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eived July 25, 2010We investigate the problem of adsorption (lo
alization) of polymer 
hains in the system of two penetrableinterfa
es within the mean-�eld approximation. The saturation of the polymer system in the limit 
ase of zerobulk 
on
entration is studied. We �nd the exa
t solution of this mean-�eld polymer adsorption problem thatopens the possibility to treat various lo
alization problems for polymer 
hains in su
h environments using theappropriate boundary 
onditions. The exa
t solution is 
ontrolled by a single s
aling variable that des
ribes the
oupling between the interfa
es due to the polymer 
hains. We obtain a nonmonotoni
 behavior of the amountof adsorbed polymers as a fun
tion of the distan
e between the interfa
es. This leads to a high-energy anda low-energy phase for the double layer with respe
t to the amount of polymers lo
alized. At the saturationpoint, we �nd the total energy of the system and determine the for
e a
ting between the interfa
es to be stri
tlyattra
tive and to monotoni
ally de
ay to zero for interfa
e distan
e in
reases.1. INTRODUCTIONThe lo
alization of polymer 
hains at surfa
es orat penetrable interfa
es is of great interest from boththeoreti
al and te
hnologi
al standpoints be
ause of itsvarious appli
ations. From a pra
ti
al point of view,adsorption phenomena in polymeri
 solutions are im-portant in pro
esses su
h as lubri
ation, adhesion, andsurfa
e prote
tion, as well as in biologi
al pro
esses ofintera
tion between membranes and polymers.Penetrable interfa
es reside in stru
tured surfa
esor in layered environments that 
an be formed in mi-
rophase separated blo
k 
opolymers, liquid 
rystallineor lipid systems. Here, it has been shown [1℄ that in-terfa
es between two media 
an a
t as attra
tive andpenetrable interfa
es for both alternating and random
opolymers. The understanding of polymers in envi-*E-mail: igor.gera�gmail.
om

ronments of multiple interfa
es 
an lead to novel appli-
ations for sele
tion and re
ognition of polymer prop-erties [2, 3℄.In the adsorbed state, 
onformations of lo
alized
hains are the result of the interplay between adsorp-tion energy, entropy redu
tion due to 
on�nement inthe adsorbed state, and the ex
luded volume repulsionbetween the monomers [4℄. The last e�e
t is responsib-le for the formation of large loops and tails and hen
efor an extended adsorption layer [5℄. Only the ex
ludedvolume of monomers leads to saturation e�e
ts at sur-fa
es or interfa
es. Therefore, taking ex
luded volumee�e
ts into a

ount is most important for understan-ding the physi
s of real polymers 
lose to surfa
es orinterfa
es.Unfortunately, it is virtually impossible to solve themany 
hain problem for polymer adsorption in
ludingall e�e
ts of 
onformation statisti
s and ex
luded vo-lume. On the other hand, the e�e
ts of ex
luded vo-587
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tions 
an be understood using mean-�eld
on
epts (see, e. g., [4℄), thus negle
ting �u
tuation ef-fe
ts around the most probable polymer state fun
tion(ground state dominan
e) in a given geometry and ex-ternal potentials. Generally, the mean-�eld model 
anbe regarded as a versatile tool for understanding the es-sential e�e
ts of ex
luded volume intera
tions in many
hain systems under geometri
 
onstraints, boundary
onditions, and external potentials [4, 6℄. One of themerits of the mean-�eld model is that it provides ex-a
t solutions of the 
orresponding stationary nonlinearS
hrödinger equation (NLSE) for pie
ewise 
onstantpotentials. We note that the solutions of the NLSE arealso very important in many dire
tions of modern non-linear physi
s su
h as nonlinear periodi
 stru
tures inopti
s [7℄, Bose�Einstein 
ondensations in opti
al lat-ti
es [8℄, and many others.In this work, we propose a formalism for exa
tlysolving the mean-�eld polymer adsorption problem forthe system of two penetrable interfa
es. We investigatethe saturation behavior of polymers in su
h environ-ments. In subse
tion 2.1, we introdu
e the model fora single penetrable interfa
e, and in subse
tion 2.2, wepresent the exa
t solution in the 
ase of two penetrableinterfa
es.2. LOCALIZATION OF POLYMER CHAINS ATADSORBING PENETRABLE INTERFACESIt is well known that polymer 
hain statisti
s isdominated by the ground state solution of the Edwardsequation (see [9℄) given by�u(x) = �a26 d2u(x)dx2 + 1kBT Uext(x)u(x); (1)where u(x) is the part of the state fun
tion of the poly-mer 
hain asso
iated with the eigenvalue �, a is thelength of a statisti
al (Kuhn) segment, Uext(x) is thepotential energy of a segment at the position x, andkBT is the usual produ
t of Boltzmann's 
onstant andabsolute temperature. For simpli
ity, we use only onespatial 
oordinate related to the symmetry of the po-tential. We study plane interfa
es where the lo
aliza-tion o

urs in the dire
tion perpendi
ular to the inter-fa
es only.The ground state dominan
e argument 
an be easilyseen from the formal solution for the partition fun
tionof the 
hain given byZ(x; x0) =Xk expf�N�kguk(x)uk(x0); (2)

where the index k 
ounts the various solutions ofEq. (1). For large values of N , the lowest value of� (the ground state solution) dominates the partitionfun
tion. In what follows, we only 
onsider the groundstate solution, and drop the index k for simpli
ity.2.1. Polymer 
hain lo
alization at an adsorbinginterfa
eIn the presen
e of an interfa
e (trap) and in the ab-sen
e of ex
luded volume e�e
ts, the external potentialUext(x) 
an be written asUext(x) = �kBT�Æ(x): (3)Here, the interfa
e is 
hara
terized by a positivevalue of the parameter � in the 
ase of attra
tion ofmonomers by the interfa
e and by a negative valueof � in the opposite 
ase, the repulsion of monomersfrom the interfa
e. We note that the parameter � hasthe dimension of length. Then Edwards equation (1),whi
h formally 
orresponds to the time-independentS
hrödinger equation for the fun
tion u, takes the form�u(x) = �a26 d2u(x)dx2 � �Æ(x)u(x); (4)where the x axis is dire
ted perpendi
ular to the in-terfa
e. In su
h a linear system, a lo
alized polymerstate 
an exist only in the 
ase of an attra
tive inter-fa
e (� > 0).The solution of Eq. (4) redu
es to the solution ofthe homogeneous equationa26 d2u(x)dx2 + �u(x) = 0 (5)in the regions x > 0 and x < 0 with the followingboundary 
onditions at x = 0:uj+0 = uj�0; (6)dudx ����+0 � dudx �����0 = � 6a2�uj0: (7)The lo
alized ground state solution of Eq. (5) satis-fying boundary 
onditions (6) and (7) is given byu(x) = p3�a exp��3�jxja2 � ; (8)and the eigenvalue � 
orresponding to this lo
alizedstate is �l = �3�22a2 : (9)588
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hains : : :The region of lo
alization of the solution is 
hara
-terized by the lo
alization lengthL � a23�:If we des
ribe the real 
hain in a self-
onsistent �eld,we suppose that the intera
tions between monomers arerepulsive and lo
al. The presen
e of other segmentsprovides a repulsive potential proportional to the den-sity 
(x) [4, 10, 11℄:Uev(x) = kBT�a
(x);where � is the (dimensionless) ex
luded volume param-eter. Consequently, we 
an des
ribe ea
h 
hain as anideal 
hain subje
ted to the external potential Uev(x).The density 
(x) is proportional to ju(x)j2 for groundstate dominan
e [4℄. Thus, Eq. (1) 
an be rewritten as�u = �a26 d2udx2 + �ajuj2u+ 1kBT Uext(x)u: (10)In the presen
e of an interfa
e, the external poten-tial Uext(x) takes the form (3) and the nonlinear equa-tion for a real polymer 
hain �nally be
omes�u = �a26 d2udx2 + �ajuj2u� �Æ(x)u: (11)Res
aling the variables as2j�j�! �; 2p3apj�j�! �; xl ! x; (12)where l = ap3j�jis the ex
luded volume length, and introdu
ing the di-mensionless state fun
tion a

ording to pau ! u, we
an rewrite SNLSE (11) in the standard form�u = �d2udx2 + 2�juj2u� �Æ(x)u; (13)where the sign fun
tion � = �1 (with the respe
tiveex
luded volume � > 0 and � < 0) stands for repulsionand attra
tion between monomers.To return to the initial parameters of the system,transformations (12) have to be applied on
e.The solution of Eq. (13) redu
es to the solution ofthe 
orresponding homogeneous equation in the regionsx > 0 and x < 0 supplemented with the followingboundary 
onditions at x = 0 (see Ref. [12℄):uj+0 = uj�0; (14)

dudx ����+0 � dudx �����0 = ��uj0: (15)Be
ause the ground state is dominant, we 
an omit themodulus and rewrite Eq. (13) in the regions outside theinterfa
e as d2udx2 + �u� 2�u3 = 0: (16)Our physi
al system 
orresponds to the 
ase of re-pulsion between monomers (� = +1, ex
luded volume� > 0) and attra
tion of monomers by the interfa
e(� > 0). In this 
ase, we have the following expressionfor the solution satisfying the boundary 
onditions andhaving zero density far from the interfa
e (u(x) ! 0for jxj ! 1): u(x) = �sh[�(jxj � x0)℄ ; (17)where � = p��: (18)The parameter x0 
an only be negative.The solution in (17) is 
ompletely 
hara
terized bythe value of the parameter � (or �). The parameter x0is expressed in terms of � due to boundary 
ondition(15), whi
h for our solution (17) 
an be rewritten as2� 
th(�x0) = ��: (19)It 
an be seen from this relation that as a 
onsequen
eof x0 < 0, � 
an only be positive in the 
ase of � > 0,i. e., the lo
alized state exists only in the 
ase of anattra
ting interfa
e.Equation (13) requires the normalization 
ondition,whi
h in fa
t de�nes the total number of monomers per(dimensionless) unit area:N = 1Z�1 ju(x)j2dx: (20)We note that in the standard framework of the me-an-�eld approa
h, all monomers in the system are as-sumed to belong to a single 
hain and parti
ular e�e
tsof the 
hain ends are ignored. For simpli
ity, we let Ndenote the total number of monomers in the system.We note that in 
ontrast to the 
ase of a linear sys-tem (see Eq. (4)), in the nonlinear 
ase the normaliza-tion leads to a relation between the parameters � andN (or � and N). Substituting our solution (17) in (20)and taking the relation (19) between x0 and � into a
-
ount, we 
an �nally obtain the dependen
e N = N(�)589
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e versa, � = �(N) (or � = �(N)). For our system(� > 0 and � > 0), we arrive at the following result:N = �� 2�: (21)It is shown in Ref. [12℄ that three di�erent typesof nonlinear lo
alized states 
an exist for Eq. (13) de-pending on the relations between the parameters � and�. In the �rst 
ase (� < 0 and � > 0), the interfa
e isattra
tive, and the maximum of the amplitude of thelo
alized state is at the point of the interfa
e (trap).The lo
alized state in the 
ase where � < 0 and � < 0has the amplitude maxima lo
ated symmetri
ally onboth sides of the interfa
e. And the last (third) 
asewhere � > 0 and � > 0 
orresponds to our physi
alsituation.The maximum value of N in our 
ase is equal toNsat = �. This point 
orresponds to the limit 
ase� ! 0 (or � ! 0). No more monomers 
an be addedto the interfa
e in this 
ase. Thus, this point 
orre-sponds to the saturated state of the interfa
e. We notethat the eigenvalue �l of the linear system is given inres
aled units by �l = ��24 : (22)Equation (13) 
an be alternatively derived from avariational prin
iple using the energy fun
tional E [u℄(see Ref. [4℄),E = 1Z�1 "�����u�x ����2 + �juj4 � �Æ(x)juj2# dx: (23)Substituting our solution (17) in Eq. (23) and usingexpression (21), we �nd the following relation betweenthe total energy E and the total number of monomersin the 
hain N (see [12℄):E = �lN � N312 + �N24 : (24)The �rst term in this relation des
ribes the energy ofN nonintera
ting monomers in the 
hain and 
orre-sponds to the des
ription of the system in the linearapproximation; the se
ond term des
ribes the energyof intera
tion of monomers in a pure soliton (as if theinterfa
e were absent); and the third term des
ribes theintera
tion of bound monomers through the interfa
e.We note that the sign of the trap (the sign of �) deter-mines only the last term; for � > 0, the presen
e of anattra
tive interfa
e in
reases the energy of the lo
alizedstate (the interfa
e attra
ts the monomers, whi
h repelea
h other).

Di�erentiating expression (24) with respe
t to Nand using relation (21) for N(�), we 
an easily verifythe relation �E�N = �:Hen
e, the eigenvalue � plays the role of 
hemi
al po-tential for monomers bound in a lo
alized state.2.2. Polymer 
hains lo
alization at twoadsorbing interfa
esWe des
ribe a polymer 
hain in the system of twopenetrable interfa
es. In the presen
e of two interfa
es,the external potential Uext(x) in the initial variableshas the form (
ompare with (3))Uext(x) = �kBT�[Æ(x+ d) + Æ(x � d)℄; (25)where the interfa
es are 
hara
terized by the value ofthe parameter �. As before, in the 
ase of attra
tionof monomers by interfa
es the parameter � is positive,the x axis is dire
ted perpendi
ular to the interfa
es,and 2d is the distan
e between the interfa
es.Using transformations (12) by means of whi
hEq. (13) had been obtained, we obtain the res
aledSNLSE in the form�u = �d2udx2+2�juj2u��[Æ(x+d)+Æ(x�d)℄u; (26)with the sign fun
tion � = �1 for the respe
tive 
asesof repulsion and attra
tion between monomers, and, asbefore, we use the initial symbols of variables �, x, d,and �.The Lagrangian density 
orresponding to Eq. (26)has the formL = � ����dudx ����2 � �juj4 ++ �[Æ(x+ d) + Æ(x� d)℄juj2 + �juj2: (27)Equation (26) redu
es to the 
orresponding homo-geneous equation of form (16) in the regions outsidethe interfa
es with the boundary 
onditionsuj�d+0 = uj�d�0; (28)dudx �����d+0 � dudx �����d�0 = ��u���d: (29)Again, we 
onsider a positive ex
luded volume(� = +1) and the attra
tion of monomers by interfa
es(� > 0). For a positive ex
luded volume, three diffe-rent types of stationary lo
alized states 
an exist [13℄:590



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Adsorption of polymer 
hains : : :the in-phase symmetri
 state, the antisymmetri
 state,and the anti-phase asymmetri
 (inhomogeneous) state.The state with the asymmetri
 distribution of the den-sity near two interfa
es splits o� in a bifur
ation man-ner from the antisymmetri
 solution. But be
ause theground state is dominant, we are only interested inthe in-phase symmetri
 solution whi
h in the regionsx < �d (1), x > d (2), and jxj < d (3) has the follo-wing form: u1;2(x) = � �sh[�(x� x1;2)℄ ;u3(x) = q0�
n(�x; q) ; (30)where x2 < d and x1 = �x2. Here, 
n(�x; q) is theJa
obi ellipti
 fun
tion with the modulus q. Also, weintrodu
e q0 =p1� q2; � = �p2q2 � 1 ; (31)where � is de�ned in (18). The ellipti
 modulus q variesin the range from 1=p2 to 1.The advantage of our method 
ompared with otherapproa
hes is that we deal with the exa
t solution.This allows 
onsidering all pie
ewise 
onstant poten-tial forms in a straightforward manner. Solution (30)is a one-parameter solution and is 
ompletely 
hara
-terized by the value of the parameter � (or �). Theother two parameters q and x1 (or x2) are expressedin terms of � from boundary 
onditions (28) and (29),whi
h for our solution (30) 
an be rewritten as�sh[�(d� x2)℄ = q0�
n(�d; q) ; (32)q0�2sn(�d; q)dn(�d; q)
n2(�d; q) + �2 
h[�(d� x2)℄sh2[�(d� x2)℄ == ��sh[�(d� x2)℄ : (33)Be
ause two interfa
es attra
t the monomers, a 
on-venient 
hara
teristi
s of a lo
alized state is representedby the amplitudes A1 = u(x = �d)and A2 = u(x = d)at these interfa
es [3; 13; 14℄. Due to the symmetry ofthe lo
alized state, we 
an setA1 = A2 � A:

λ

0
NNsat

Fig. 1. The dependen
e �(N) for the in-phase sym-metri
 state in the system with a positive ex
luded vo-lumeThen boundary 
onditions (32) and (33) 
an be rewrit-ten in terms of the amplitude A as follows:A = u(�d) = u(d) = �sh[�(d� x2)℄ = q0�
n(�d; q) ; (34)pA2 � q02�2pA2 + q2�2 +ApA2 + �2 = �A: (35)Equation (35) 
an be redu
ed to the formpA4 +A2�2 � q2q02�4 +ApA2 + �2 = �A: (36)The three relations in (34) and (35) (or (34) and(36)) determine the parameters A, x2, and q as fun
-tions of the parameters � and d. In the general 
ase, it
an be exa
tly solved numeri
ally. However, a solution
an be obtained analyti
ally in the limit 
ases �d � 1and � ! 0 (or � ! 0). In the limit �d � 1 (weak
oupling between interfa
es), the problem redu
es tothe e�e
tive system of two 
oupled anharmoni
 os
illa-tors with a �hard� nonlinearity when the eigenvalue �in
reases with the amplitude of the solution. This prob-lem is des
ribed analyti
ally in more detail in Ref. [13℄.After the substitution of our in-phase symmetri
 so-lution (30) in the integral (20) de�ning the total num-ber of monomers in the 
hain, we 
an �nally obtainthe dependen
e N = N(�) and the inverse dependen
e� = �(N) (or � = �(N)), whi
h is presented in Fig. 1.It 
an be shown that the dependen
e for the in-phasesymmetri
 state terminates at the edge of the spe
trumof linear waves (� = 0), and the pro�le of this spatiallylo
alized state near the interfa
es has the form of al-gebrai
 solitons with a power-law asymptoti
 behaviorat large distan
es [15℄. This 
ase 
orresponds to thesituation where the total number of monomers tendsto its maximum value. A total number of monomers591
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orrespondingto the boundary of the band of linear bulk waves � = 0,
annot be lo
alized in the system.Taking the symmetry of the in-phase symmetri
 so-lution (30) into a

ount and 
al
ulating the total num-ber of monomers, we obtain the exa
t resultN = 1Z�1 juj2dx = 2�[
th[�(d� x2)℄� 1℄ ++ 2� sn(�d; q)dn(�d; q)
n(�d; q) � 2� E(am(�d; q); q) ++ 2q02�2d; (37)where E('; q) is the ellipti
 integral of the se
ond typeand am('; q) = ar
sin[sn('; q)℄is the ellipti
 amplitude. Two parameters x2 = x2(�; d)and q = q(�; d) are determined from boundary 
ondi-tions (34) and (35) (or (36)).Using relation (32), we 
an eliminate the parameterx2 and then rewrite Eq. (37) asN = 2"s q02�2
n2(�d; q) + �2 � �#++ 2� sn(�d; q)dn(�d; q)
n(�d; q) �� 2�E(am(�d; q); q) + 2q02�2d: (38)We study the pe
uliarities of our system in the limit
ase �d � 1. (Note that we are not at the saturationlimit yet.) It follows from Eq. (34) that A � q0�. Fromboundary 
ondition (36) (or (35)), we then obtain therelation q�p2q2 � 1 = � or q� = �: (39)It follows from (39) that � = �=q, and, taking theinequality �d� 1 into a

ount, we obtain the followinglimitation for the distan
e d:d� q=� or d� 1=�: (40)In this limit 
ase, the total number of monomers (38)
an be redu
ed to the formN � 2 1�s1� q02q2 !�: (41)We next study the behavior of the system at thesaturation point de�ned by�! 0 and � ! 0: (42)

In this 
ase, we 
an rewrite solution (30) for u1;2(x) inthe formu1;2(x) = � �sh[�(x� x1;2)℄ � � 1x� x1;2 ; (43)and, as follows from (34), the amplitude at the interfa
eis equal to A � 1d� x2 : (44)If we suppose that �d � 1, then we have A � q0�from (34). Substituting this expression in boundary
ondition (35) (or (36)), we obtain the following resultfor the parameter q:q2 � 12 �1 + �22�2� : (45)But this means that the parameter �, whi
h is equal to� = �p2q2 � 1 � p2�; (46)is not small in the limit 
ase �d � 1 be
ause the pa-rameter � has an arbitrary value. This means thatthe parameter q is 
lose to 1=p2. Thus, the inequali-ty � � 1 leads to the limit 
ase for the parameter q,spe
i�
ally, q ! 1=p2.We now suppose that the distan
e d is not small.The amplitude A is also not small, and boundary 
on-dition (34) 
an be rewritten asA � 1d� x2 � 1p2 �
n ��d; 1=p2 � : (47)The dependen
e of the parameter q = q(�; d) (or,equivalently, � = �(�; d)), whi
h is ne
essary in order toobtain N in (38), in this 
ase should be found after thesubstitution of A from (47) in boundary 
ondition (36).In this general 
ase, as a result of this substitution, weobtain the following equation for the variable �:�2
n3 ��d; 1=p2�+ 2�2
n��d; 1=p2��� 2p2�� = 0: (48)It is now possible to redu
e one variable by intro-du
ing the s
aling variablesg� = �=� and y = �d: (49)We note y gives the overlap of the interfa
e pro�les interms of the linear solution. Here, y � 1 
orrespondsto strongly overlapping interfa
es, and y � 1 
orre-sponds to a weak overlap. Using Eq. (49), we obtain592
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e Asat(y) at the saturationthresholdg2�
n3 �g�y; 1=p2�+ 2
n�g�y; 1=p2��� 2p2g� = 0 (50)with the formal solution g�(y). In what follows, we usethis fun
tion for the 
al
ulation of the physi
al 
hara
-teristi
s of the system, su
h as the number of monomerstrapped between interfa
es/surfa
es, the energy of thesystem, and the for
e a
ting between two penetrabletraps.If we introdu
e the redu
ed amplitude Asat = A=�and take de�nitions (49) into a

ount, then expres-sion (47) 
an be rewritten asAsat � 1p2 g�
n(g�y; 1=p2) : (51)Here, the fun
tion g�(y) is the numeri
al solution oftrans
endental equation (50). Hen
e, dependen
e (51)has the universal s
aling form Asat = Asat(y) for dif-ferent values of the parameters � and d. The numeri
alsolution for Asat(y) is presented in Fig. 2.We now introdu
e the redu
ed number of monomersnsat = Nsat=�. Then in the saturation limit � ! 0(N(�; d) ! Nsat(d)), we have q ! 1=p2, and expres-sion (38) transforms intonsat � p2 g�
n �g�y; 1=p2 � ++ 2g� sn �g�y; 1=p2 �dn �g�y; 1=p2 �
n�g�y; 1p2 � �� 2g�E�am(g�y; 1=p2); 1=p2�+ g2�y; (52)
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Fig. 3. The dependen
e nsat(y) at the saturationthresholdwhere g�(y) is the solution of Eq. (50). The dependen
ensat = nsat(y) in (52) also has the universal s
alingform for di�erent values of � and d. The numeri
al so-lution for nsat(y) is presented in Fig. 3. Starting froma large distan
e d between interfa
es (weak overlap,y � 1), the saturation parameter nsat de
reases with das the �bridge� (formed by the overlapping tails of thepro�le) between interfa
es be
omes more powerful, andtends to its minimum value nminsat � 1:63 at a 
hara
te-risti
 distan
e given by the value y� � 1:11. It in
reasesagain as d ! 0 when monomers start to es
ape fromthe region 
on�ned by two penetrable interfa
es intothe tails on both sides of the interfa
es, and rea
hes itsmaximum value nmaxsat = 2 for d = 0 (strong overlap,y � 1).In the limit 
ase y � 1 (strong overlap), we haveg� � p2 � 2p2 y; from Eq. (52), we then obtain thefollowing result for the fun
tion nsat:nsat � 2� 2y; (53)where we in
luded the 
orre
tion to expression (45) forthe parameter q,q2 � 12 �1 + �22�2�+ 2y:In the opposite limit 
ase y � 1, the intera
-tion (overlap) between two traps is small only in thesmall-amplitude limit when the des
ription of the sys-tem 
an be redu
ed to a model of 
oupled �hard� anhar-moni
 os
illators [13℄. Su
h a des
ription is valid onlyin the region 1 � �=�l � j�lj, where the eigenvalue�l = ��2=4 (� = �=2).12 ÆÝÒÔ, âûï. 3 593
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huk, J.-U. Sommer, V. S. Gerasim
huk ÆÝÒÔ, òîì 139, âûï. 3, 2011The distan
e d between two interfa
es 
annot be ar-bitrary. It is limited by the maximum length of a 
hain,i. e., by the total number of monomers times the statis-ti
al segment length of the 
hain, dmax = (N�1)a. Theminimal distan
e dmin is de�ned by the parameter a.The total energy (per unit area) of the system E isde�ned by the integralE = 1Z�1 (�����u�x ����2 + �juj4 �� �[Æ(x+ d) + Æ(x� d)℄juj2) dx: (54)Substituting ground state solution (30) in Eq. (54) andtaking boundary 
ondition (34) into a

ount, we �ndthe exa
t expression for the total energy of the system:E = 2�33 + 23 � 2q02�2
n2(�d; q) � �2�s q02�2
n2(�d; q) + �2 ++ 4q02�33 sn(�d; q) � dn(�d; q)
n3(�d; q) + 2(1� 2q2)�33 ��� sn(�d; q)dn(�d; q)
n(�d; q) �E [am(�d); q℄�++ 2q02�13 � q2� �4d� 2�q02�2
n2(�d; q) : (55)Again, we 
an introdu
e the s
aling variables y andg� and de�ne the appropriately redu
ed energy of thesystem "sat = Esat=�3:In the limit 
ase � ! 0, we then obtain"sat � p2g3�3
n3 �g�y; 1=p2 � h1+p2sn�g�y; 1=p2� �� dn�g�y; 1=p2�i� g2�
n2 �g�y; 1=p2 � � g4�y6 : (56)Using the solution g�(y) of Eq. (50), we obtain asingle variate fun
tion "sat(y). The minimum value of"sat, as follows from (56), is equal to "minsat = �2=3.The universal dependen
e "sat = "sat(y) is presentedin Fig. 4. The energy of the saturated system is thusa monotoni
ally in
reasing fun
tion of the distan
ebetween the traps. We note that the 
ondition ofsaturation implies an ex
hange of 
hains by 
hangingthe distan
e a

ording to the result in Fig. 3. Thus, thesystem is 
onsidered in equilibrium with free 
hains ina highly dilute solution (
 ! 0) populating the inter-fa
es until saturation is rea
hed. We note that there isno 
ontradi
tion between the requirement of saturationand a highly diluted bulk solution for an adsorption
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Fig. 4. The dependen
e "sat(y) at the saturationthreshold
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ÆÝÒÔ, òîì 139, âûï. 3, 2011 Adsorption of polymer 
hains : : :strength per monomer (related by �) of the order of afew kT [16℄. In parti
ular, for 
hanges of the distan
ebetween the interfa
es, where the saturation value nsatis de
reased, 
hains have to be released be
ause of over-saturation (positive free energy ex
ess).In Fig. 5, we plot the fun
tion "sat(nsat). This
learly indi
ates two di�erent values (bran
hes) of thetotal ex
ess energy of the two-interfa
e system for thesame value of the total number of monomers N lo
al-ized at the interfa
es. These bran
hes 
orresponding tothe same value of the parameter N are related to twodi�erent distan
es d1 and d2 between the interfa
es, as

an be easily seen from the dependen
e for the totalnumber of monomers presented in Fig. 3. Hen
e, thereexist a high-energy phase (large separation) and a low-energy phase (
lose interfa
es).Also, we 
an 
al
ulate an important 
hara
teristi
of the system for pra
ti
al measurements, the for
e perunit area a
ting between the interfa
es. In the general
ase, F = �dE(d; �)dd ;and at the saturation limit we haveFsat = �dEsat(d)dd = p2 �3(�0d+ �)3 p2 + 3 sn ��d; 1=p2 � dn ��d; 1=p2 �
n4 ��d; 1=p2 � ++p2 �2 �0 +p2 [�0 � � (�0d+ �)℄ sn ��d; 1=p2 � dn ��d; 1=p2 �
n3 ��d; 1=p2 � ++ � ��2 (�0d+ �)� 18��0�9 
n2 ��d; 1=p2 � � �3 (14�0d+ 5�)18 : (57)The parameter �0 � d�=dd 
an be easily found by di�erentiating Eq. (48), whi
h gives�0 = � �3�2
n2 ��d; 1=p2 �+ 2j�j2� sn ��d; 1=p2 � dn ��d; 1=p2 �2�
n3 ��d; 1=p2 �� d �3�2
n2 ��d; 1=p2 �+ 2j�j2� sn ��d; 1=p2 � dn ��d; 1=p2 �� 2p2 j�j : (58)If we introdu
e the redu
ed for
e fsat = Fsat=�4 and the new fun
tion g�0(y) = �0=�2, then we 
an rewriteEq. (57) in the formfsat = � p2g2�g�0
n3 �g�y; 1=p2 � n1 +p2sn�g�y; 1=p2� dn�g�y; 1=p2�o�� p2g3�(g�0y + g�)sn �g�y; 1=p2 � dn(g�y; 1=p2)
n4 �g�y; 1=p2 � n1 +p2sn�g�y; 1=p2� dn�g�y; 1=p2�o++ 2g2�(g�0y + g�)sn �g�y; 1=p2 � dn �g�y; 1=p2 �
n3 �g�y; 1=p2 � + 2g�g�0
n2 �g�y; 1=p2 � � g4�2 ; (59)where g�0(y) = g� �3g2�
n2 �g�y; 1=p2 �+ 2� sn �g�y; 1=p2 � dn �g�y; 1=p2 �2g�
n3 �g�y; 1=p2 �� y �3g2�
n2 �g�y; 1=p2 �+ 2� sn�g�y; 1p2 � dn �g�y; 1=p2 �� 2p2 ; (60)and g�(y) is the solution of Eq. (50).For di�erent values of the parameter �, we obtainthe universal dependen
e fsat = fsat(y) presented inFig. 6. In the limit y ! 0, we have g�0 � �2p2, andthe minimum value of fsat from Eq. (59) is equal tofminsat = �2. This behavior is in agreement with thatpredi
ted by de Gennes in Ref. [4℄.

3. CONCLUSIONSWe have obtained exa
t solutions for the problem ofadsorption of real polymer 
hains in systems with twoadsorbing interfa
es within the mean-�eld approxima-tion. We des
ribed lo
alized states with zero bulk 
on-595 12*
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entration having �dynami
al� equilibrium at the sat-uration limit. This 
an be realized for the adsorptionfrom highly diluted polymer solutions and strongly at-tra
ting interfa
es as dis
ussed above. Be
ause of thehuge gain of free energy per 
hain in polymer adsorp-tion, highly diluted polymer solutions lead to saturatedsurfa
e states (see [4℄). Using the exa
t solution forthe SNLSE on intervals of 
onstant potentials opensthe possibility to treat various lo
alization problemsfor polymer 
hains in su
h environments using the ap-propriate boundary 
onditions.For the saturation limit, we derived an exa
t s
alingsolution in whi
h the only relevant 
ontrol parameteris the measure of the overlap between the interfa
esgiven by the s
aling variable that 
an be 
onsidered asa 
oupling parameter of the interfa
e�polymer system.We found that the saturation density of monomers be-haves nonmonotoni
ally as a fun
tion of the distan
ebetween the interfa
es, whi
h results in �two-phase� be-havior of the free energy as a fun
tion of the amountof adsorbed polymers (see Fig. 5). When the distan
ebe
omes small, the polymer double layer 
an relax theex
luded volume 
onstraints by forming larger loopsand tails in the outer region of the interfa
es. Changingthe distan
e between the interfa
es 
hanges the numberof 
hains adsorbed. A low-energy phase 
orrespondsto small distan
es between the interfa
es, and a high-energy phase 
orresponds to large distan
es betweenthem. We note that the system is taken in the dynam-i
al equilibrium at the saturation point.We found the energy of the system, whi
h turnedout to be stri
tly negative, and the for
es a
ting bet-ween both interfa
es due to the polymer�interfa
e 
ou-pling. The for
es are found to be attra
tive and tomonotoni
ally approa
h zero with in
reasing the dis-tan
e between the interfa
es, whi
h is in agreementwith the behavior predi
ted by de Gennes [4℄.

REFERENCES1. J.-U. Sommer and M. Daoud, Europhys. Lett. 32, 407(1995).2. G. W. Slater and S. Y. Wu, Phys. Rev. Lett. 75, 164(1995).3. J.-U. Sommer and A. Blumen, Phys. Rev. Lett. 79,439 (1997).4. P. G. de Gennes, S
aling Con
epts in Polymer Physi
s,Cornell University Press, Itha
a and London (1979).5. P. G. de Gennes, Ma
romole
ules 14, 1637 (1981).6. G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. S
heut-jens, T. Cosgrove, and B. Vin
ent, Polymers at Inter-fa
es, Chapman and Hall, London (1993).7. Y. Kivshar and G. Agrawal, Opti
al Solitons: From Fi-bers to Photoni
 Crystals, A
ademi
, New York (2003).8. L. Pitaevskii and S. Stringari, Bose�Einstein Conden-sation, Oxford, New York (2003).9. M. Doi and S. Edwards, The Theory of Polymer Dy-nami
s, Clarendon Press, Oxford (1986).10. P. G. de Gennes, Rep. Prog. Phys. 32, 187 (1969).11. P. G. de Gennes, J. de Phys. (Paris) 31, 235 (1970).12. M. M. Bogdan, I. V. Gerasim
huk, and A. S. Kovalev,Low Temp. Phys. 23, 145 (1997).13. I. V. Gerasim
huk and A. S. Kovalev, Low Temp. Phys.26, 586 (2000).14. J.-U. Sommer and A. Blumen, J. Chem. Phys. 105,6008 (1996).15. A. M. Kosevi
h and A. S. Kovalev, Introdu
tion toNonlinear Physi
al Me
hani
s, Naukova Dumka, Kiev(1989) (in Russian).16. E. Bou
haud and M. Daoud, J. de Phys. (Paris) 48,1991 (1987).

596


