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RELATIVISTIC COULOMB GREEN's FUNCTION IN d DIMENSIONSR. N. Lee *, A. I. Milstein **, I. S. Terekhov ***Budker Institute of Nu
lear Physi
s630090, Novosibirsk, RussiaNovosibirsk State University630090, Novosibirsk, RussiaRe
eived January 28, 2011Using the operator method, we derive the Green's fun
tions of the Dira
 and Klein�Gordon equations in theCoulomb potential �Z�=r for an arbitrary spa
e dimensionality d. Nonrelativisti
 and semi
lassi
al asymptoti
forms of these Green's fun
tions are 
onsidered in detail.1. INTRODUCTIONAt the 
al
ulation of the amplitudes and probabili-ties of QED pro
esses in the �eld of heavy atoms appli-
able, the parameter Z� (where Z is the atomi
 
hargenumber and � is the �ne stru
ture 
onstant) is notsmall. The e�e
t of higher orders in Z� 
an 
hange theBorn result by several times. Therefore, it is often re-quired to 
al
ulate the probabilities of QED pro
essesin su
h a strong �eld exa
tly in Z�. The most 
on-venient way to perform this 
al
ulation is to use theexa
t Green's fun
tions of the Dira
 equation (or theKlein�Gordon equation) for a 
harged parti
le in a �eld(the Furry representation). Deriving the Green's fun
-tions for spe
i�
 �eld 
on�gurations is very importantfor appli
ations. For the Coulomb potential, a 
on-venient integral representation of the Green's fun
tionG(r; r0j") was derived in Ref. [1℄ using the O(2,1) alge-bra. The representation obtained is valid in the whole
omplex plane of the energy " and does not 
ontain
ontour integrals. Another integral representation forthe Green's fun
tion in the Coulomb �eld was derivedin Ref. [2℄ using an expli
it form of the expansion ofG(r; r0j") with respe
t to the eigenfun
tions of the 
or-responding wave equation. The representation of theGreen's fun
tion obtained in Ref. [2℄ 
ontains a 
ontourintegral, whi
h 
ompli
ates its use in appli
ations.In the 
al
ulation of loop diagrams, it is often re-quired to regularize the divergent integrals. One of the*E-mail: r.n.lee�inp.nsk.su**E-mail: a.i.milstein�inp.nsk.su***E-mail: i.s.terekhov�inp.nsk.su

most 
onvenient methods of the regularization is the di-mensional regularization. To use the dimensional regu-larization within the approa
h based on the Furry rep-resentation, it is ne
essary to derive the exa
t Green'sfun
tion in the Coulomb �eld in an arbitrary, not ne
-essarily integer, spa
e dimensionality d (the spa
e�timedimensionality is d + 1). In this paper, we solve thisproblem by generalizing the Green's fun
tion obtainedin Ref. [1℄ for d = 3 to arbitrary d. Our derivation
losely follows the path of derivation in Ref. [1℄. In
ontrast to the 
onventional approa
h, the operatormethod used in Ref. [1℄ and in this paper does notrequire the knowledge of the expli
it form of the wavefun
tions, whi
h is di�
ult to de�ne for noninteger d.To �x the expli
it form of the Green's fun
tion for ar-bitrary d unambiguously, we use only the 
ommutativeand anti
ommutative relations for the operators and
-matri
es.2. CALCULATION OF THE GREEN'SFUNCTIONFollowing Ref. [1℄, we represent the Green's fun
tionin the Coulomb potentialU(r) = �Z�=r(the system of units ~ = 
 = 1 is used),G(r; r0j") = 1P̂ �m+ i0Æ(r� r0);P̂ = 
0("+ Z�=r)� 
p; (1)as236
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 Coulomb Green's fun
tion in d dimensionsG(r; r0j") = (P̂ +m)D(r; r0j");D(r; r0j") == �i 1Z0 ds exp�2iZ�"s�is �rp2r+�2r+Kr ���� Æ(r � r0)rd�2 Æ(n� n0);� =pm2 � "2; pr = � ir(d�1)=2 ��r r(d�1)=2;n = r=r; n0 = r0=r0;K = l2�iZ�� � n� (Z�)2+14(d�1)(d�3);� = 
0
;
(2)

where �l2 is the angular part of the Lapla
ian deter-mined by � = 1rd�1 �rrd�1�r � 1r2 l2 (3)and the 
-matri
es obey the usual relation
�
� + 
�
� = 2g�� :We then represent the angular part of the Æ-fun
tionas Æ(n� n0) =X� P�(n;n0); (4)where the proje
tion operators P�(n;n0) satisfy the re-lations KP�(n;n0) = �(� + 1)P�(n;n0);Z dn0P�(n;n0)P�0 (n0;n00) = Æ��0P�(n;n00): (5)Be
ause the operatorK 
ontains only one matrix oper-ator � � n, the matrix stru
ture of the proje
tion oper-ator P�(n;n0) is given by the linear 
ombination of theunit matrix I and matri
es��n, ��n0, and (��n)(��n0).All other matri
es, su
h as (� �n)(� �n0)(� �n), 
an beredu
ed to the four above matri
es using the anti
om-mutation relations. Taking this property into a

ount,we seek the proje
tion operators P�(n;n0) in the formP�(n;n0) = a1�+(n)�+(n0)+a2�+(n)��(n0) ++ a3��(n)�+(n0) + a4��(n)��(n0);��(n) = 12(1�� � n); (6)where ai are some fun
tions of x = n�n0. From Eqs. (5),we obtain

a1 = �(�+ iZ�)Bn(x);a2 = a3 = � (n+ � + 1=2)An(x);a4 = �(�� iZ�)Bn(x);� = �
; 
 =q(n+ � + 1=2)2 � (Z�)2;� = �(� + 1)2���+1 ;An(x) = 12� ��x [C�n+1(x) + C�n(x)℄;Bn(x) = 12� ��x [C�n+1(x) � C�n(x)℄;� = d2 � 1;
(7)

where C�n(x) is the Gegenbauer polynomial, andn = 0; 1; 2; : : : is an integer. This integer appears fromthe requirement that the fun
tions ai have no singular-ities at x = 1. The result for ai in (7) was obtainedusing the identityZ (1 + n � n0 + n � n00 + n0 � n00)��Bn(n � n0)Bn(n0 � n00) dn0 == 
d(1 + n � n00)Bn(n � n00);
d = Z dn = 2�d=2�(d=2) = 2��+1�(� + 1) : (8)We �nally obtain for proje
tion operatorP�(n;n0) == �2(h�[1+(� �n)(� �n0)℄+iZ�(� �n+� �n0)iBn(x)++ (n+ � + 1=2) [1� (� � n)(� � n0)℄An(x)): (9)For d = 3, this proje
tion operator 
oin
ides with thatfound in Ref. [3℄.We note that the fun
tions An(x) and Bn(x) havea nonsingular limit as � ! 0 (or d! 2),lim�!0An(x) = sin((n+ 1)�) + sin(n�)sin� ;lim�!0Bn(x) = sin((n+ 1)�)� sin(n�)sin� ;where � = ar

osx.To 
omplete the 
al
ulation of D(r; r0j") in Eq. (2),it is ne
essary to �nd the result of the a
tion of theoperator exp��is �rp2r + �2r + �(� + 1)=r�	on the fun
tion237
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an be done exa
tly in the same way as in Ref. [1℄.The method in Ref. [1℄ is based on the 
ommutation re-lations of the operatorsT1 = 12[rp2r + �(� + 1)=r℄; T2 = rpr; T3 = r;whi
h 
oin
ide with those of the O(2,1) algebra gener-ators (some other examples of applying the O(2,1) al-gebra in a Coulomb �eld 
an be found in Refs. [4, 5℄).The only di�eren
e between the 
ase of arbitrary d andd = 3 is the value of the parameter Æ in the equationT1rÆ = 0:For arbitrary d, we haveÆ = 8><>: �+ 3� d2 ; for� > 0;j�j+ 1� d2 ; for� < 0: (10)The �nal result for the fun
tion D(r; r0j") in Eq. (2) isD(r; r0j") = � i� (� + 1)2��+1(rr0)�+1=2 �� 1Xn=0 1Z0 ds exp[2iZ�"s+ i�(r + r0) 
tg(�s)� i�
℄��(y2J 02
(y)[1 + (� � n)(� � n0)℄Bn(x) ++ iZ�J2
(y)(� � n+� � n0)Bn(x) ++ (n+ � + 1=2)J2
(y)�� [1� (� � n)(� � n0)℄An(x)); y = 2�prr0sin(�s) ; (11)where J2
(y) is the Bessel fun
tion and An(x), Bn(x),�, and 
 are de�ned in Eq. (7). The 
orrespondingresult for the Coulomb Green's fun
tion of the Dira
equation in d spatial dimension isG(r; r0j") = � i� (� + 1)2��+1(rr0)�+1=2 �� 1Xn=0 1Z0 ds exp[2iZ�"s++ i�(r + r0) 
tg(�s)� i�
℄ T ;T = [1 + (� � n)(� � n0)℄��hy2J 02
(y)(
0"+m)�� iZ�J2
(y)
0� 
tg(�s)iBn(x) +

+h[1� (� � n)(� � n0)℄(
0"+m)��� 
tg(�s)(
 � n� 
 � n0)i�� J2
(y) (n+ � + 1=2)An(x) ++ � i�2(r � r0)2 sin2(�s) + imZ�
0��� (
 � n+ 
 � n0)J2
(y)Bn(x): (12)
For d = 3, this result 
oin
ides with the 
orrespond-ing result in Ref. [1℄. The fun
tion G(r; r0j ") has 
utsin the 
omplex plane " along the real axis from �1 to�m and from m to1, whi
h 
orrespond to the 
ontin-uous spe
trum, and also has simple poles in the interval(0;m) for an attra
tive �eld and in the interval (�m; 0)for a repulsive �eld. Integral representation (12) is validfor any " that belongs to the domain Re " < 0, Im " < 0or Re " > 0, Im " > 0. If Re " < 0, Im " > 0 or Re " > 0,Im " < 0, then the integration over smust be performedin Eq. (12) from zero to �1.For real " in the interval �m < " < m, we obtain(
f. Ref. [1℄) G(r; r0j") == � (� + 1)4� sin[�(Z�"=�� 
)℄��+1(rr0)�+1=2 �� 1Xn=0 �=2Z��=2 ds exp [�2iZ�"s=� ++ i�(r + r0) tg s℄ T ;T = [1 + (� � n)(� � n0)℄�� hv2J 02
(v)(
0"+m)�� iZ�J2
(v)
0� tg siBn(x) ++h[1� (� � n)(� � n0)℄(
0"+m)��� tg s(
 � n� 
 � n0)i�� J2
(v) (n+ � + 1=2)An(x) ++ � i�2(r � r0)2 
os2 s + imZ�
0��� (
 � n+ 
 � n0)J2
(v)Bn(x); v = 2�prr0
os s :

(13)

The denominator in Eq. (13) vanishes at the pointsZ�"=�� 
 = kfor any integer k. But the integral over s also vani-shes at these points with negative k (see Ref. [1℄), andhen
e expression (13) has poles only for k = 0; 1; 2 : : : .238



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Relativisti
 Coulomb Green's fun
tion in d dimensionsTaking into a

ount that 
 is positive, we �nd that thesimple poles 
orresponding to the dis
rete spe
trum areat the points " = m signZs1 +� Z�k + 
�2 : (14)The maximal value of Z when all the results obtainedare appli
able is de�ned by the relation(Z�)max = d� 12(see the de�nition of 
 in Eq. (7)).For 
ompleteness, we also present the �nal resultfor the Coulomb Green's fun
tion of the Klein�Gordonequation,G0(r; r0j") = � � (� + 1)2��+1(rr0)� 1Xn=0 n+ �� C�n(x)�� 1Z0 � dssin(�s) exp[2iZ�"s++ i�(r + r0) 
tg(�s)� i��℄J2�(y);� =q(n+ �)2 � (Z�)2: (15)
We note that there is no singularity in this formula atd = 2 be
auselim�!0 n+ �� C�n(x) = 
os(n�):3. ASYMPTOTIC FORMSWe derive the Coulomb Green's fun
tionGnr(r; r0jE) of the S
hrödinger equation in d spatialdimensions. For this, we 
al
ulate the nonrelativisti
asymptoti
 form of the Coulomb Green's fun
tion ofthe Klein�Gordon equation, appli
able at jEj � mand Z� � 1, where E = " �m. Negle
ting (Z�)2 in�, using the summation formula (
f. [2℄),S0 = 1Xn=0(�1)n � + n� C�n(x)J2(n+�)(y) == p� y2�J��1=2(w)23�+1=2�(� + 1)w��1=2 ; w = yr1 + x2 ; (16)and multiplying by 2m, we obtain

Gnr(r; r0jE) = � m(2�)�+1=2 1Z0 ds� �sin(�s)�2�+1 �� exp[2iZ�ms+i�(r+r0) 
tg(�s)�i��℄J��1=2(w)w��1=2 ;� = p�2mE: (17)This formula is in agreement with the 
orrespondingresult in Ref. [6℄.At high energies and small s
attering angles of theparti
les, the 
hara
teristi
 angular momenta are largeand the semi
lassi
al approximation is appli
able. Thesemi
lassi
al Green's fun
tion of the Dira
 equation ina Coulomb potential for d = 3 was �rst derived in Refs.[7, 8℄. Another representation of this fun
tion was ob-tained in Refs. [9, 10℄. The semi
lassi
al Green's fun
-tion for an arbitrary spheri
ally symmetri
 lo
alizedpotential was found in Refs. [11, 12℄. In Ref. [13℄, thesemi
lassi
al Green's fun
tion for an arbitrary lo
alizedpotential was found with the next-to-leading semi
las-si
al 
orre
tion taken into a

ount. In Ref. [13℄, thespheri
al symmetry of the potential was not required.We 
onsider the semi
lassi
al Green's fun
tion ofthe Dira
 equation in a Coulomb potential for an ar-bitrary spatial dimension d. In this 
ase, " � m and1 + x � 1, and hen
e the leading 
ontribution to thesum over n in Eq. (12) is given by n� 1. We 
an there-fore negle
t the term (Z�)2 in 
, Eq. (7), and sum overn analyti
ally. We need to 
al
ulate two sums,SA = 1Xn=0(�1)n(� + n+ 1=2)��An(x)J2(n+�+1=2)(y);SB = 1Xn=0(�1)nBn(x)J2(n+�+1=2)(y); (18)where the fun
tions An(x) and Bn(x) are de�ned inEq. (7). Using the re
urrent relations for the Besselfun
tions and the Gegenbauer polynomials, it is easyto show thatSA = (1 + x) ��xSB + (� + 1=2)SB;SB = �2y ��xS0; (19)so that SA = p� y2�+1J��1=2(w)23�+5=2�(� + 1)w��1=2 ;SB = p� y2�+1J�+1=2(w)23�+3=2�(� + 1)w�+1=2 : (20)
239



R. N. Lee, A. I. Milstein, I. S. Terekhov ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011Substituting these results in Eq. (12), we arrive at the�nal expression for the semi
lassi
al Green's fun
tionGq
(r; r0j") = � 12�+3=2��+1=2 �� 1Z0 dsu��1=2 � psh(ps)�2�+1 �� exp[2iZ�"s+ ip(r + r0) 
th(ps)� i��℄M;M = J��1=2(u)�� h
0"+m� p2 
th(ps)(
 � n� 
 � n0)i++ iJ�+1=2(u)u (�p2(r � r0)2 sh2(ps) +mZ�
0���(
 � n+ 
 � n0)� Z�
0p 
th(ps)�� [1 + (� � n)(� � n0)℄); u = pp2rr0(1 + x)sh(ps) ;
(21)

where p =p"2 �m2 = i�:For d = 3, the result in (21) agrees with that ob-tained in Refs. [7, 8℄. The term (Z�)2 in 
 
an alsobe negle
ted in the nonrelativisti
 approximation whenZ� � 1, p � m, and Z�m=p is �xed. In this 
ase,we immediately obtain from Eq. (21) that the nonrel-ativisti
 approximation for the Green's fun
tion of theDira
 equation is given byG(r; r0jm+E) = 
0 + 12 Gnr(r; r0jE); (22)where Gnr(r; r0j") is de�ned in Eq. (17).To summarize, in d spatial dimensions, we have 
al-
ulated the Green's fun
tions of the Dira
 and Klein�Gordon equations in the Coulomb �eld (Eqs. (12) and(15)). Nonrelativisti
 and semi
lassi
al limit 
ases ofthese Green's fun
tions are 
onsidered in detail. Theresults obtained 
an be applied for 
al
ulation of vari-ous QED amplitudes in the strong Coulomb �eld withthe use of dimensional regularization.

This work was supported in part by the RFBR(Grant � 09-02-00024) and the Grant 14.740.11.0082of the Federal Program �Personnel of Innovational Rus-sia�. I. S. T. was also supported by the �Dynasty� Foun-dation. REFERENCES1. A. I. Milstein and V. M. Strakhovenko, Phys. Lett.A 90, 447 (1982).2. L. Hostler, J. Math. Phys. 5, 591 (1964).3. P. C. Martin and R. J. Glauber, Phys. Rev. 109, 1307(1958).4. Y. Nambu, in: Pro
. 1967 Intern. Conf. Parti
les andFields, New York (1967).5. V. F. Dmitriev and Yu. B. Rumer, Theor. Math. Phys.5, 276 (1970) (in Russian).6. L. C. Hostler, J. Math. Phys. 11, 2966 (1970).7. A. I. Milstein and V. M. Strakhovenko, Phys. Lett.A 95, 135 (1983).8. A. I. Milstein and V. M. Strakhovenko, Zh. Eksp. Teor.Fiz. 85, 14 (1983) [JETP 58, 8 (1983)℄.9. R. N. Lee, A. I. Milstein, and V. M. Strakhovenko,Zh. Eksp. Teor. Fiz. 112, 1921 (1997) [JETP 85, 1049(1997)℄.10. R. N. Lee, A. I. Milstein, and V. M. Strakhovenko,Phys. Rev. A 57, 2325 (1998).11. R. N. Lee and A. I. Milstein, Phys. Lett. A 198, 217(1995).12. R. N. Lee and A. I. Milstein, Zh. Eksp. Teor. Fiz. 107,1393 (1995) [JETP 80, 777 (1995)℄.13. R. N. Lee, A. I. Milstein, and V. M. Strakhovenko, Zh.Eksp. Teor. Fiz. 117, 75 (2000) [JETP 90, 66 (2000)℄.

240


