a practical point of view,
adsorption phenomena in polymeric solutions are im-
portant in processes such as lubrication, adhesion, and
surface protection, as well as in biological processes of
interaction between membranes and polymers.

Penetrable interfaces reside in structured surfaces
or in layered environments that can be formed in mi-
crophase separated block copolymers, liquid crystalline
or lipid systems. Here, it has been shown [1] that in-
terfaces between two media can act as attractive and
penetrable interfaces for both alternating and random
copolymers. The understanding of polymers in envi-
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ronments of multiple interfaces can lead to novel appli-
cations for selection and recognition of polymer prop-
erties [2, 3].

In the adsorbed state, conformations of localized
chains are the result of the interplay between adsorp-
tion energy, entropy reduction due to confinement in
the adsorbed state, and the excluded volume repulsion
between the monomers [4]. The last effect is responsib-
le for the formation of large loops and tails and hence
for an extended adsorption layer [5]. Only the excluded
volume of monomers leads to saturation effects at sur-
faces or interfaces. Therefore, taking excluded volume
effects into account is most important for understan-
ding the physics of real polymers close to surfaces or
interfaces.

Unfortunately, it is virtually impossible to solve the
many chain problem for polymer adsorption including
all effects of conformation statistics and excluded vo-
lume. On the other hand, the effects of excluded vo-
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lume interactions can be understood using mean-field
concepts (see, e.g., [4]), thus neglecting fluctuation ef-
fects around the most probable polymer state function
(ground state dominance) in a given geometry and ex-
ternal potentials. Generally, the mean-field model can
be regarded as a versatile tool for understanding the es-
sential effects of excluded volume interactions in many
chain systems under geometric constraints, boundary
conditions, and external potentials [4, 6]. One of the
merits of the mean-field model is that it provides ex-
act solutions of the corresponding stationary nonlinear
Schrodinger equation (NLSE) for piecewise constant
potentials. We note that the solutions of the NLSE are
also very important in many directions of modern non-
linear physics such as nonlinear periodic structures in
optics [7], Bose-Einstein condensations in optical lat-
tices [8], and many others.

In this work, we propose a formalism for exactly
solving the mean-field polymer adsorption problem for
the system of two penetrable interfaces. We investigate
the saturation behavior of polymers in such environ-
ments. In subsection 2.1, we introduce the model for
a single penetrable interface, and in subsection 2.2, we
present the exact solution in the case of two penetrable
interfaces.

2. LOCALIZATION OF POLYMER CHAINS AT
ADSORBING PENETRABLE INTERFACES

It is well known that polymer chain statistics is
dominated by the ground state solution of the Edwards
equation (see [9]) given by

a® d*u(x) 1

Auw) == 5 Y T

Ueat(@)u(z), (1)

where u(x) is the part of the state function of the poly-
mer chain associated with the eigenvalue A, a is the
length of a statistical (Kuhn) segment, Ueyt(2) is the
potential energy of a segment at the position z, and
kpT is the usual product of Boltzmann’s constant and
absolute temperature. For simplicity, we use only one
spatial coordinate related to the symmetry of the po-
tential. We study plane interfaces where the localiza-
tion occurs in the direction perpendicular to the inter-
faces only.

The ground state dominance argument can be easily
seen from the formal solution for the partition function
of the chain given by

Z(z,2") = ZGXP{—N/\k}Uk(x)Uk(xl)» (2)
k

where the index k counts the various solutions of
Eq. (1). For large values of N, the lowest value of
A (the ground state solution) dominates the partition
function. In what follows, we only consider the ground
state solution, and drop the index k for simplicity.

2.1. Polymer chain localization at an adsorbing
interface

In the presence of an interface (trap) and in the ab-
sence of excluded volume effects, the external potential
Uezt(z) can be written as

Uezt(2) = —kpTrd(x). (3)

Here, the interface is characterized by a positive
value of the parameter x in the case of attraction of
monomers by the interface and by a negative value
of k in the opposite case, the repulsion of monomers
from the interface. We note that the parameter x has
the dimension of length. Then Edwards equation (1),
which formally corresponds to the time-independent
Schrédinger equation for the function u, takes the form
Au(z) = _a_2 u(x)
6 dz?

where the x axis is directed perpendicular to the in-
terface. In such a linear system, a localized polymer
state can exist only in the case of an attractive inter-
face (k > 0).

The solution of Eq. (4) reduces to the solution of
the homogeneous equation

— kb (x)u(x), (4)

a® dPu(x)
6 da?

+ Au(x) =0 (5)

in the regions # > 0 and # < 0 with the following
boundary conditions at x = 0:

|40 = ul-o, (6)
du du 6
e B 7
dr| ., dx|_, a2’w|o (™

The localized ground state solution of Eq. (5) satis-
fying boundary conditions (6) and (7) is given by

u(z) = @ exp (— SZLx|> 7 (8)

and the eigenvalue A\ corresponding to this localized
state is

WERS (9)
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The region of localization of the solution is charac-
terized by the localization length

a2

L~—.
3K
If we describe the real chain in a self-consistent field,
we suppose that the interactions between monomers are
repulsive and local. The presence of other segments
provides a repulsive potential proportional to the den-
sity c(z) [4, 10, 11]:

Uey(2) = kpTvac(x),

where v is the (dimensionless) excluded volume param-
eter. Consequently, we can describe each chain as an
ideal chain subjected to the external potential U, (z).
The density c(x) is proportional to |u(z)|? for ground
state dominance [4]. Thus, Eq. (1) can be rewritten as

Au = — (10)

In the presence of an interface, the external poten-
tial Ueqt () takes the form (3) and the nonlinear equa-
tion for a real polymer chain finally becomes

a’ d*u N
=—— — - . 11
Au ¢ a2 + valul‘u — ké(x)u (11)
Rescaling the variables as
2 2
— A=A, \/§K—>I€, g—)x, (12)
0] ay/[v] !
where
a

[ =

V3ol

is the excluded volume length, and introducing the di-
mensionless state function according to /au — u, we
can rewrite SNLSE (11) in the standard form

d*u

A= -

= + 20|u*u — K6 (x)u,

(13)
where the sign function ¢ = 1 (with the respective
excluded volume v > 0 and v < 0) stands for repulsion
and attraction between monomers.

To return to the initial parameters of the system,
transformations (12) have to be applied once.

The solution of Eq. (13) reduces to the solution of
the corresponding homogeneous equation in the regions
xz > 0 and < 0 supplemented with the following
boundary conditions at z = 0 (see Ref. [12]):

ulo = ul-o, (14)
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d_u
dr

_du
+0 dr

—0

Kulg. (15)

Because the ground state is dominant, we can omit the
modulus and rewrite Eq. (13) in the regions outside the
interface as

d*u

—2+)\u—20u3=0.

. (16)

Our physical system corresponds to the case of re-
pulsion between monomers (o = +1, excluded volume
v > 0) and attraction of monomers by the interface
(k> 0). In this case, we have the following expression
for the solution satisfying the boundary conditions and
having zero density far from the interface (u(xz) — 0
for |z| — 0):

I
" = Il o "

where
E=V-X (18)

The parameter x; can only be negative.

The solution in (17) is completely characterized by
the value of the parameter £ (or A). The parameter zg
is expressed in terms of ¢ due to boundary condition
(15), which for our solution (17) can be rewritten as

2¢ cth(&xg) = —k. (19)

It can be seen from this relation that as a consequence
of g < 0, k can only be positive in the case of v > 0,
i.e., the localized state exists only in the case of an
attracting interface.

Equation (13) requires the normalization condition,
which in fact defines the total number of monomers per
(dimensionless) unit area:

o0

N = / |u(z)|>dz.

— 00

(20)

We note that in the standard framework of the me-
an-field approach, all monomers in the system are as-
sumed to belong to a single chain and particular effects
of the chain ends are ignored. For simplicity, we let N
denote the total number of monomers in the system.
We note that in contrast to the case of a linear sys-
tem (see Eq. (4)), in the nonlinear case the normaliza-
tion leads to a relation between the parameters & and
N (or A and N). Substituting our solution (17) in (20)
and taking the relation (19) between xy and £ into ac-
count, we can finally obtain the dependence N = N(&)
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or, vice versa, { = £(N) (or A = A\(N)). For our system
(v >0 and k > 0), we arrive at the following result:

N =k —2¢. (21)

It is shown in Ref. [12] that three different types
of nonlinear localized states can exist for Eq. (13) de-
pending on the relations between the parameters v and
k. In the first case (v < 0 and & > 0), the interface is
attractive, and the maximum of the amplitude of the
localized state is at the point of the interface (trap).
The localized state in the case where v < 0 and kK < 0
has the amplitude maxima located symmetrically on
both sides of the interface. And the last (third) case
where v > 0 and & > 0 corresponds to our physical
situation.

The maximum value of N in our case is equal to
Ngot = k. This point corresponds to the limit case
A = 0 (or £ = 0). No more monomers can be added
to the interface in this case. Thus, this point corre-
sponds to the saturated state of the interface. We note
that the eigenvalue A; of the linear system is given in
rescaled units by

= (22)

Equation (13) can be alternatively derived from a
variational principle using the energy functional F [u]
(see Ref. [4]),

i ou

Substituting our solution (17) in Eq. (23) and using
expression (21), we find the following relation between
the total energy E and the total number of monomers
in the chain N (see [12]):

2
+ olul* = &é(z)|ul?| d. (23)

N® kN2
E=)\NN—-— 48

12 4 (24)

The first term in this relation describes the energy of
N noninteracting monomers in the chain and corre-
sponds to the description of the system in the linear
approximation; the second term describes the energy
of interaction of monomers in a pure soliton (as if the
interface were absent); and the third term describes the
interaction of bound monomers through the interface.
We note that the sign of the trap (the sign of k) deter-
mines only the last term; for x > 0, the presence of an
attractive interface increases the energy of the localized
state (the interface attracts the monomers, which repel
each other).

Differentiating expression (24) with respect to N
and using relation (21) for N (), we can easily verify

the relation
oE \
ON
Hence, the eigenvalue )\ plays the role of chemical po-

tential for monomers bound in a localized state.

2.2. Polymer chains localization at two
adsorbing interfaces

We describe a polymer chain in the system of two
penetrable interfaces. In the presence of two interfaces,
the external potential Ugy: () in the initial variables
has the form (compare with (3))

Uert(x) = —kpTk[d(x + d) + 6(x — d)], (25)

where the interfaces are characterized by the value of
the parameter x. As before, in the case of attraction
of monomers by interfaces the parameter k is positive,
the z axis is directed perpendicular to the interfaces,
and 2d is the distance between the interfaces.

Using transformations (12) by means of which
Eq. (13) had been obtained, we obtain the rescaled
SNLSE in the form

du

=21
" da?

+20uPu—k[§(z+d)+0(x—d)]u,  (26)
with the sign function o = £1 for the respective cases
of repulsion and attraction between monomers, and, as
before, we use the initial symbols of variables A, z, d,
and k.

The Lagrangian density corresponding to Eq. (26)
has the form

2
—olul* +

__‘d_“

dx
+ K[0(x 4+ d) + 6(z — d)]Jul* + Aul®.  (27)

Equation (26) reduces to the corresponding homo-
geneous equation of form (16) in the regions outside
the interfaces with the boundary conditions

Ul+d4+0 = U|+d—o, (28)
du du
— - — = —ku|, . (29)
dr|igo  dr|iyg |id

Again, we consider a positive excluded volume
(0 = +1) and the attraction of monomers by interfaces
(k > 0). For a positive excluded volume, three diffe-
rent types of stationary localized states can exist [13]:
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the in-phase symmetric state, the antisymmetric state,
and the anti-phase asymmetric (inhomogeneous) state.
The state with the asymmetric distribution of the den-
sity near two interfaces splits off in a bifurcation man-
ner from the antisymmetric solution. But because the
ground state is dominant, we are only interested in
the in-phase symmetric solution which in the regions
x < —=d (1), z > d (2), and |z| < d (3) has the follo-

wing form:

€
ui2(2) = F———,
W) = R o]
; (30)
ug(z) = —L 1
en(nz, q)
where 25 < d and x; = —zo. Here, cn(nz,q) is the

Jacobi elliptic function with the modulus ¢. Also, we
introduce

_ ¢
77_ /72q2_17

where ¢ is defined in (18). The elliptic modulus ¢ varies
in the range from 1/\/5 to 1.

The advantage of our method compared with other
approaches is that we deal with the exact solution.
This allows considering all piecewise constant poten-
tial forms in a straightforward manner. Solution (30)
is a one-parameter solution and is completely charac-
terized by the value of the parameter ¢ (or A). The
other two parameters ¢ and x; (or x2) are expressed
in terms of ¢ from boundary conditions (28) and (29),
which for our solution (30) can be rewritten as

N T

(31)

3 _qn
WEA =]~ nlnd ) (3
gn*sn(nd, q)dn(nd,q) & ch[{(d —z2)] _
cn?(nd, q) sh’[é(d — )]
_ kg
= GEd )

Because two interfaces attract the monomers, a con-
venient characteristics of a localized state is represented
by the amplitudes

and
As =u(x =d)

at these interfaces [3,13,14]. Due to the symmetry of
the localized state, we can set

A=A = A
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Nsat

\/

Fig.1. The dependence \(N) for the in-phase sym-
metric state in the system with a positive excluded vo-
lume

Then boundary conditions (32) and (33) can be rewrit-
ten in terms of the amplitude A as follows:

= f =
sh[¢(d — 2)]

q'n
en(nd, q)’

(34)

\/Az _ q/2n2\/A2 + @2+ AV A2+ &2 =krA. (35)

Equation (35) can be reduced to the form
\/A4+A2§2 — ¢t + A /A2+§2 — kA.

The three relations in (34) and (35) (or (34) and
(36)) determine the parameters A, x5, and ¢ as func-
tions of the parameters £ and d. In the general case, it
can be exactly solved numerically. However, a solution
can be obtained analytically in the limit cases kd > 1
and & — 0 (or A — 0). In the limit kd > 1 (weak
coupling between interfaces), the problem reduces to
the effective system of two coupled anharmonic oscilla-
tors with a “hard” nonlinearity when the eigenvalue A
increases with the amplitude of the solution. This prob-
lem is described analytically in more detail in Ref. [13].

After the substitution of our in-phase symmetric so-
lution (30) in the integral (20) defining the total num-
ber of monomers in the chain, we can finally obtain
the dependence N = N (&) and the inverse dependence
& =¢&(N) (or A = A(N)), which is presented in Fig. 1.
It can be shown that the dependence for the in-phase
symmetric state terminates at the edge of the spectrum
of linear waves (A = 0), and the profile of this spatially
localized state near the interfaces has the form of al-
gebraic solitons with a power-law asymptotic behavior
at large distances [15]. This case corresponds to the
situation where the total number of monomers tends
to its maximum value. A total number of monomers

(36)
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greater than the maximum value Ng,;, corresponding
to the boundary of the band of linear bulk waves A = 0,
cannot be localized in the system.

Taking the symmetry of the in-phase symmetric so-
lution (30) into account and calculating the total num-
ber of monomers, we obtain the exact result

N = / |u|?dr = 2€[cth[é(d — 29)] — 1] +

sn(nd, q)dn(nd, q)

+ 2
T en(nd, q)

- 277 E(am(nda Q)a q) +

+2¢”n%d, (37)

where E(p, ¢) is the elliptic integral of the second type
and
am(p, q) = arcsin[sn(yp, q)]

is the elliptic amplitude. Two parameters xo = x2(&, d)
and ¢ = ¢(§,d) are determined from boundary condi-
tions (34) and (35) (or (36)).

Using relation (32), we can eliminate the parameter
22 and then rewrite Eq. (37) as

B ql2772 B
A [V wdg TS E

sn(nd, q)dn(nd, q)
en(nd, q)
— 2nE(am(nd, q), q) + 2¢'*n’d.

+

+ 2n

(38)

We study the peculiarities of our system in the limit
case nd < 1. (Note that we are not at the saturation
limit yet.) It follows from Eq. (34) that A ~ ¢'n. From
boundary condition (36) (or (35)), we then obtain the
relation

€
V2 -1
It follows from (39) that n = x/q, and, taking the

inequality nd < 1 into account, we obtain the following
limitation for the distance d:

=K Or qn=As. (39)

d<q/k or d<1/k. (40)

In this limit case, the total number of monomers (38)
can be reduced to the form
) .

NANJ2<1—

We next study the behavior of the system at the
saturation point defined by

12
L1

7 (41)

A—=0 and ¢—0. (42)
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In this case, we can rewrite solution (30) for uy »() in
the form

¢ 1
shlé(z — 21,2)] - :Fx — T2

ULQ(QL‘) = F (43)
and, as follows from (34), the amplitude at the interface
is equal to

1
d—l‘g.

A

~

(44)

If we suppose that nd < 1, then we have A ~ ¢'n
from (34). Substituting this expression in boundary
condition (35) (or (36)), we obtain the following result

2
128

for the parameter ¢:
+2= ).
(1+32)

But this means that the parameter 7, which is equal to

_ 5 Vo
V22 -1
is not small in the limit case nd < 1 because the pa-
rameter x has an arbitrary value. This means that
the parameter ¢ is close to 1/v/2. Thus, the inequali-
ty & < 1 leads to the limit case for the parameter ¢,
specifically, ¢ — 1/v/2.

We now suppose that the distance d is not small.
The amplitude A is also not small, and boundary con-
dition (34) can be rewritten as

1
d—l‘2

T V2 e (pd, 1/V2)

The dependence of the parameter ¢ = ¢(&,d) (or,
equivalently, n = n(¢, d)), which is necessary in order to
obtain N in (38), in this case should be found after the
substitution of A from (47) in boundary condition (36).
In this general case, as a result of this substitution, we
obtain the following equation for the variable n:

n’en® (nd, 1/\/5) + 2xk%cn (nd, 1/\/5) -
—2v2kn = 0.

1
2

2N

~

(45)

n= (46)

"

A

(47)

(48)

It is now possible to reduce one variable by intro-
ducing the scaling variables

gy =1n/k and y = kd. (49)

We note y gives the overlap of the interface profiles in
terms of the linear solution. Here, y < 1 corresponds
to strongly overlapping interfaces, and y > 1 corre-
sponds to a weak overlap. Using Eq. (49), we obtain
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Fig.2. The dependence A;.:(y) at the saturation

threshold

gaen® (gqy,1/V2) + 200 (g, 1/V2) =
~2v2g, =0 (50)

with the formal solution g, (y). In what follows, we use
this function for the calculation of the physical charac-
teristics of the system, such as the number of monomers
trapped between interfaces/surfaces, the energy of the
system, and the force acting between two penetrable
traps.

If we introduce the reduced amplitude Az, = A/k
and take definitions (49) into account, then expres-
sion (47) can be rewritten as

1
Asat N = 977

V2 en(gyy, 1/V2)
Here, the function g¢,(y) is the numerical solution of
transcendental equation (50). Hence, dependence (51)
has the universal scaling form Ag,; = Agqr(y) for dif-
ferent values of the parameters x and d. The numerical
solution for Agq:(y) is presented in Fig. 2.

We now introduce the reduced number of monomers
Ngat = Nsat/k. Then in the saturation limit & — 0
(N(&,d) — Ngat(d)), we have ¢ — 1/4/2, and expres-
sion (38) transforms into

\/5977 +
en (gyy,1/v2)
sn (g,y,1/v2) dn (gyy,1/V2)
cn (gny, %)
—2g,E (am(gny, 1/v2), 1/\/5) +g7y, (52)

. (51)

Nsat =

+ 29y

12 JKBT®, Beim. 3
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1.9

1.8

1.7

min
Nsat

1.6

Fig. 3.

The dependence ns.:(y) at the saturation
threshold

where ¢, (y) is the solution of Eq. (50). The dependence
Nsat = Nsar(y) in (52) also has the universal scaling
form for different values of x and d. The numerical so-
lution for ng.:(y) is presented in Fig. 3. Starting from
a large distance d between interfaces (weak overlap,
y > 1), the saturation parameter ng,; decreases with d
as the “bridge” (formed by the overlapping tails of the
profile) between interfaces becomes more powerful, and
tends to its minimum value n™¥" ~ 1.63 at a characte-
ristic distance given by the value y* &~ 1.11. It increases
again as d — 0 when monomers start to escape from
the region confined by two penetrable interfaces into
the tails on both sides of the interfaces, and reaches its
maximum value nt9" = 2 for d = 0 (strong overlap,
y < 1).

In the limit case y < 1 (strong overlap), we have
Gy = V2 — 2v/2y; from Eq. (52), we then obtain the
following result for the function ngq:

Nsat ~ 2 - 2y7 (53)

where we included the correction to expression (45) for

the parameter ¢,
< ) + 2y.

In the opposite limit case y > 1, the interac-
tion (overlap) between two traps is small only in the
small-amplitude limit when the description of the sys-
tem can be reduced to a model of coupled “hard” anhar-
monic oscillators [13]. Such a description is valid only
in the region 1 — A/\; < |\|, where the eigenvalue
AN = —k2/4 (€ =K/2).

1

~ —
~

2

52
1+ —=—
+ 22

2
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The distance d between two interfaces cannot be ar-
bitrary. It is limited by the maximum length of a chain,
i.e., by the total number of monomers times the statis-
tical segment length of the chain, dy,q, = (N—1)a. The
minimal distance d,,;, is defined by the parameter a.

The total energy (per unit area) of the system FE is
defined by the integral

7 ou
== [ {f

— k[0(x +d) +d(x — d)]|u|2} dz. (54)

2
+olul* -

Substituting ground state solution (30) in Eq. (54) and
taking boundary condition (34) into account, we find
the exact expression for the total energy of the system:
2 3 2 2 12,2 12072
E — i “ 2q 77 _ 2 g 77 + 52 +
3 3 [en*(nd,q) cn?(nd, q)

4¢%3mm¢m-mwmﬂ>+2u—2fm3x

3 cn3(nd, q) 3
sn(nd, q)dn(nd,q) ..
X{ en(nd, q) Fla Wﬂd}+

1 2qu'2772
+2¢% (= - ) nt'd— ==—"——. (55
(5 -0) o g 69
Again, we can introduce the scaling variables y and
gn and define the appropriately reduced energy of the
system
Esat = Esat/"4'3~

In the limit case £ — 0, we then obtain

V2,
o e . 7Y [V (o 112)
2 4
X dn (gny,l/\/ﬁ)] _CnQ(QnZ—le/\/i)_%. (56)

Using the solution g,(y) of Eq. (50), we obtain a
single variate function €44+(y). The minimum value of
Esat, as follows from (56), is equal to ™" = —2/3.
The universal dependence eg4¢ = €40¢(y) is presented
in Fig. 4. The energy of the saturated system is thus
a monotonically increasing function of the distance
between the traps. We note that the condition of
saturation implies an exchange of chains by changing
the distance according to the result in Fig. 3. Thus, the
system is considered in equilibrium with free chains in
a highly dilute solution (¢ — 0) populating the inter-
faces until saturation is reached. We note that there is
no contradiction between the requirement of saturation
and a highly diluted bulk solution for an adsorption
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strength per monomer (related by x) of the order of a
few kT [16]. In particular, for changes of the distance
between the interfaces, where the saturation value ngq;
is decreased, chains have to be released because of over-
saturation (positive free energy excess).

In Fig. 5, we plot the function egq¢(nsqt). This
clearly indicates two different values (branches) of the
total excess energy of the two-interface system for the
same value of the total number of monomers N local-
ized at the interfaces. These branches corresponding to
the same value of the parameter N are related to two
different distances d; and ds between the interfaces, as

Foor = —

can be easily seen from the dependence for the total
number of monomers presented in Fig. 3. Hence, there
exist a high-energy phase (large separation) and a low-
energy phase (close interfaces).

Also, we can calculate an important characteristic
of the system for practical measurements, the force per
unit area acting between the interfaces. In the general
case,

o dE(d, \) 7
dd

and at the saturation limit we have

dBsai(d) _ V2 (n'd+n) V2+3sn(nd,1/v2) dn (nd,1/v2)

dd 3

ent (nd, 1/v/2)
N \/517277, + V2 =k (f'd+n)]sn (nd, 1/v2) dn (nd,1/v?2)

_|_

end (nd, 1/v/2)

7 [172 (n'd+n) — 18,%17’] n® (14n'd + 5n)

- . (57
9 cn? (nd, 1/V2) 18 (57)

The parameter 1’ = dn/dd can be easily found by differentiating Eq. (48), which gives
, n [3nen® (nd,1/v/2) + 2|k[*] sn (nd, 1/v2) dn (nd,1/v/2) (58)

T 2nend (nd, 1/v/2) — d [Bi2en? (nd, 1/v/2 ) + 2|w[2] sn (nd, 1/v/2) dn (5d, 1/v/2) — 2v/2 |s]’

If we introduce the reduced force fso = Fsot/k* and the new function g,y (y) = n'/k>, then we can rewrite

Eq. (57) in the form

fsat = _cﬁggfj@i—ﬁjﬁ) {1 +V/2sn (gny, 1/\/5) dn (gny, l/x/i)} -
V263 (9 y + g)sn (g, 1/V2) dn(gay, 1/V2)
- cn? (g,9,1/v2) {1 + Vs (gny, 1/\/5) dn (gny, 1/\/5)} +
. 292 (g y + gn)sn (gny, 1/v2) dn (gpy, 1/V2) 29090’ 9 (59)
cn? (gny, 1/v2) en? (gpy, 1/v2) 27
where
o) = gn [3gmen® (999, 1/V2) + 2] sn (g, 1/v2) dn (ggy,1/V2) 60)

and g,(y) is the solution of Eq. (50).

For different values of the parameter x, we obtain
the universal dependence fsot = fsat(y) presented in
Fig. 6. In the limit y — 0, we have g, ~ —2v/2, and
the minimum value of fs; from Eq. (59) is equal to

min — 2. This behavior is in agreement, with that

sat

predicted by de Gennes in Ref. [4].

~ 2g,00 (90, 1/V3) — y [Bgen? (g39,1/v2) + 2] sn (g0, 5 ) dn (909 1/VZ) —2v2
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3. CONCLUSIONS

We have obtained exact solutions for the problem of
adsorption of real polymer chains in systems with two
adsorbing interfaces within the mean-field approxima-
tion. We described localized states with zero bulk con-
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centration having “dynamical” equilibrium at the sat-
uration limit. This can be realized for the adsorption
from highly diluted polymer solutions and strongly at-
tracting interfaces as discussed above. Because of the
huge gain of free energy per chain in polymer adsorp-
tion, highly diluted polymer solutions lead to saturated
surface states (see [4]). Using the exact solution for
the SNLSE on intervals of constant potentials opens
the possibility to treat various localization problems
for polymer chains in such environments using the ap-
propriate boundary conditions.

For the saturation limit, we derived an exact scaling
solution in which the only relevant control parameter
is the measure of the overlap between the interfaces
given by the scaling variable that can be considered as
a coupling parameter of the interface—polymer system.
We found that the saturation density of monomers be-
haves nonmonotonically as a function of the distance
between the interfaces, which results in “two-phase” be-
havior of the free energy as a function of the amount
of adsorbed polymers (see Fig. 5). When the distance
becomes small, the polymer double layer can relax the
excluded volume constraints by forming larger loops
and tails in the outer region of the interfaces. Changing
the distance between the interfaces changes the number
of chains adsorbed. A low-energy phase corresponds
to small distances between the interfaces, and a high-
energy phase corresponds to large distances between
them. We note that the system is taken in the dynam-
ical equilibrium at the saturation point.

We found the energy of the system, which turned
out to be strictly negative, and the forces acting bet-
ween both interfaces due to the polymer—interface cou-
pling. The forces are found to be attractive and to
monotonically approach zero with increasing the dis-
tance between the interfaces, which is in agreement
with the behavior predicted by de Gennes [4].
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