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SPIN ICE IN A FIELD: QUASI-PHASESAND PSEUDO-TRANSITIONSP. N. Timonin *Southern Federal University344090, Rostov-on-Don, RussiaReeived January 14, 2011Thermodynamis of a short-range model of spin ie magnets in a �eld is onsidered in the Bethe�Peierls approx-imation. The results obtained for [111℄, [100℄, and [011℄ �elds agree reasonably well with the existing MonteCarlo simulations and some experiments. In this approximation, all extremely sharp �eld-indued anomalies aredesribed by analyti funtions of temperature and the applied �eld. In spite of the absene of true phase transi-tions, the analysis of the entropy and spei� heat reliefs over the H�T plane allows diserning �pseudo-phases�with a spei� harater of spin �utuations and de�ning the lines of relatively sharp �pseudo-transitions�between them.The disovery of spin ie ompounds [1; 2℄ hasopened wide perspetives in the studies of real geo-metrially frustrated magnets, with their reah physisstemming from the marosopially degenerate groundstates. An additional remarkable feature is that theseompounds an be desribed by the relatively sim-ple Ising model with the nearest-neighbor exhangeon the pyrohlore lattie. This is due to the lukyhane that strong dipole interations in these om-pounds have a negligible e�et on the low-energy ex-itations of the Ising moments direted along the linesonneting the enters of orner-sharing tetrahedra [3℄.The low-temperature physis of spin ies an thereforebe adequately aptured by the short-range Ising modelexept for the ultra-low temperatures where the equi-librium properties may be unobservable [4℄.Suh a model predits the absene of phase tran-sitions in zero �eld, whih agrees with experiments inspin ie ompounds [1; 2℄. Meanwhile, a wealth of rel-atively sharp anomalies in the applied magneti �eldsH of di�erent diretions is observed in their thermo-dynami parameters [5�14℄. Some of these anomaliesare interpreted as �eld-indued transitions, while oth-ers are thought to indiate the rossover between the re-gions with di�erent types of olletive spin �utuations.The notion of suh regions originates from Villain'sidea of low-temperature �spin-liquid� state in frustratedmagnets [15℄, where spin �utuations are strongly or-*E-mail: pntim�live.ru

related, being mostly on�ned to the ground-state sub-spae. By ontrast, the high-temperature region fea-tures unorrelated spin �utuations and hene repre-sents a genuine paramagnet. Although there is no truephase transition between paramagnet and spin-liquidstate, the temperature dividing these �quasi-phases�an nevertheless be identi�ed, as the temperature Tmof a maximum of spei� heat maximum in its tem-perature dependene C(T ) [4℄. Indeed, this maximumindiates a relatively sharp derease in entropy due tothe on�nement of spin �utuations at low T . It may behoped that this de�nition of Tm an justify the notionof �pseudo-transition� between the �quasi-phases� withdi�erent types of spin �utuations and, in the frame-work of rigorous theory, may help quantify the regionswhere various spin-liquid states exist.Impliitly, the notions of �quasi-phases� and �pseu-do-transition� are widely used to heuristially inter-pret the observed �eld-indued anomalies of C(T ) inspin ies and to identify the regions belonging to dif-ferent spin-liquid states on the H�T planes [9�13℄. Yetit is important to disriminate between the �pseudo-transitions� and the ordinary ones beause the miro-sopi models desribing the former would not have anysingular point but only the rossover regions. In addi-tion, these rossovers an beome progressively sharperat low T and in the viinity of ritial �elds, suhthat the �pseudo-transitions� may look like true transi-tions in experiments and simulations. The observedsharpening of �pseudo-transitions� gives rise to the6 ÆÝÒÔ, âûï. 2 (8) 289



P. N. Timonin ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011idea that in [111℄ (Refs. [9�11℄), [110℄ (Refs. [12; 13℄),and [100℄ (Ref. [16℄) �elds at low temperatures spinie ompounds experiene �rst-order transitions of the�gas�liquid� type, ending up at the ritial point atsome maximal T . Also from the same sharpening,the notion of the spei� �Kasteleyn transition� in theshort-range spin ie model in [100℄ �eld [17℄ originated.Here, we show that most probably, there are notrue phase transitions in the short-range spin ie modelin [111℄, [100℄, and [110℄ �elds and all the observed ther-modynami anomalies an be desribed by perfetlysmooth funtions of T and H . Atually, this onlu-sion an be made on the basis of the existing theo-retial results. Indeed, the papers presenting MonteCarlo simulations in the regions of �gas�liquid� [16; 18℄and �Kasteleyn� transitions [17℄ also present the re-sults obtained in the Bethe�Peierls (BP) approximation�orroborating� the numerial results. Both these datashow a remarkable agreement with experiments [6; 9�11℄, but BP results desribe extremely sharp anomalieswith perfetly smooth funtions. Taking this fat seri-ously may tell us that we are atually dealing with the�pseudo-transitions� and their sharpening at low T .We show expliitly how the BP approximation inthe short-range spin ie model an desribe very sharp�eld-indued anomalies with analyti funtions of Tand H . In the BP approah, the sharp anomalies atlow T are only the re�etions of true �rst-order transi-tions that our at T = 0 and some ritial �elds. Inview of the high preision with whih the BP approxi-mation an reprodue the nominally exat results [16�18℄ as well as experimental data [6�13℄ and quite learphysis underlying the origin of the anomalies, we ansuppose that BP's �pseudo-transitions� are not arte-fats of the approximation but the intrinsi feature ofthe model.1. SPIN ICE IN THE BETHE�PEIERLSAPPROXIMATIONMagneti ions in spin ie are plaed on the py-rohlore lattie onsisting of orner-sharing tetrahedra;a fragment of the lattie is shown in Fig. 1. Stronganisotropy allows only two diretions of magneti mo-ments along the loal easy axis onneting the site withthe enters of tetrahedra. Therefore, the magneti stateis de�ned by Ising spins �� on the sites. Consideringfour sites belonging to the entral tetrahedron in Fig. 1,we de�ne their easy axes by the unit vetors shown inthis �gure:
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Fig. 1. Fragment of a pyrohlore lattie (a) and thevetors de�ning the diretions of the easy axes on theirsites (b)e0 = (x̂+ ŷ + ẑ) =p3 ; e1 = (x̂� ŷ � ẑ) =p3 ;e2 = (�x̂+ŷ�ẑ) =p3 ; e3 = (�x̂�ŷ+ẑ) =p3: (1)Here, x̂, ŷ, and ẑ are the unit vetors along the oor-dinate axes. Then the magneti moments of the sitesare m� = e��� (2)and the e�etive Hamiltonian for the tetrahedron in anexternal �eld H is [14℄H(�) = J2  3X�=0��!2� 3X�=0��H�; H� � H�e�: (3)With de�nition (1), the identities3X�=0 e� = 0; e� � e� = �13 ; � 6= �; (4)hold, and �� = 1 orresponds to the �out� moment.The BP approximation for the pyrohlore lat-tie [17℄ assumes that the e�etive �elds ating on thesites of a given tetrahedron (say, the entral one inFig. 1a) from all other sites are the same as those atingon its nearest neighbours (outer sites in Fig. 1a) fromall other sites exept those of the given tetrahedron.This �eld equivalene does not atually hold on the py-rohlore lattie due to the orrelations arising from thelosed loops of tetrahedra. But it beomes exat on thevariant of the hierarhial Bethe lattie built from theorner-sharing tetrahedra [17℄. We an obtain it fromthe luster in Fig. 1a attahing a tetrahedron to eahouter site and then endowing eah of the new outersites with a new tetrahedron, and so on. The proess isillustrated by the planar graph in Fig. 2a, where tetra-hedra are projeted to the squares with the numberson their sites indiating the orientations of easy axes.290
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Fig. 2. a) Fragment of a Bethe lattie built hierar-hially via addition of new tetrahedra to the outersites. The lattie an be viewed as onsisting of fourtrees onneted by the bonds of the entral tetrahedron(dashed line). The numbers indiate the diretions ofeasy axes of the sites, b) the same lattie an be ob-tained from two trees via merging their root sitesAs Fig. 2a shows, we an onsider suh a Bethe lat-tie as onsisting of four �-trees with � = 0, 1, 2, 3denoting their root sites, whih are onneted by thebonds of the entral tetrahedra. Alternatively, we anobtain the lattie from two �-trees merging their rootsites (f. Fig. 2b). Hene, there are two ways to on-strut the free energy of the Bethe lattie with the par-tial partition funtions Z�(��; N) for theN -site �-treessummed over all spins exept the root one. Using the�rst representation of the Bethe lattie, we have thefree energy�4 = �T lnTr� e��H(�) 3Y�=0Z�(��; N); (5)where � = T�1, H(�) is de�ned in Eq. (3), and Tr�denotes the summation over ��, � = 0, 1, 2, 3. In theother representation, we obtain the free energies�2� = �T lnTr�� eh���Z2�(��; N); h� � �H�: (6)Assuming the �nite orrelation range in our system wehave in the thermodynami limit, N !1,�4 ! 4NF + 4SG; �2� ! (2N � 1)F + 2SG;where F is the (internal) free energy per site in thislimit, S is the number of surfae sites in a tree and Gis the density of the surfae ontribution to the full po-tential. 2N � 1 in the seond relation appears beausewe have merged two root sites into one.The peuliarity of Bethe latties having formallythe in�nite spatial dimension onsists in the �nite ra-tio S=N at N ! 1. In our lattie S=N ! 2=3 and

we annot neglet the surfae ontribution to the fullpotential. Yet this irumstane does not prevent thedetermination of the free energy per site F from �4 and�2� as we an hoose their linear ombination wherethe surfae terms oneal eah other. Thus we haveF = 14 limN!1 2�4 � 3X�=0�2�! : (7)We an also represent Z�(��; N) in Eqs. (5) and (6) asZ�(��; N) = A�(N)ex��� ;where x�T has the meaning of the e�etive magneti�elds exerted on the sites of the entral tetrahedron bythe other spins in the lattie. From (3) and (5)�(7),introduing the new variables f� = x� + h� insteadof x�, we then obtainF = T4 3X�=0 ln [2 h(2f� � h�)℄� T2 ln 2Z(f);Z(f) � 12 Tr� w(�; f); (8)
w(�; f) = exp24�K2  3X�=0��!2 + 3X�=0 f���35 ;K � �J: (9)Owing to the form of Eq. (7), the resulting expressionfor F depends only on the parameters f�. The equa-tions for f� an be obtained from the ondition thatthey provide a minimum of F ,�F�f� = 0; X�;� �� �2F�f��f� > 0 for all ; (10)or th(2f� � h�) = h��iw; (11)where the angular brakets with the �w� subsript de-note the average with the distribution funtion w(�; f)from Eq. (9). Alternatively, we an obtain the sameequations (11) from reursion relations for Z�(�;N).For the Hessian in Eq. (10), we obtain�2F�f��f� = Æ�� �1� h��i2w��� 12h����iw + 12 h��iwh��iw: (12)The standard derivation of Eqs. (11) does not yielda positive de�niteness of the Hessian whih auses no291 6*



P. N. Timonin ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011problems when these equations have a unique solution.Otherwise, we would have to hoose among the solu-tions, the natural hoie being the one that providesthe global free energy minimum.With f� obtained from Eqs. (11), we an fully de-sribe the spin ie thermodynamis in the BP approx-imation. For the equilibrium values of spins, h��i, weuse the lattie representation in Fig. 2b to obtainh��i = Tr�� ��Z2�(��)eh���Tr�� Z2�(��)eh��� = th(2f� � h�): (13)Aording to Eq. (2), the equilibrium magnetizationper spin is then given byhmi = 14 3X�=0 e�h��i = 14 3X�=0 e� th(2f� � h�): (14)Also from (8)�(11), we obtain the equilibrium entropyS = ��F�T = ��F � 14 3X�=0h�h��i++ KZ(f) �Z1(f)e�2K + 4Z2(f)e�8K� : (15)Here, we introdue the quantitiesZn(f) = 12 Tr�8<:e 3P�=0��f� �� Æ 24 3X�=0��!2 ; 4n2359=; ; n = 0; 1; 2; (16)whih de�ne the ontributions to Z(f) in (8) from thegroups of states with equal exhange energies:Z(f) = 2Xn=0Zn(f)e�2n2K : (17)Hene, Z0(f) orresponds to the ontributions of spinie states (two in, two out), Z1(f)e�2K desribes theontributions of (three in, one out) and (three out, onein) states, and Z2(f)e�8K results from all in and all outstates. Expliit expressions for Zn(f) areZ0(f) = h(f0 + f1 � f2 � f3) ++2 h(f0 � f1) h(f2 � f3);Z1(f) = 3X�=0 h0� 3X�=0 f� � 2f�1A ;Z2(f) = h 3X�=0 f�! : (18)
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Fig. 3. Temperature dependene of S and C in zero�eld. A logarithmi sale is hosen on the T axisFrom (17) and (18), we an also obtain the expliitform of equations of state (11) asth(2f� � h�) = � lnZ(f)�f� : (19)Further di�erentiations of Eqs. (14) and (15) an yieldthe tensor of magneti suseptibilities and spei� heat.We have a quite simple theory of spin ie thermody-namis onsisting essentially of Eqs. (8) and (9). Thistheory an desribe all intriate features of this stronglyfrustrated system behavior in various �elds, as we showbelow. To begin, we an easily �nd that in a zero �eld,S in Eq. (15) gives the Pauling value of the residualentropy at T = 0 [19℄:SP = 12 ln 32 � 0:2:Indeed, at H = 0, f� = 0, and Z0 = 3, Z1 = 4, Z2 = 1,and heneS(T ) = �12 ln 2 + 12 ln(3 + 4e�2K + e�8K) ++ 4K e�2K + e�8K3 + 4e�2K + e�8K :Therefore, S(0) = SP at T = 0 (K = 1), whileS(1) = ln 2 at T = 1 (K = 0). For the spei�heat, we obtainC = T �S�T = 24K2e�2K(1� 2e�2K + 3e�4K)(3 + e�2K � e�4K + e�6K)2 :The temperature behavior of S and C is shown inFig. 3. It illustrates the notions of �quasi-phases� and292



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Spin ie in a �eld: quasi-phases and pseudo-transitions�pseudo-transition�. The funtion S exhibits a broadrossover between Pauling and paramagneti values,but below Tm � 0:8J , where C has a maximum, wehave a �spin ie liquid�, where the loal spin on�gura-tions are mainly �two in, two out�, while above Tm, theyare almost unorrelated and we have a �paramagnetiquasi-phase�.2. SPIN ICE IN THE [111℄ FIELDFor H = He0, we haveh0 = h; h1 = h2 = h3 = �h=3; h � �Hand the solution of Eq. (19) has the formf0 = x; f1 = f2 = f3 = �y:It then follows from (19) thatth(2x� h) = � lnZ(x; y)�x ;3 th�2y � h3� = � 3Xi=1 � lnZ(f)�fi = � lnZ(x; y)�y ; (20)where Z(x; y) is given by Eq. (17) withZ0(x; y) = 3 h(x+ y);Z1(x; y) = h(x+ 3y) + 3 h(x � y);Z2(x; y) = h(x� 3y): (21)Also from (4) and (14), we havehmi = e04 �th(2x� h) + th�2y � h3�� : (22)We �rst onsider the ase of low temperatures andmoderate �elds T � J; H � J:As we show below, we an then drop the ontributionsto Z that are proportional to Z1 and Z2, and thereforeEqs. (20) beometh(2x� h) = 3 th�2y � h3� = th(x+ y): (23)Hene, we have x = y + h;m = jhmij = th�2y � h3� = 1p1 + 3t2 + 1 ;t � th�43 h� : (24)

Using this m, we an express other thermodynamiquantities as��F = 12 ln 32 + 18 ln (1�m2)31� 9m2 ;S = ��F � hm = 12 ln 32 ++ 38 [(1�m) ln(1�m) + (1 +m) ln(1 +m)℄��18 [(1+3m) ln(1+3m)+(1�3m) ln(1�3m)℄ ; (25)�0 � T� = �m�h = 23 (1�m2)(1� 9m2)1 + 3m2 ; C = h2�0:The relation for the spei� heat C follows from theequation �� F�h = �m (26)and the saling form of �F , whih depends only onh = H=T . Due to this saling, the above quantitiesare onstant along the lines H = T and have di�er-ent limit values at H = T = 0 along these lines. Inpartiular, at H = 0, we havem = 0; S = SP ; �0 = 23 ; C = 0; (27)while at T = 0,m = 13 ; S = 14 ln 43 � 0:072; �0 = C = 0: (28)Here, the entropy value is redued with respet to SPbeause of partial lifting of the ground state degener-ay in the [111℄ �eld. This �xes the �out� diretion forthe 0 spin, while three others an freely hoose whihone of them is to also point out to obey the ie rule.This phase orresponds to a �kagome ie� state in theoriginal pyrohlore lattie [18℄.Following [19℄, we �rst onsider the spins as be-longing to N=4 independent tetrahedra. We then have�0 = 3N=4 states for the spins. Turning to the N=4bond tetrahedra onneting the independent ones, wethen see that their free (1, 2, 3) sites have � = 1with the probability p+ = 1=3 and � = �1 with theprobability p� = 2=3. Therefore, the average num-ber of favorable 3-spin states (two in, one out) persuh tetrahedron is 3p+p2� = 4=9 and the total numberof states � = �0(4=9)N=4 = (4=3)N=4 gives the valueof S = N�1 ln � in Eq. (28). We thus see that thePauling�Anderson entropy estimates [19℄ are exat inthe BP approximation.The behavior of thermodynami variables near thepointH = T = 0, given by Eqs. (25), is shown in Fig. 4.293
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ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Spin ie in a �eld: quasi-phases and pseudo-transitionsThe S and C temperature dependenes in the broaderrange T � J for H � J obtained via numerial solu-tion of the equations of state are presented in Fig. 5.We note the appearane of an additional low-T peakin C(T ) at H � 0:7T designating a pseudo-transitionbetween the �kagome ie� and ordinary spin ie states.We an now assess the range of validity of the aboveanalyti results. We have assumed that" � Z1(x; y)e�2K + Z2(x; y)e�8KZ0(x; y) � 1:This ondition an be violated as h ! 1 whenx; y ! 1. Indeed, we then have " � e2(y�K), andtherefore the above results hold for y < K. From (24),we have y � h=6 as h!1, and the validity onditionfor T � J is H < 6J .Hene, for T � J and H � 6J , we annot ignoreZ1 and Z2. But analyti results an be also readily ob-tained in this ase. Here, h ! 1 and we an assumethat x!1, and therefore the seond equation in (20)beomes th�2y � h3� = 1 + e2(y�K)3 + e2(y�K) :This is atually the quadrati equationu2 � �u� 2 = 0; u � e2y�h=3; � � eh=3�2K : (29)Therefore,u � e2y�h=3 = 12 ��+p�2 + 8� : (30)From the �rst equation in (20), we obtain the exatrelation e2x = e2(y+h) �(y;K)�(�y;K) ;�(y;K) = 3+e2(y�K)+3e�2(K+y)+e�4(2K+y): (31)It follows that always 2x�h!1 ontrary to 2y�h=3,and hene, aording to (22),m � jhmij = 14 �1 + th�2y � h3�� == �+p�2 + 8�+ 3p�2 + 8 : (32)Again using 2x � h ! 1 and Eqs. (30) and (32), wean express thermodynami quantities in terms of themagnetization as��F = 12 ln 2 + 14 ln m21� 2m + h3 ;

S = 12(2� 3m) ln 2 + 32m lnm�� 34(1� 2m) ln(1� 2m)� (3m� 1) ln(3m� 1); (33)�0 = �m�h = 23 (3m�1)(1�2m)1�m ; C = (h�6K)2�0:Hene, at T � J � H , the saling dependene onthe single parameter (H�H)=T , H � 6J , also holds.Here, thermodynami quantities are onstant along thestraight lines emerging from the point T = 0, H = H.At this point, spin ie undergoes a �rst-order phasetransition from the degenerate �kagome ie� phase tothe ompletely ordered �three in, one out� phase. AtT = 0, we haveH < H; m = 13 ; S = 14 ln 43 � 0:072;� = C = 0;H = H; m = 25 ; S = 14 ln 165 � 0:29;�0 = 245 ; C = 0;H > H; m = 12 ; S = � = C = 0: (34)
The large value of S at H = H is due to the degen-eray between the on�gurations of the adjoint phases.We also note that the results for H < H oinide withthe T = 0 results in Eq. (28) valid down to H = 0.Hene, at T = 0 and 0 < H < H, we have plateausin �eld dependenes of S and m, whih are also seenat low T < J (see Fig. 6). They also have rossingpoints at H = H due to saling, in agreement withexperiments [6; 11℄ and simulations [18℄.Figure 7 shows the behavior of thermodynami vari-ables at high T and H . The loation of spei� heatridges on the H�T plane is summarized in Fig. 8. Theyare used to de�ne the regions of spin ie, kagome ie,and paramagneti and ompletely ordered (�saturated�)quasi-phases. However, the attribution of some def-inite spin-liquid quasi-phase to the entral region inFig. 8 seems to be less appropriate beause it is hardto desribe the nature of olletive exitations for thewhole vast H and T ranges here. The experimentaldata on C in a [111℄ �eld [8�10℄ show only a vagueresemblane to the present results. Aordingly, thephase diagram in Fig. 8 di�ers essentially from the ex-perimental ones [9; 11℄.295
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they an overome at H < H [17℄. However, we showhere that this is only a �pseudo-transition� and its sharpanomalies an be desribed in the BP approximationwith perfetly smooth funtions.The solution of Eq. (19) is given by f0 = f1 == �f2 = �f3 = x, whenehmi = exp3 th�2x� hp3 � : (36)It follows from (17)�(19) thatZ(x) = 2 + h 4x+ 4e�2K h 2x+ e�8K ;Z(x) th�2x� hp3 � = sh 4x+ 2e�2K sh 2x: (37)The last equation is atually an algebrai forth-orderequation for � = exp(�2x),296
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a � exp(�2K); b � exp�� 2p3 h� :In the interval 0 < � < 1, it has a unique solutionthat depends analytially on H and T at T > 0. Find-ing the solution numerially, we obtain the thermody-nami quantities as funtions of H and T . The re-sults are shown in Figs. 9 and 10. Quite remarkably, atT � J , we see absolutely sharp anomalies that an beeasily mixed up with the genuine phase transitions. Butin the present theory, they are only sharp rossovers;the genuine �rst-order transition takes plae only atT = H = 0.To show this, we assume that T � J and determinethe behavior of � as a ! 0. We an simplify Eq. (38)to (2� b)�3 + (1� 2b)� = ab: (39)As a! 0, we haveb < 12 ; � ! 0; b = 12 ; � = �a3�1=3 ;b > 12 ; � !r2b� 12� b :297
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