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Using the operator method, we derive the Green’s functions of the Dirac and Klein—-Gordon equations in the
Coulomb potential —Za/r for an arbitrary space dimensionality d. Nonrelativistic and semiclassical asymptotic
forms of these Green’s functions are considered in detail.

1. INTRODUCTION

At the calculation of the amplitudes and probabili-
ties of QED processes in the field of heavy atoms appli-
cable, the parameter Za (where Z is the atomic charge
number and « is the fine structure constant) is not
small. The effect of higher orders in Za can change the
Born result by several times. Therefore, it is often re-
quired to calculate the probabilities of QED processes
in such a strong field exactly in Za. The most con-
venient way to perform this calculation is to use the
exact Green’s functions of the Dirac equation (or the
Klein—Gordon equation) for a charged particle in a field
(the Furry representation). Deriving the Green’s func-
tions for specific field configurations is very important
for applications. For the Coulomb potential, a con-
venient integral representation of the Green’s function
G(r,r'|e) was derived in Ref. [1] using the O(2,1) alge-
bra. The representation obtained is valid in the whole
complex plane of the energy ¢ and does not contain
contour integrals. Another integral representation for
the Green’s function in the Coulomb field was derived
in Ref. [2] using an explicit form of the expansion of
G(r,r'|e) with respect to the eigenfunctions of the cor-
responding wave equation. The representation of the
Green’s function obtained in Ref. [2] contains a contour
integral, which complicates its use in applications.

In the calculation of loop diagrams, it is often re-
quired to regularize the divergent integrals. One of the
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most convenient methods of the regularization is the di-
mensional regularization. To use the dimensional regu-
larization within the approach based on the Furry rep-
resentation, it is necessary to derive the exact Green’s
function in the Coulomb field in an arbitrary, not nec-
essarily integer, space dimensionality d (the space-time
dimensionality is d + 1). In this paper, we solve this
problem by generalizing the Green’s function obtained
in Ref. [1] for d = 3 to arbitrary d. Our derivation
closely follows the path of derivation in Ref. [1]. In
contrast to the conventional approach, the operator
method used in Ref. [1] and in this paper does not
require the knowledge of the explicit form of the wave
functions, which is difficult to define for noninteger d.
To fix the explicit form of the Green’s function for ar-
bitrary d unambiguously, we use only the commutative
and anticommutative relations for the operators and
~y-matrices.

2. CALCULATION OF THE GREEN’S
FUNCTION

Following Ref. [1], we represent the Green’s function
in the Coulomb potential

U(r)=—-Za/r

(the system of units i = ¢ = 1 is used),

1
G(r,r'|e) = —————
P —m + 10

P =9"(c+ Za/r) — p,

5(r—r'),

as



XKIT®, Tom 140, Bbim. 2 (8), 2011

Relativistic Coulomb Green's function in d dimensions

G(r,r'|e) = (P +m)D
D(r,r'|e) =

oo
K
= —z’/ds exp {QiZaas—is [rp$+m2r+—} } X
r
0

o(r—r")

X ——
rd—2

(r,r'fe),

§(n —n'),

i 0
Pd=D/2 gy
n =r'/r,

(2)

m?—e2, p,=— (d-1)/2,

n=r/r,

1
1(:1%4Zaa-n—(Zaf+zgﬁ4xd—m,

a=7"y,

where —12 is the angular part of the Laplacian deter-
mined by
A =

1 _ 1
Td—_la»,-’l“d 18r - (3)

and the y-matrices obey the usual relation
Y A = 29",

We then represent the angular part of the §-function
as

n—n

ZP)\ (n,n") (4)

where the projection operators Py (n,n’) satisfy the re-
lations

KPy(n,n') = MA + 1) Py(n,n'),

/dl’lIP,\(l’l,l’l,)P)\/ (1’1’,1’1”) = 5>\,\rP)\(n, n”). (5)
Because the operator K contains only one matrix oper-
ator « - n, the matrix structure of the projection oper-
ator Py(n,n’) is given by the linear combination of the
unit matrix I and matrices a-n, a-n’, and (a-n)(a-n’).
All other matrices, such as (a-n)(a-n')(a-n), can be
reduced to the four above matrices using the anticom-
mutation relations. Taking this property into account,
we seek the projection operators Py(n,n’) in the form

Pa(, ) = an A () (n') +asA 4 (m)A_(m') +
+azA_(n)A,(n') + asA_(n)A_(n’),

Asr(n) =

. (6)
5(1 +a-n),

where a; are some functions of # = n-n’. From Egs. (5),
we obtain
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=[N+ iZa)B,(z),
= (n+v+1/2) An(2),

a9 = asg

aq

A =17, 7=\/(n+v+1/2)2—

(Za)?,

where CF(z) is the Gegenbauer polynomial, and

n=0,1,2,... is an integer. This integer appears from
the requirement that the functions a; have no singular-
ities at @ = 1. The result for a; in (7) was obtained
using the identity

/(1—|—n-n'+n-n”+n'-n”)x

X Bp(n-n')B,(n' -n'")dn' =
=Q4(1+n-n")B,(n-n"),

J 27Td/2 v+l
/“ T(d/2)

F(U +1)
We finally obtain for projection operator

(8)

P)\ (nv nl)

g{ {/\[1+(a ‘n)(a-n)|+iZala-n+a- n')] Bn(z)+

+(n+v+1/2)[1 — (- n)(a~n')]An(x)}. 9)

For d = 3, this projection operator coincides with that
found in Ref. [3].

We note that the functions A, (z) and B, (x) have
a nonsingular limit as v — 0 (or d — 2),

sin((n + 1)¢) + sin(ng)

Pg}) An(@) = sin ¢ '
. _sin((n 4 1)@) — sin(ne)
lg% Bn(w) = sin ¢ '

where ¢ = arccos .

To complete the calculation of D(r,r'|¢) in Eq. (2),
it is necessary to find the result of the action of the
operator

exp {—is [Tp?, + K2 + A\ + 1)/T] }

on the function
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S(r—r')/r.

This can be done exactly in the same way as in Ref. [1].
The method in Ref. [1] is based on the commutation re-
lations of the operators

T, = %[rp?, + XA+ 1)/r], Ta=rp.,, T3=r,
which coincide with those of the O(2,1) algebra gener-
ators (some other examples of applying the O(2,1) al-
gebra in a Coulomb field can be found in Refs. [4, 5]).
The only difference between the case of arbitrary d and
d = 3 is the value of the parameter § in the equation

T‘ﬂ"(s =0.
For arbitrary d, we have

3—-d
A+ ——, forA>0,
6= .
1—
|/\|+T, for A < 0.

(10)

The final result for the function D(r,r'|¢) in Eq. (2) is

fo iT(v+1)
D(r7r |5) - _27TV+1(TT’)V+1/2

50 o0
X Z /ds exp[2iZacs + ik(r +r') ctg(ks) — imy] x
0

n=0

x{%gAwu+wawnm~dnaxm+

+iZaJyy(y)(a-n+ a-n')B,(x) +
+ (n+v+1/2) Sy (y) x
2kVrr!

X[l—(a-n)(a‘n')]An(x)} y=—-——7> (11

sin(ks)

where Jy(y) is the Bessel function and A, (z), B,(z),
v, and 7 are defined in Eq. (7). The corresponding
result for the Coulomb Green’s function of the Dirac
equation in d spatial dimension is

il'(v+1)
2+l (TTI)V—‘,-l/Q X

X Z /ds exp[2iZacs +
n=0

+ik(r +1') ctg(ks) — iny] T,
T =[1+ (a-n)(a-n)] x

x| %73, ()2 +m) —

G(r,r'|e) = —

—iZaJy (Y)Y k ctg(fss)] By (x) +

+[[1 = (@ m)(a m)] (1% +m) -

—kctg(ks)(y n—~- n')] X
X Joy) (4 v+ 12 An() + (12)
ik2(r —r'")
* { 2sin?(ks)

% (v-1+ 7 0)Ja, (1) Baa).

+ imZa’yO] X

For d = 3, this result coincides with the correspond-
ing result in Ref. [1]. The function G(r,r'| ) has cuts
in the complex plane ¢ along the real axis from —oo to
—m and from m to oo, which correspond to the contin-
uous spectrum, and also has simple poles in the interval
(0,m) for an attractive field and in the interval (—m, 0)
for a repulsive field. Integral representation (12) is valid
for any ¢ that belongs to the domain Ree < 0, Ime <0
orRee >0,Ime > 0. If Ree < 0,Ime > 0or Ree > 0,
Ime < 0, then the integration over s must be performed
in Eq. (12) from zero to —oo.

For real ¢ in the interval —m < ¢ < m, we obtain

(cf. Ref. [1])

G(r,v'|e) =
F'v+1)
~ 1r sin[r(Zag/k — )|t (el )r+H1/2 X
o 2
X Z dsexp[—2iZacs/k +
n:Oiﬂ_/2
+ik(r+r')tgs] T,
T=[1+ (a-n)(a-n’)] x

X [g]év(v)('yoa +m) — (13)
—iZaJs, ()7 K tg s] B, (x) +

+[11 = (@ n)(a m)] (1% +m)

—ntgs('y~n—'y~n')] X
x Joy(v) (n+v+1/2) A (x) +
N [in2(r -7

5o s T imZoryO] X

_ 26V rr!

coss

X (y-n+v-n')Jy(v)By(z), v
The denominator in Eq. (13) vanishes at the points
Zaclk—v=k

for any integer k. But the integral over s also vani-
shes at these points with negative k (see Ref. [1]), and
hence expression (13) has poles only for £ =0,1,2....
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Taking into account that v is positive, we find that the
simple poles corresponding to the discrete spectrum are
at the points

ignZ
i msign _ (14)

1+ < Za )2
kE+~v
The maximal value of Z when all the results obtained
are applicable is defined by the relation

d—1
Z mar — — 5
(Za) .
(see the definition of v in Eq. (7)).
For completeness, we also present the final result
for the Coulomb Green’s function of the Klein—-Gordon
equation,

F'v+1)

Go(r,r'le) = — ST (Y7

+ik(r + ') ctg(ks) — imp]Jop (y),

p=1/0+0) - (Za).

We note that there is no singularity in this formula at
d = 2 because

= n+v v
> — C(x) x

n=0

exp[QzZaas + (15)

. o n+v
lim
v—0 1

Cr(z) = cos(ng).

3. ASYMPTOTIC FORMS

We derive the Coulomb Green’s function
Grr(r,v'|E) of the Schrodinger equation in d spatial
dimensions. For this, we calculate the nonrelativistic
asymptotic form of the Coulomb Green’s function of
the Klein—-Gordon equation, applicable at |E| < m
and Za < 1, where E = ¢ — m. Neglecting (Za)?

1, using the summation formula (cf. [2]),

o0

So= 3 (1" O @) ot (4) =

n=0
_ \/7_Ty2l/z],/_1/2(w) _ 1+ 16
= 23v+1/2D(y 4 1w =1/2’ w=y 9 (16)

and multiplying by 2m, we obtain

Gpr(r,7'|E) =

))W )

Ju—1/2(w)

wu—1/2 ’
k=v_2mE. (17)

This formula is in agreement with the corresponding
result in Ref. [6].

At high energies and small scattering angles of the
particles, the characteristic angular momenta are large
and the semiclassical approximation is applicable. The
semiclassical Green’s function of the Dirac equation in
a Coulomb potential for d = 3 was first derived in Refs.
[7, 8]. Another representation of this function was ob-
tained in Refs. [9, 10]. The semiclassical Green’s func-
tion for an arbitrary spherically symmetric localized
potential was found in Refs. [11, 12]. In Ref. [13], the
semiclassical Green’s function for an arbitrary localized
potential was found with the next-to-leading semiclas-
sical correction taken into account. In Ref. [13], the
spherical symmetry of the potential was not required.

We consider the semiclassical Green’s function of
the Dirac equation in a Coulomb potential for an ar-
bitrary spatial dimension d. In this case, ¢ > m and
1+ 2 < 1, and hence the leading contribution to the
sum over n in Eq. (12) is given by n >> 1. We can there-
fore neglect the term (Za)? in 7, Eq. (7), and sum over
n analytically. We need to calculate two sums,

__m 7ds e
(2m)v+1/2 sin(ks
0

x exp[2iZams+ik(r+r') ctg(ks)—imv]

oo

Sa=Y (-D)"v+n+1/2) x
X An(x)‘]2(n+u+1/2) (y)v (18)
Sp = Z(—l)an(v’U)J2(n+u+1/2) (¥),

where the functions A, (z) and B,(z) are defined in
Eq. (7). Using the recurrent relations for the Bessel
functions and the Gegenbauer polynomials, it is easy
to show that

0
£SB + (v +1/2)SB,

20
Sp = —5
B y@x 0

Sa=(1+2)

so that

VT YT, (w)
23u+5/21-‘(,/ + 1)wu—1/2 )

\/7_Ty2'/+1c7u+1/2(w)
231/+3/2]_"(]/ + 1)w"+1/2 .

Sa =

Sp =
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Substituting these results in Eq. (12), we arrive at the
final expression for the semiclassical Green’s function

1
T out3/2v+1/2 x

/°° ds » 2v+1
X [ ——r X
ur—1/2 \ sh(ps)
0
x exp[2iZaes + ip(r + r') cth(ps) — imv] M,
M =, () x

X [’yos +m — g cth(ps)(y -n—~- n')] +
Jyy1/2(u) { {p2(7‘ —r')

Gue(r,r'|e) =

(21)

+1

+mZa 0] X
u 2sh?(ps) i

x(y -n+~-n') — Zay’pcth(ps) x

_py/2r' (14 2)

x[1+4 (a-n)(a- n')]}’ sh(ps)

where
p=Ve2—m?2=ik.

For d = 3, the result in (21) agrees with that ob-
tained in Refs. [7, 8]. The term (Za)? in 7y can also
be neglected in the nonrelativistic approximation when
Za < 1, p < m, and Zam/p is fixed. In this case,
we immediately obtain from Eq. (21) that the nonrel-
ativistic approximation for the Green’s function of the
Dirac equation is given by

7 +1

G(r,v'lm+ E) = Gy (r, 7' |E), (22)
where G, (r,r'|¢) is defined in Eq. (17).

To summarize, in d spatial dimensions, we have cal-
culated the Green’s functions of the Dirac and Klein—
Gordon equations in the Coulomb field (Eqs. (12) and
(15)). Nonrelativistic and semiclassical limit cases of
these Green’s functions are considered in detail. The
results obtained can be applied for calculation of vari-
ous QED amplitudes in the strong Coulomb field with
the use of dimensional regularization.
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