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PHOTON EMISSION FROM BARE QUARK STARSB. G. Zakharov *Landau Institute for Theoretial Physis, Russian Aademy of Sienes117334, Mosow, RussiaReeived May 11, 2010We investigate the photon emission from the eletrosphere of a quark star. We show that at temperaturesT � 0:1�1 MeV, the dominating mehanism is the bremsstrahlung due to bending of eletron trajetories inthe mean Coulomb �eld of the eletrosphere. The radiated energy for this mehanism is muh larger than thatfor the Bethe�Heitler bremsstrahlung. The energy �ux from the mean �eld bremsstrahlung also exeeds theone from the tunnel e+e� pair reation. We demonstrate that the LPM suppression of the photon emission isnegligible.1. INTRODUCTIONThe hypothesis of quark stars made of stablestrange quark matter (SQM) [1�3℄ has been attratingmuh attention for many years. It is possible that quarkstars (if they exist) may be (at least in the initial hotstage) without a rust of normal matter [4℄. In ontrastto neutron stars, the density of SQM for bare quarkstars should drop abruptly at the sale � 1 fm. TheSQM in the normal phase and in the two-�avor super-onduting (2SC) phase should also ontain eletrons(for the normal phase, the eletron hemial potential� is about 20 MeV [2, 5℄). In ontrast to the quark den-sity, the eletron density dereases smoothly above thestar surfae at the sale � 103 fm [2, 5℄. For the starsurfae temperature T � �, e. g. T . 1010 K � 1MeV,this �eletron atmosphere� (usually alled the eletro-sphere) may be regarded as a strongly degenerate rela-tivisti eletron gas [2, 5℄.From the standpoint of distinguishing bare quarkstars from neutron stars, it is very important to havetheoretial preditions for the photon emission frombare quark stars. Unlike for neutron stars (or quarkstars with a rust of normal matter), the photon emis-sion from quark stars made of stable self-bound SQMmay potentially exeed the Eddington limit. This fatmay be used for deteting a bare quark star. However,the SQM itself is a very poor emitter at T � !qp [6, 7℄(here, !qp � 20 MeV is the plasma frequeny of SQM[6℄). At suh temperatures, the photon emission from*E-mail: bgz�itp.a.ru

the quark surfae is a tunnel proess, and the radia-tion rate turns out to be negligibly small ompared tothe blak body radiation [6℄. However, for the eletro-sphere, the plasma frequeny !ep is muh smaller thanthat for the SQM. Therefore, the photon emission fromthe eletrosphere may potentially dominate the lumi-nosity of a quark star. For understanding the prospetsof deteting bare quark stars, it is highly desirable tohave quantitative preditions for the photon emissionfrom the eletrosphere. This is also interesting in theontext of the senario of gamma-ray repeaters due toreheating of a quark star by the impat of a massiveomet-like objet [8℄, and the dark matter model in theform of matter/antimatter SQM nuggets [9℄.An obvious andidate for the photon emission fromthe eletrosphere is the bremsstrahlung from eletrons.It may be due to either the eletron�eletron intera-tion (the Bethe�Heitler bremsstrahlung) or the inter-ation of eletrons with the mean eletri �eld of theeletrosphere. One more mehanism is related to thetunnel e+e� pair reation [4, 10℄. The point is that theeletri �eld of the eletrosphere must be very strong.It may be about several tens of the ritial �eld for thetunnel Shwinger pair prodution Er = m2e=e [11℄ (weuse the units where  = ~ = kB = 1). In this senario,the photons appear through e+e� annihilation in theout�owing e� wind [12℄.The bremsstrahlung from the eletrosphere due tothe eletron�eletron interation has been addressedin [13, 14℄. The authors of [13℄ used the soft-photonapproximation and fatored the e�e� ! e�e� rosssetion in the spirit of Low's theorem. In [14℄, it was75



B. G. Zakharov ÆÝÒÔ, òîì 139, âûï. 1, 2011pointed out that this approximation is inadequate be-ause it neglets the e�et of the photon energy onthe eletron Pauli bloking, whih should lead to astrong suppression of the radiation rate. But the au-thors of [14℄ did not treat this problem onsistentlyeither. To take the e�et of the minimal photon en-ergy into aount, they suggested some restritionson the initial eletron momenta imposed by hand.Thus they obtained the radiated energy �ux from thee�e� ! e�e� proess that was muh smaller thanthat in [13℄ and than the energy �ux from the tunnele+e� pair reation [4, 10℄. In [15℄, the �rst attemptwas made to inlude the e�et of the mean Coulomb�eld of the eletrosphere on the photon emission. Theauthors obtained a onsiderable enhanement of the ra-diation rate. But similarly to [13℄, the analysis in [15℄treated the Pauli bloking e�et inorretly. We alsonote that the photon quasipartile mass was negletedin [14; 15℄. As we show in what follows, this approxi-mation is learly inadequate beause the �nite photonmass suppresses the radiation rate strongly.Therefore, the theoretial situation with the pho-ton bremsstrahlung from the eletrosphere is still on-troversial and unertain. The main problem here,whih was not solved in the previous analyses [13�15℄,is an aurate aount for the photon energy in theeletron Pauli bloking. In this paper, we addressthe bremsstrahlung from the eletrosphere in a waysimilar to the Arnold�Moore�Ya�e (AMY) [16℄ ap-proah to the ollinear photon emission from a hotquark�gluon plasma based on the thermal �eld the-ory. We use a reformulation of the AMY formalismgiven in [17℄. It is based on the light-one path integral(LCPI) approah [18�20℄ (see [21, 22℄ for reviews) toin-medium radiation proesses. For an in�nite homo-geneous plasma (with zero mean �eld), the formalismin [17℄ reprodues the AMY results [16℄. The LCPI for-mulation in [17℄ has the advantage that it also works forplasmas with a nonzero mean �eld. It allows evaluatingthe photon emission aounting for bending of the ele-tron trajetories in the mean Coulomb potential of theeletrosphere. Contrarily to very rude and qualitativemethods in [13�15℄, the treatment of the Pauli blokinge�ets in [16, 17℄ has robust quantum �eld theoretialgrounds. Of ourse, our approah is only valid in theregime of ollinear photon emission when the domina-ting photon energies exeed several units of the photonquasipartile mass. Numerial alulations show thateven at T � 0:1 MeV, the e�et of nonollinear on�-gurations is relatively small.We demonstrate that for the temperaturesT � 0:1�1 MeV, the radiated energy �ux from the

e� ! e� transition in the mean eletri �eldis muh larger than that from the Bethe�Heitlerbremsstrahlung. It also exeeds the energy �ux fromthe tunnel e+e� pairs. We also demonstrate thatontrary to onlusions in [13℄, the Landau�Pomeran-huk�Migdal (LPM) suppression [23, 24℄ of photonbremsstrahlung is negligible. Our results show thatthe photon emission from the eletrosphere may be ofthe same order as the blak body radiation. Therefore,the situation with distinguishing a bare quark starmade of SQM in the normal (or 2SC) phase from aneutron star using the luminosity [4, 25℄ may be moreoptimisti than in the senario with the tunnel e+e�pair reation [4℄.The results of this work were brie�y desribed in[26℄. In this paper, we present our results in a moredetailed form. The plan of the paper is as follows. InSe. 2, we review the basi formulas and approxima-tions. In Se. 3, we disuss the evaluation of photonemission from a given eletron in the eletromagneti�eld of the eletrosphere, whih inludes both the meanCoulomb �eld and the ordinary �utuation �eld gener-ated by neighboring eletrons. In Se. 4, we present nu-merial results for the radiated energy �ux. Setion 5is devoted to the onlusions.2. BASIC FORMULAS ANDAPPROXIMATIONSFor the eletrosphere, as in Refs. [4, 13, 14℄, we usethe model of a relativisti strongly degenerate eletrongas in the Thomas�Fermi approximation. In this ap-proximation, the loal eletron number density is givenby ne(h) = �3(h)3�2 ;where h is the distane from the quark surfae. Theh dependene of the hemial potential is governedby the Poisson equation for the eletrostati potentialV = �=e. For h > 0, this gives [2, 5℄�(h) = �(0)(1 + h=H) ; (1)where H =p3�=2�=�(0); � = e2=4�:We assume that the eletrosphere is optially thin.This means that the photon absorption and stimulatedemission an be negleted. In this regime, the lumino-sity may be expressed in terms of the energy radiatedspontaneously per unit time and volume, usually alledthe emissitivity Q. In the formalism in [17℄, the emis-sitivity per unit photon energy ! at a given h an bewritten as76



ÆÝÒÔ, òîì 139, âûï. 1, 2011 Photon emission from bare quark starsdQ(h; !)d! = !(k)4�3 dkd! �� Z dpp nF (E)[1� nF (E0)℄�(p� k)dP (p; x)dx dL ; (2)where k denotes the photon momentum, E and E0 arethe eletron energies before and after the photon emis-sion, nF (E) = [exp((E � �)=T ) + 1℄�1is the loal eletron Fermi distribution (we omit theargument h in the funtions in the right-hand sideof (2)), and x = k=p is the photon longitudinal (alongthe initial eletron momentum p) frational momen-tum. The funtion dP=dx dL in (2) is the proba-bility of the photon emission per unit x and lengthfrom an eletron in the potential generated by othereletrons, whih inludes both the smooth olletiveCoulomb �eld and the usual �utuating plasma partrelated to the �eld generated by the neighboring elet-rons. We note that formula (2) aounts for photonsemitted to all diretions, beause in an optially thineletrosphere, pratially all the photons radiated tothe hemisphere direted to the quark surfae are re-�eted either in the eletrosphere (at the level with!ep = !) or from the quark surfae. Only the photonswith ! & !qp � 20 MeV may be absorbed in the quarkmatter. But suh photons are not important at tem-peratures T . 1 MeV onsidered in this paper. Forthe above reasons, it would be inorret to exlude thephotons emitted toward the star surfae, as was donein [14℄.Our basi formula (2) assumes that the photonemission is a loal proess, i. e., the photon formationlength (denoted by lf ) is small ompared to the thik-ness of the eletrosphere1). Evidently, only in this asea loal emissitivity an be de�ned. We note that Eq. (2)de�nes the rate of photon prodution at a given pho-ton energy, whih remains onstant during the photonpropagation in the eletrosphere. The photon momen-tum in this proess hanges adiabatially aording tothe photon quasipartile dispersion relation in the ele-tron plasma. Also, formula (2) assumes that on thesale � lf , the eletron trajetories are smooth. Thismeans that besides the evident ondition lf � Rm(where Rm is the urvature radius of the eletron tra-jetory in the mean �eld), the typial sattering an-1) Physially, the photon formation length (sometimes alledthe oherene length) is a longitudinal sale at whih the photonand eletron wave pakets beome separated. It appears natu-rally in the LCPI approah [18, 21℄ formulated in the oordinatespae as a dominating sale of the integrals in the longitudinaloordinate.

gle related to the random walk of an eletron due toeletron�eletron interation should also be small. Itan be shown that these onditions are satis�ed forthe eletrosphere. An important onsequene of thesmoothness of eletron trajetories at the sale � lfis the longitudinal fatorization of the Pauli blokingfator 1 � nF (E0) for the �nal state of the radiatingeletron in (2). Just the fat that the trajetories aresmooth in the proess of photon emission allows ne-gleting the statistis e�ets in treating the small-anglesattering. Indeed, the typial spae sale for soft �u-tuating modes of the eletromagneti �eld is about theinverse Debye mass 1=mD � 1=e�. This sale is muhlarger than the typial separation � 1=� between ele-trons. From the standpoint of eletrons with energy� �, the soft eletromagneti �eld at the spae sale� 1=mD � 1=� an therefore be viewed as a uniform�eld at the sale � 1=�. In a uniform �eld, all eletronsin the same spin state satter the same, and small-anglesattering leads simply to some shift of the distributionfuntion in the momentum spae. Any statistis e�etsare suppressed by some power of the eletron harge e.Calulations within the real time thermal �eld theoryperformed in [16℄ orroborate this physial piture ofollinear photon emission.In our approximation of an optially thin medium,the di�erential radiated energy �ux from the eletro-sphere, dF=d!, is expressed in terms of the emissitivityas dFd! = hmaxZ0 dhdQ(h; !)d! : (3)For hemial potential (1), the h-integration in (3) anbe approximated by the integration over � asdFd! �r3�2� �(0)Z�min d��2 dQ(h(�); !)d! (4)with �min = �(hmax). In numerial alulations, wetake �min = 2me. Of ourse, the relativisti approxi-mation we made is not good at � � me, but the on-tribution of this region is small, and the orrespondingerrors are not big.3. CALCULATION OF dP=dxdLThe essential ingredient of Eq. (2) is the probabilitydistribution dP=dx dL for the photon emission in theeletromagneti �eld of the eletrosphere. Due to thepresene of the produt nF (E)[1� nF (E0)℄ in (2), the77



B. G. Zakharov ÆÝÒÔ, òîì 139, âûï. 1, 2011emissitivity is dominated by the photon emission fromeletrons near the Fermi surfae with p � � � me.This allows using semilassial relativisti formulas forthe photon spetrum dP=dx dL. In this paper, we eval-uate this spetrum within the LCPI formalism [18, 21℄.In this approah, it an be written asdPdx dL = 2Re 1Z0 d� ĝ(x)�� [K(�2; �j�1; 0)�Kv(�2; �j�1; 0)℄ ����1=�2=0; (5)where ĝ(x) = g1(x)M2(x) ���1 ���2 + g2(x) (6)is the spin vertex operator withg1(x) = �(1� x+ x2=2)x ;g2(x) = �m2ex32M2(x) ;M(x) = px(1� x);K is the Green's funtion for a two-dimensionalShrödinger equation with the HamiltonianĤ = � 12M(x) � ����2 + v(�) + 1L0 : (7)Here L0 = 2M(x)=�2; �2 = m2ex2 + (1� x)m2 ;m is the photon quasipartile mass, and the form ofthe potential v is given below. In Eqs. (5)�(7), � isthe oordinate transverse to the eletron momentum p,and the longitudinal (along p) oordinate � plays therole of time. The funtion Kv in (5) is the free Green'sfuntion at v = 0. We note that at a low density andvanishing mean �eld, the quantity L0 oinides withthe real photon formation length lf [18℄ that hara-terizes the dominating sale in the �-integration in theright-hand side of (5).The potential in Hamiltonian (7) an be written asv = vm + vf :The terms vm and vf orrespond to the mean and �u-tuating omponents of the vetor potential of the ele-tron gas. We note that when lf is small omparedto the sale of variation of � (along the eletron mo-mentum), the �-dependene of the potential v an be

negleted in evaluating dP=dx dL. The mean �eld om-ponent is purely real,vm = �xf � �;with f = e�V��(see [21, 27℄). It is related to the transverse fore fromthe mean �eld. Similarly to the lassial radiation [28℄,the e�et of the longitudinal fore along the eletronmomentum p is suppressed by a fator � (me=E)2,and an be safely negleted. The term vf an be eval-uated similarly to the ase of the quark�gluon plasmadisussed in [17℄. This part is purely imaginaryvf (�) = �iP (x�);where P (�) = e2 1Z�1 d�[G(�; 0?; �)�G(�;�; �)℄ ; (8)G(x� y) = u�u�D�� ;D�� = hA�(x)A�(y)iis the orrelation funtion of the eletromagneti po-tential (the mean �eld is assumed to be subtrated) inthe eletron plasma, and u� = (1; 0; 0;�1) is the light-one 4-vetor along the eletron momentum. We notethat the funtion P (�) is gauge invariant by onstru-tion, and D�� an be used in any gauge. Formula (8)an be rewritten as (below we replae the argument ofP (�) by � = j�j sine P (�) does not depend on thediretion of the vetor �)P (�) = e2(2�)2 Z dq?[1� exp(iq? � �)℄D(q?) ; (9)where the funtion D is expressed in terms of the or-relator G in momentum representation asD(q?) = 12� 1Z�1 dq0dqzÆ(q0 � qz)G(q0;q?; qz) : (10)The funtion D(q?) an be expressed in terms ofthe longitudinal and transverse photon self-energies�L;T . We use the formulas of the hard dense loop ap-proximation (HDL) for them [30, 31℄. The details ofthe alulations are given in Appendix A.The funtion P (�) was �rst introdued in the prob-lem of propagation of relativisti positroniums throughamorphous media [29℄, where the atomi size plays the78
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Fig. 1. The funtion P (�) in (9) in units of the Debye mass versus �mD for di�erent values of the ratio � = T=mD. a �the total L + T ontribution, b and  respetively � the longitudinal (L) and transverse (T) ontributions. The urvesorrespond to � = 0 (solid line), � = 0:5 (dotted line), � = 1 (short dashes), and � = 2 (long dashes). The thik solid linein panel (a) shows the predition of the stati model obtained with dipole ross setion (11)role of the inverse Debye mass. In our approah, thefuntion P (�) ontains all the information about theeletron�eletron interation that is neessary for de-sribing multiple sattering of a given eletron in the�utuating eletromagneti �eld generated by othereletrons. In partiular, all the Pauli bloking e�etsin the proess of eletron multiple sattering are auto-matially aumulated in P (�). It is worth noting thatin the approximation of stati Debye-sreened satter-ing enters, the funtion P (�) redues to n�(�)=2 [17℄,where n is the number density of the medium, and�(�) = 8�2 Z dq [1� exp(iq � �)℄(q2 +m2D)2 == 8��2m2D [1� �mDK1(�mD)℄ (11)is the well-known dipole ross setion for sattering ofan e+e� pair of size � on the Debye-sreened satter-ing enter (and K1 is the Bessel funtion). In the statiapproximation at �� 1=mD, we an obtainP (�) � nC�2=2from (11), whereC � 4��2 ln(2=�mD)is a smooth funtion of �. In the limit �� 1=mD, thefuntion P (�) in the HDL approximation also beomesalmost quadrati.The quadrati approximation P (�) / �2 in theLCPI approah is equivalent to the Fokker�Plank ap-proximation in Migdal's approah [21℄. It is not very

aurate but reasonable for bremsstrahlung in ordi-nary materials. In this ase, the dominating �-saleis � 1=mex, and the spetrum is ontrolled by behav-ior of P (�) at the sale � 1=me, whih is muh smallerthan the sreening radius � 1=�meZ1=3 (where Z is theatomi number). For the relativisti eletron gas, thesituation is quite di�erent. In the dominating �-region,the argument of P (�) is � � (0:1�2)=mD. In this re-gion, P (�) is essentially nonquadrati. This is seen wellin Fig. 1a, where we plot the results of numerial al-ulations of P (�) for several values of the ratio T=mD.The results are presented in a dimensionless form. Foromparison, we also show the preditions of the statiapproximation at T = 0 (when mD = �p4�=�) ob-tained with dipole ross setion (11). It an be seenthat at � � (0:1�2)=mD, the funtion P (�) is almostlinear in �.In Figs. 1b,, to demonstrate the relative e�et ofthe longitudinal and transverse modes, we show theontributions related to �L and �T separately. We seethat at � . 1=mD, the longitudinal and transverse on-tributions are lose to eah other. But at � & 2=mD,the longitudinal part �attens, while the transverse mag-neti one ontinues to inrease (for T=mD not very loseto zero). This inrease in the transverse part is a on-sequene of the well-known absene of stati magnetisreening in the eletron plasma. We note, however,that from the standpoint of the photon emission, theinrease in the magneti ontribution with � is not im-portant beause the photon spetrum is dominated by� . 1=� � 1=mD.The growth of P (�) with temperature is due to the79



B. G. Zakharov ÆÝÒÔ, òîì 139, âûï. 1, 2011presene of the Bose�Einstein fator in the funtion D,Eq. (A.1). It follows from Fig. 1a that the preditionof the HDL approximation at T � mD, similarly tothe stati model, �attens at � & 2=mD. But the statimodel predition exeeds the HDL approximately bya fator 2:5. The fat that the stati approximationoverestimates P (�) at T = 0 is quite natural, beausethe Pauli bloking e�ets redue the e�etive number ofsatterers. However, it would be inorret to interpretthe inrease in P (�) with temperature as an artefatassoiated only with the derease in the Pauli blokingat high temperatures. The funtion P (�) in the HDLapproximation aumulates all the olletive e�ets insoft modes of the eletromagneti �eld in the eletronplasma at the momentum sale � mD � �. In par-tiular, it aounts for the temperature dependene ofthe density of the plasmon exitations. We note thatphysially, the appearane of P (�) is due to Landaudamping of the longitudinal and transverse modes.It is worth noting that the olletive e�ets an-not be onsistently taken into aount in the naivemodi�ation of the photon propagator in the elastie�e� ! e�e� sattering amplitude, as was assumedin [13℄. One of the onsequene of the inadequay ofthis presription is a strong overestimate of the mag-neti ontribution in [13℄. It is onneted with the 1=�4(where � is the sattering angle) behavior of the mag-neti ontribution to the elasti e�e� ! e�e� rosssetion. To perform the �-integration, the authorsof [13℄ introdued some minimal momentum transfer.In ontrast to [13℄, the magneti ontribution to thefuntion D(q?) behaves2) as 1=q2? at q? ! 0 andthe q?-integration in formula (9) for P (�) onvergesat small q?. This hange in the small-angle behaviorof the magneti ontribution in our approah omparedwith the presription of [13℄ is onneted with the dy-namial magneti sreening, whih was not onsistentlyaounted for in [13℄. In priniple, physially, it is evi-dent that the onept of the elasti e�e� ! e�e� am-plitude itself is ill-de�ned for the momentum transfer. mD, where the olletive e�ets beome signi�ant.We note that in terms of P (�), the transverse mo-mentum broadening distribution of an eletron propa-gating over a distane L through the eletron gas anbe written as [29℄2) The same ours in the hard thermal loop approximationfor a hot relativisti plasma with zero hemial potential [32℄.We note, however, that a very elegant formula for the analogueof our funtion D(q?) obtained in [32℄ is not valid for a stronglydegenerate eletron plasma.

I(q?) = 1(2�)2 Z d� exp [iq? � �� LP (�)℄ : (12)This formula looks like the predition of the eikonal ap-proximation, whih neglets the variation of the ele-tron tranverse oordinate. But path-integral alula-tions in [29℄ show that it is valid beyond the eikonalapproximation as well.We turn to the alulation of the spetrum us-ing (5). Treating vf as a perturbation, we an writeK(�2;�2j�1;�1) = Km(�2;�2j�1;�1)� i Z d� d���Km(�2;�2j�;�)vf (�)Km(�;�j�1;�1) + : : : ; (13)where Km is the Green's funtion at vf = 0. Then (5)an be written asdPdx dL = dPmdx dL + dPfdx dL; (14)where the �rst term in the right-hand side omes fromKm � Kv in (5) after representing K in form (13). Itorresponds to the photon emission in a smooth mean�eld. The seond term omes from the series in vfin (13) and an be viewed as the radiation rate due tothe eletron multiple sattering in the �utuating �eldin the presene of a smooth external �eld.The analyti expression for the Green's funtion forthe Hamiltonian with a onstant fore is known (see,e. g., [33℄). In our ase, Km an be written asKm(�2;�2j�1;�1) = M2�i� �� exp�i �M(�2 � �1)22� � x�f � (�2 + �1)2 �� x2f2�324M � �L0�� (15)with � = �2 � �1:With this expression, simple alulations show thatEq. (5) yields a spetrum similar to the well-knownsemilassial synhrotron spetrum [34℄, whih an bewritten in terms of the Airy funtionAi(z) = 1�rz3K1=3(2z3=2=3)(where K1=3 is the Bessel funtion). In the ase of in-terest, for a nonzero photon quasipartile mass, it isgiven by [27℄dPmdx dL = a�Ai0(�) + b 1Z� dyAi(y) ; (16)80



ÆÝÒÔ, òîì 139, âûï. 1, 2011 Photon emission from bare quark starswherea = �2�2g1M ; b =Mg2 � �2g1M ; � = �2(M2x2f2)1=3 :Inspeting the longitudinal integrals for the photon ra-diation in an external �eld shows that the e�etive pho-ton formation length for the mean �eld mehanism isgiven by �Lm � min(L0; Lm);where Lm = (24M=x2f2)1=3(see [27℄). A similar estimate an be obtained from theriterion of separation of the photon and eletron wavepakets. We note that the analyti expression for theGreen's funtion for the osillator with a onstant foreis also known (see [33℄).For P (�) / �2, using this Green's funtion allowsobtaining the radiation rate in the form given in [35℄,where Migdal's approah within the Fokker�Plank ap-proximation was generalized to the ase with an ex-ternal �eld. The formulas in [35℄ were used in [15℄.However, as was already noted, the approximationP (�) / �2 is learly not adequate for the eletrosphere.We now disuss the �utuation omponentdPf=dx dL. We represent it in the formdPfdx dL = dPBHfdx + dPLPMfdx ; (17)where the �rst term in the right-hand side orrespondsto the leading order in the expansion in vf in (13),and the seond term to the sum of higher-order terms.The expression dPBHf =dx dL is an analogue of theBethe�Heitler spetrum in ordinary materials, whiledPLPMf =dx dL desribes the LPM orretion. For theBethe�Heitler term, it follows from (5) and (13) thatdPBHfdx = 2 Z d�W (x;�; f)P (�x) ; (18)W (x;�; f) == �Re ĝ(x)�(x;�;�1; f)�(x;�;�2; f)����1=�2=0 ; (19)�(x;�;�0; f) = 0Z�1 d�Km(�; 0j�0; �) : (20)We note that for a nonzero f , the funtionW annot beviewed as a probability density for the jei Fok om-ponent of the physial photon (it is even not positive

de�nite). This is onneted with the fat that in an ex-ternal �eld, the jei Fok omponent is not stable anddeays through the tunnel transition into a free photonand an eletron. The analogue of the representation forthe LPM orretion derived in [19℄ for a nonzero mean�eld is given bydPLPMfdx = 2Re ĝ(x) 1Z0 d� Z d��(x;�;�2; f)�� P (�x)~�(x;�;�1; f ; �)����1=�2=0; (21)where the funtion ~�(x;�;�1; f ; �) is the solution ofthe two-dimensional Shrödinger equation with Hamil-tonian (7) and with the boundary ondition~�(x;�;�1; f ; 0) = �(x;�;�1; f)P (�x) :In the ase of zero f , the funtion W an be writtenas a density for the jei Fok state,W (x;�) = 12 Xf�ig j	(x;�; f�ig)j2 ; (22)where 	(x;�; f�ig) is the light-one wave funtion forthe e ! e0 transition and f�ig = (�e; �e0 ; �) is aset of heliities. We note that ontrary to the asef 6= 0, the light-one wave funtions now have de�niteazimuthal quantum numbers due to the azimuthal sym-metry of the Hamiltonian. The LPM orretion in thisase an also be written in terms of the light-one wavefuntions. The results is similar to that for ordinarymaterials [19, 21℄:dPLPMfdx = �ReXf�ig 1Z0 d� �� Z d�	�(x;�; f�ig)P (�x)~�(x;�; f�ig; �): (23)The boundary ondition for ~�(x;�; f�ig; �) is now~�(x;�; f�ig; 0) = 	(x;�; f�ig)P (�x) :The light-one wave funtions appear in formulas (22)and (23) from the �-integrals in (5) and (13) of theGreen's funtion Km and from the ation of the vertexoperator written in terms of the heliity projetors aswas done in [17℄.The formulas for the light-one wave funtions aregiven in Appendix B. Using the formulas given there,we an obtain the probability distribution W for thee! e0 transition at f = 0 as6 ÆÝÒÔ, âûï. 1 81
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Fig. 2. The ontributions to the spetrum dP=dxdL from the mean �eld mehanism (solid line) and the �utuation meh-anism (dashes) for � = 10 MeV at T = 0:2 (a) and 1 (b) MeV. The thik urves are for a nonzero photon mass, and thethin lines are for a massless photon. The ontribution of the �utuation mehanism is alulated using the Bethe�Heitlerterm with distribution (24)W (x;�) = �2�2 ��� [1 + (1� x)2℄x �2K21 (��) + x3m2eK20 (��)� ; (24)where K0;1 are the Bessel funtions. Beause K0;1 de-rease exponentially in (24), the dominating � sale informula (18) for the �utuation term is � 1=�.For a nonzero f , the azimuthal symmetry is ab-sent. This makes the problem onsiderably more om-pliated. In this paper, we �rst alulated the spe-trum dPf=dx dL for f = 0. We observed that theLPM orretion in (17) is negligible ompared to theBethe�Heitler term. Also, the Bethe�Heitler term it-self turns out to be muh smaller than the mean �eldterm dPm=dx dL. It is lear that a nonzero f makesdPf=dx dL even smaller. Therefore, an aurate al-ulation of the �utuation term for nonzero f does notmake muh sense. We have taken the e�et of the trans-verse fore into aount using qualitative argumentsbased on the estimates of the oherene lengths withand without a tranverse fore. The mean �eld shouldsuppress the oherene length. The suppression of theradiation rate should be approximately the same [36℄.Hene, the mean �eld suppression fator an be writtenas the ratio of the formation lengths with and withoutthe mean �eld. The oherene length in the presene ofthe mean �eld is � �Lm. Without the mean �eld in theregime of weak LPM suppression, the oherene length

is given by L0. Therefore, the mean �eld suppressionfator is Sm � �Lm=L0:We note that due to redution in the e�etive forma-tion length, the LPM e�et should beome even smallerfor a nonzero mean �eld.To illustrate the relative ontributions of the mean�eld and �utuation mehanisms to dP=dx dL, we plotthem in Fig. 2 for � = 10MeV and T = 0:2 and 1 MeV.The mean �eld part shown in Fig. 2 orresponds to thespetrum averaged over all diretions of the eletronmomentum. The �utuation ontribution was alu-lated without the mean �eld suppression fator. Thealulations are performed with the k-dependent pho-ton quasipartile mass extrated from the relation3)m2 = �T (qk2 +m2 ; k):This gives m inreasing from mD=p3 at k � mD tomD=p2 at k � mD with the Debye massm2D = 4�� ��2 + �23 T 2� :3) We ignore the in�uene of the medium e�ets on me [37℄beause the photon bremsstrahlung in the region x � 1, whihdominates the emissitivity, is not very sensitive to the eletronquasipartile mass.82



ÆÝÒÔ, òîì 139, âûï. 1, 2011 Photon emission from bare quark starsIt follows from Fig. 2 that the �utuation ontribu-tion is suppressed by a fator � 10�2. To illustratethe role of a �nite photon quasipartile mass, we alsopresent the results for zero m in Fig. 2 (thin urves).It is seen that the photon mass suppression (usuallyalled the Ter-Mikaelian e�et) is very strong at smallx. The e�et is espeially dramati for the �utuationpart, where the well-known 1=x form of the spetrumhanges to / x. This e�et was ignored in the analy-ses in [14, 15℄, where the massless formulas were used.The results shown in Fig. 2 indiate learly that themassless approximation is inadequate.As mentioned previously, our alulations show thatfor the �utuation mehanism the LPM suppression isnegligible. This ontradits the analysis in [13℄, wherethe authors found a very strong LPM suppression(about � 1=300 at the photon momentum k = 0:5MeVfor the eletron energy 10 MeV). To alulate the LPMsuppression, the authors of [13℄ used Migdal's formulaswith zero photon mass, setting Z = 1 there. But it aneasily be shown that Migdal's formulas beome inap-pliable for the eletrosphere. We explain this in thelanguage of the LCPI approah. Migdal's approah [24℄orresponds in the LCPI formalism to the quadrati pa-rameterization P (�) � nC�2=2:As desribed above, this approximation is not auratefor the eletrosphere, but is nevertheless suitable forour qualitative analysis. In the quadrati approxima-tion, Hamiltonian (7) takes the osillator form with
 =p�inCx2=M(x):The LPM suppression fator SLPM an be written interms of the dimensionless parameter � = j
jL0 [18,21℄. The LPM suppression beomes strong at � � 1.In this limit, SLPM � 3�p2(see [18℄). The LPM e�et is negligible for � � 1, whenSLPM (�) � 1� 16�4=21(see [18℄). We note that even at � � 1, the LPM sup-pression is relatively small beause SLPM (1) � 0:86.A very strong suppression obtained in [13℄ is mostlydue to the neglet of the photon mass. The �nite pho-ton mass strongly redues L0 and orrespondingly theparameter � (by about a fator � 400 for k = 0:5and p � 10 MeV). Also, for the eletrosphere, thereis no well-known large Coulomb logarithm ln(1=�) � 5(whih omes from the logarithm in the dipole ross

setion [20℄) in j
j, whih is present in Migdal's formu-las derived for ordinary materials. Both these e�etsdrastially redue the value of � for the eletrosphereompared to that in Migdal's approah. As a result,the LPM suppression in the eletrosphere turns out tobe negligible.4. NUMERICAL RESULTS AND DISCUSSIONIn this setion, we present numerial results forthe emissitivity and radiated energy �ux. The resultswere obtained with some modi�ation of the spetrumdP=dx dL in the nonollinear region. As we mentionedabove, the ollinear approximation we use beomes in-valid for very soft photons with k . m . In this region,the formalisms [16�18℄ do not apply. In partiular, theLCPI approah [18℄, whih assumes that the transversemomentum integration extends to in�nity, should over-estimate the photon spetrum at k . m . To take thise�et into aount (at least, qualitatively) in alulat-ing the radiated energy �ux, we multiplied dP=dx dLby the kinematial suppression fatorSkin(k) = 1� exp(�k2=m2):This fator does not give a large e�et. It suppressesthe radiated energy by � 10�15% at T � 0:1�0.2 MeVand � 1�2% at T � 1 MeV. This shows that the errorsfrom the nonollinear on�gurations are small.In Fig. 3, we show the emissitivity for � = 5 and10 MeV evaluated at T = 0:2 and 1 MeV as a funtionof !. We see that the ontribution of the mean �eldemission (the thik solid line) exeeds the �utuationemission without mean �eld suppression (dashes) bya fator � 102. The mean �eld suppression addition-ally redues the �utuation ontribution (the thin solidline) by a fator� 3�4. We note that there is no photonemission at ! < !ep in our semilassal approximationat a given �. For this reason, the di�erential emissitiv-ity shown in Fig. 3 vanishes abruptly at ! = !ep = m(k = 0). We see from Fig. 3 that despite the Paulibloking suppression, even at T = 0:2 MeV, the on-tribution of energeti photons with the energy aboutseveral units of !ep is important. This demonstratesthat the restrition! <q!e 2p +m2efor the photon energy imposed by the authors of [13℄ islearly inadequate.In Fig. 4, we plot the di�erential radiated energy�ux dF=d! for �(0) = 10 and 20 MeV obtained at83 6*
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Fig. 3. The emissitivity versus the photon energy ! for � = 5 and 10 MeV at T = 0:2 and 1 MeV. The thik solid lineshows the mean �eld bremsstrahlung. The ontribution of the �utuation mehanism is shown without (dashes) and with(thin solid line) the mean �eld suppressionT = 0:2 and 1 MeV. For the �utuation ontribution,we show the results with and without the mean �eldsuppression fator Sm. For omparison, the blak bodyspetrum is also shown. The mean Coulomb �eld of theeletrosphere redues the �utuation term by a fator� 3�4. It follows from Figs. 3 and 4 that the relativeontribution of the �utuation mehanism is very smallompared to the mean �eld emission. In some sense,we have a situation similar to that for photon radiationfrom an atom with a large Z. We note that the formof the spetrum for the mean �eld mehanism is quali-tatively similar to that for the blak body radiation.In Fig. 5, we show the total energy �uxF = 1Z0 d! dF=d!saled to the blak body radiation as a funtion of tem-perature. For omparison, we also plot the preditionsfor bremsstrahlung obtained in [13�15℄. We also show

the energy �ux from the e+e� pair prodution [4, 10℄,de�ned asF� = hmaxZ0 dhQ�(h) �r3�2� �(0)Z�min d��2Q�(h(�)) : (25)Here, Q� is the energy �ux from e+e� pairs per unittime and volume. We write it as in [4, 10℄,Q� = Ee+e�dNe+e�=dt dV;where Ee+e� � 2(me + T )is the typial energy of e+e� pairs and dNe+e�=dt dVthe rate of e+e� pair prodution per unit time andvolume given bydNe+e�dt dV � 3T 3�2�3 r�� exp��2meT �J(�) (26)with � = 2�T r�� ;84
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Fig. 4. The di�erential radiated energy �ux from the eletrosphere for the mean �eld bremsstrahlung (thik solid line) andfor the Bethe�Heitler bremsstrahlung with (thin solid line) and without (dashes) the mean �eld suppression. The dottedlines show the blak body spetrumand the funtion J is de�ned as in [10℄:J(x) = x3 ln (1 + 2=x)3(1 + 0:074x)3 + �5x46(13:9+ x)4 :We see from Fig. 5 that in the region T � 0:1�1 MeV,the mean �eld photon emission onsiderably exeedsboth the �utuation bremsstrahlung and the energy�ux from e+e� pair prodution.Figures 4 and 5 demonstrate that the energy �uxfrom the mean �eld photon emission may be of thesame order of magnitude as the blak body radiation.In other words, the approximation of an optially thineletrosphere is not very good, and the photon absorp-tion and stimulated emission may be important. Butbeause the radiation rate we obtained does not exeedthe blak body limit, they annot modify our resultsstrongly. We note that the authors of [15℄ obtainedthe energy �ux for T . 1 MeV onsiderably exeedingthe blak body limit. This an be seen from Fig. 5,where the results in [15℄ at �(0) = 20 MeV are shown.

The authors of [15℄ laim that the eletrosphere mayradiate stronger than a blak body. This statement isobviously inorret. The violation of the blak bodylimit in [15℄ is just a signal that the thin-medium ap-proximation beomes inappliable at high emissitivity.As regards the very large emissitivity obtained in [15℄,we have already mentioned that it may be due to aninorret desription of the Pauli bloking and negletof the photon mass.As mentioned above, our assumption that the pho-ton emission is a loal proess is valid if lf � �Lm � Lel,where Lel is the typial sale of variation of the po-tential vm along the eletron trajetory. For hemialpotential (1), it an be de�ned asLel � H�(0)=�(h) os �;where � is the angle between the eletron momentumand the star surfae normal. Evidently, the ontribu-tion of the on�gurations with �Lm & Lel to the photon85
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Fig. 5. The total radiated energy �ux (saled to the blak body radiation) from the eletrosphere for the mean �eldbremsstrahlung (thik solid line) and for the Bethe�Heitler bremsstrahlung with (thin solid line) and without (short dashes)the mean �eld suppression. The ontribution from the tunnel e+e� reation [4, 10℄ evaluated using (25) is also shown(dotted line). The long dashes show the results for the e� + e� ! e� + e� +  proess obtained in [13℄. The dot-dashedlines show the results for the same proess in [14℄. The dot-dot-dashed line shows the bremsstrahlung ontribution withinlusion of the mean Coulomb �eld in [15℄. �(0) = 10 (a), 20 (b) MeVspetrum are to be suppressed by the �nite-size sup-pression fatorSfs � min(Lel; �Lm)=�Lm:We veri�ed numerially that this suppression fatorgives a negligible e�et. This justi�es the loal approx-imation.Aording to the simulation of the thermal evolu-tion of young quark stars performed in [25℄, the tem-perature at the star surfae beomes � 0:2 MeV att � 1 s. But the mean �eld bremsstrahlung was nottaken into aount in the analysis in [25℄. In the lightof our results, we an expet that the ooling of the

bare quark star surfae should proeed somewhat fasterthan predited in [25℄. It is worth noting that in theinitial stage of the quark star evolution, the mean �eldphoton emission an only modify the temperature nearthe star surfae. The evolution of the star ore tem-perature is driven by neutrino emission [25℄ beausethe neutrino luminosity is muh larger than the pho-ton (and e+e�) luminosity for an extended period oftime [25℄. The higher luminosity due to the mean �eldbremsstrahlung inreases the possibility for detetingbare quark stars. From the standpoint of light urvesat t & 1 s, it would also be interesting to investigatethe mean �eld bremsstrahlung for T . 0:1 MeV. Ho-86



ÆÝÒÔ, òîì 139, âûï. 1, 2011 Photon emission from bare quark starswever, the photon emission from the nonrelativisti re-gion of the eletrosphere may be important at suhtemperatures, where our formulas beome inapplia-ble. As regards the ontribution of the relativisti re-gion � � me, extrapolation of the urves shown inFig. 5 to T . 0:1 MeV allows expeting that the mean�eld emission will dominate the energy �ux at lowertemperatures as well.A remark is in order on the photon distribution seenby a distant observer. For the obtained values of theenergy �ux, the radiation annot stream outward freely.The point is that near the star surfae, the thermaliza-tion time in the omoving frame for the e+e� windis negligibly small ompared to the star radius. Thisfollows from estimates of the mean free path � relatedto the  + e� !  + e� and  +  $ e+ + e� pro-esses. Qualitative alulations give � � 10�3m atT � 0:1 MeV and � � 10�6m at T � 1 MeV. There-fore, the e+e� wind an be desribed as a hydrody-namial �ow. The hydrodynamial desription is validup to the freeze-out surfae, beyond whih the radia-tion streams outward almost freely. For an observerat a large distane from the star, the photon spetrumis lose to the blak body one with the temperatureText = Tfr�fr, where Tfr is the wind temperature and�fr is the bulk Lorentz fator of the wind at the freeze-out level [38, 39℄. It an be shown that for a relativistiwind [38; 39℄ Tfr�fr � Ti�i;where Ti is the wind temperature after its thermaliza-tion and �i is the bulk Lorentz fator of the wind nearthe star surfae. For T � 0:1 MeV, the eletron fra-tion in the e+e� wind is small after thermalization.Simple qualitative alulations then giveTi�i � T (3��2i =16)1=4;where � = (F + F�)=Fbb:As a plausible estimate, we an take �2i � 3 and � � 1.Then Text � 0:85T . For T � 1 MeV, the eletron fra-tion in the wind after thermalization beomes lose tothat for a relativisti plasma. In this ase,Ti�i � T (3��2i =44)1=4:Taking � � 0:4, we obtain Text � 0:5T . We note thatin both ases, the fration of e� pairs in the wind isnegligibly small beyond the freeze-out surfae [39℄.

We note that our alulations probably do not applyto quark stars in the olor �avor-loked (CFL) super-onduting phase. It was suggested previously [40℄ thatdespite the absene of eletrons in the bulk SQM in theCFL phase, the eletrosphere may exist due to the sur-fae quark harge [41℄. However, the reent analysisin [42℄ gives evidene in favor of the absene of suh asurfae harge. But for the CFL phase, a signi�antphoton emission from the SQM itself may exist due tothe photon�gluon mixing [43℄. The results in [43℄ showthat this radiation is omparable to the blak bodylimit. Beause we also obtain the radiation rate om-parable to the blak body radiation, it may be di�ultto distinguish a bare quark star in the CFL phase fromthat in the normal (or 2SC) phase.5. CONCLUSIONWe have evaluated the photon emission from theeletrosphere of a bare quark star (in the normal or2SC phase). The analysis is based on the LCPI refor-mulation [17℄ of the AMY approah [16℄ to the pho-ton emission from relativisti plasmas. The devel-oped approah, in ontrast to the previous qualitativestudies [13�15℄, for the �rst time allows giving a ro-bust treatment of the Pauli bloking e�ets in photonbremsstrahlung. We demonstrate that for the temper-atures T � 0:1�1 MeV, the dominating ontributionto the photon emission is due to bending of eletrontrajetories in the mean eletri �eld of the eletro-sphere. The energy �ux from the mean �eld photonemission is of the order of the blak body limit. Ourresults show that the ontribution of the Bethe�Heitlerbremsstrahlung due to the eletron�eletron interationis negligible ompared to the mean �eld photon emis-sion. Contrarily to [13℄, we demonstrate that the LPMsuppression is negligible.The energy �ux related to the mean �eldbremsstrahlung also turns out to be larger thanthat from the tunnel e+e� pair reation [4, 10℄. In thelight of these results, the situation with distinguishingbare quark stars made of SQM in the normal (or 2SC)phase from neutron stars may be more optimistithan in the senario with the tunnel e+e� reationdisussed in [25℄.I thank J. F. Caron for providing the �le for the ra-diated energy �ux obtained in [14℄. I am also gratefulto T. Harko and D. Page for ommuniation. This workwas supported in part by the grant � SS-6501.2010.2.87



B. G. Zakharov ÆÝÒÔ, òîì 139, âûï. 1, 2011APPENDIX ACalulation of the funtion D(q?)In this appendix, we disuss the alulation of thefuntion D(q?). To evaluate this funtion, we need toknow the orrelator D�� . In momentum representa-tion, we an obtainD��(q) = �2[1 + nB(q0)℄ ImD��r (q) ;where nB = [exp(q0=T )� 1℄�1is the Bose�Einstein fator and D��r (q) is the retardedGreen's funtion. As was already noted, the fun-tion P (�) is gauge invariant, and we an use D��r inany gauge. Expressing the retarded propagator in theCoulomb gauge in terms of longitudinal and transversephoton self-energies, we obtainD(q?) = � 1� 1Z�1 dq0 exp(q0=T )exp(q0=T )� 1 ��� Im�L(q0;q)[q2 �Re�L(q0;q)℄2 + (Im�L(q0;q))2 + q2?q2 �� Im�T (q0;q)[q2?+Re�T (q0;q)℄2+(Im�T (q0;q))2�����qz=q0 :(A.1)In numerial alulations, we use the HDL expres-sions [30, 31℄ for �L;T :�L(q0;q) = m2D � q02q ln�q0 + qq0 � q�� 1� ; (A.2)�T (q0;q) == m2D2 �q20q2 + (q2 � q20)q02q3 ln�q0 + qq0 � q�� 1� (A.3)with the Debye massm2D = 4�� ��2 + �2T 23 � :APPENDIX BFormulas for the light-one wave funtionsFor zero f , the light-one wave funtions have a def-inite orbital quantum number m. As was mentioned,

the light-one wave funtions appear from the longitu-dinal integrals of the Green's funtion. For f = 0, it isthe free Green's funtion given byKv(�2;�2j�1;�1) == M2�i� exp�i �M(�2 � �1)22� � ��22M �� (B.1)with � = �2 � �1. The �-integration an be performedusing the relation0Z�1 d�Kv(�2; 0j�1; �) = � iM� K0(j�2 � �1j�) ; (B.2)where K0 is the Bessel funtion. Then the light-onewave funtions an be written in terms of the Besselfuntions K0 and K1. After representing vertex op-erator (6) in terms of the heliity state projetors asin [17℄, we obtain	(x;�; �e; �e0 ; �) = 12� ��r �2x [�(2� x) + 2�ex℄ exp(�i�')�K1(��) (B.3)for �e0 = �e, where ' is the azimuthal angle. For�e0 = ��e, we obtain	(x;�; �e;��e; 2�e) = �i2�p2�x3meK0(��) : (B.4)REFERENCES1. E. Witten, Phys. Rev. D 30, 272 (1984).2. C. Alok, E. Farhi, and A. Olinto, Astrophys. J. 310,261 (1986).3. P. Haensel, J. L. Zdunik, and R. Shae�er, Astron.Astrophys. 160, 121 (1986).4. V. V. Usov, Phys. Rev. Lett. 80, 230 (1998) [arXiv:astro-ph/9712304℄.5. C. Kettner, F. Weber, and M. K. Weigel, Phys. Rev.D 51, 1440 (1995).6. T. Chmaj, P. Haensel, and W. Slominski, Nul. Phys.B 24, 40 (1991).7. K. S. Cheng and T. Harko, Astrophys. J. 596, 451(2003) [arXiv:astro-ph/0306482℄.8. V. V. Usov, Phys. Rev. Lett. 87, 021101 (2001).9. A. R. Zhitnitsky, JCAP 0310, 010 (2003) [arXiv:hep-ph/0202161℄; M. M. Forbes and A. R. Zhitnitsky,JCAP 0801, 023 (2008) [arXiv:astro-ph/0611506℄;M. M. Forbes and A. R. Zhitnitsky, Phys. Rev. D 78,083505 (2008).88
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