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PASSIVE SCALAR TRANSPORT IN PERIPHERAL REGIONSOF RANDOM FLOWSA. Chernykh a;b*, V. Lebedev ;daInstitute of Automation and Eletrometry, Siberian Branh of the Russian Aademy of Sienes630090, Novosibirsk, RussiabNovosibirsk State University630090, Novosibirsk, RussiaLandau Institute for Theoretial Physis, Russian Aademy of Sienes117334, Mosow, RussiadMosow Institute of Physis and Tehnology14700, Mosow, RussiaReeived January 13, 2011We investigate statistial properties of the passive salar mixing in random (turbulent) �ows assuming itsdi�usion to be weak. Then at advaned stages of the passive salar deay, its unmixed residue is primarilyonentrated in a narrow di�usive layer near the wall and its transport to the bulk goes through the peripheralregion (laminar sublayer of the �ow). We onduted Lagrangian numerial simulations of the proess for diffe-rent spae dimensions d and revealed strutures responsible for the transport, whih are passive salar tonguespulled from the di�usive boundary layer to the bulk. We investigated statistial properties of the passive salarand of the passive salar integrated along the wall. Moments of both objets demonstrate saling behavioroutside the di�usive boundary layer. We propose an analyti sheme for the passive salar statistis, explainingthe features observed numerially.1. INTRODUCTIONStohasti dynamis of salar �elds suh as the tem-perature or onentration of pollutants in random (tur-bulent) �ows is of great importane in di�erent phys-ial ontexts, from osmology to miro�uidis. If thebak reation of the �eld on the �ow is negligible, thenthe �eld is alled a passive salar. We onsider thepassive salar in random �ows, where the �ow velo-ity varies randomly in time. Theoretial examinationof dynamial and statistial properties of the passivesalar in random �ows goes bak to lassial works ofObukhov [1℄ and Corrsin [2℄, where a phenomenologyfor the passive salar statistis in turbulent �ows wasdeveloped in the spirit of the Kolmogorov sheme [3℄.Modern understanding of the passive salar statistis inturbulent �ows is re�eted in Refs. [4�7℄ (see also [8�10℄). The mixing problem for the passive salar hasalso been investigated for haoti �ows [11℄. An inter-*E-mail: hernykh�iae.nsk.su

esting example of a random �ow is the so-alled elastiturbulene, disovered in polymer solutions in [12℄. Ob-servations of the passive salar statistis in the elastiturbulene were reported in Ref. [13℄.In the 1990s, a series of theoretial works devotedto the passive salar statistis were done in the frame-work of the so-alled Kraihnan model, where the tur-bulent �ow is assumed to be short-orrelated in timeand to have a de�nite saling. Those works revealedgeneral features of the passive salar statistis in tur-bulent �ows inluding the so-alled anomalous salingand intermitteny [14�16℄ (see also reviews [17, 18℄).However, the approah implies spaial homogeneity ofthe �ow statistis and is therefore not diretly applia-ble to near-wall regions.In this paper, we investigate the passive salarstatistis in peripheral regions of a vessel where the de-veloped (high-Reynolds) turbulene is exited. Speak-ing about the peripheral regions of turbulent �ows, weunderstand a laminar (visous) sublayer formed nearwalls where the veloity �eld an be onsidered as13 ÆÝÒÔ, âûï. 2 (8) 401



A. Chernykh, V. Lebedev ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011smooth (it varies over distanes of the order of thesublayer thikness). However, the veloity remainsa random funtion of time there. A ertain laminarboundary layer is also harateristi of the elasti tur-bulene [19℄. The passive salar statistis in the pe-ripheral region is determined by a ompliated inter-play of its di�usion and random advetion in the highlyanisotropi situation aused by the presene of walls.We are interested in advaned stages of the pas-sive salar deay under the assumption that the Peletor the Shmidt number is large. In this ase, the un-mixed fration of the passive salar is loated mainly ina narrow di�usive layer near the wall, thinner than thethikness of the peripheral region [20℄. Then the pas-sive salar transport to the bulk goes through the pe-ripheral region outside the di�usive layer. Just this pe-ripheral region plays a ruial role in formation of sta-tistial harateristis of the passive salar transport.The same reasoning an be applied to a stationary aserelated, e. g., to a permanent heat �ow going from thewalls through the periphery region to the bulk. More-over, fast hemial reations an be analyzed within thesame sheme (see Ref. [21℄). A theoretial approah tothe problem was developed in [22℄, and prinipal pre-ditions of the theory were on�rmed by experimentin [23℄.To hek the theoretial preditions in detail, weonduted extensive numerial simulations of the prob-lem based on the Lagrangian dynamis of partiles rep-resenting the passive salar. To establish main qualita-tive properties of the passive salar transport in periph-eral regions, we foused on the two-dimensional ase(2d). However, a great advantage of the Lagrangiansheme is the possibility to extend the approah tohigher dimensions without major problems. We per-formed simulations for the spae dimension d = 3�5 toestablish the universality of the passive salar statisti-al behavior in 2d and to reveal features harateristiof higher dimensions. We used a sheme with perma-nent injetion of partiles near the wall, whih produesa passive salar statistially homogeneous in time. Butour onlusions are also valid for the deaying ase be-ause of the adiabatiity: events responsible for thepassive salar transport to the bulk our muh fasterthan the average passive salar deay.The obtained numerial data an be used to om-pute averages haraterizing the passive salar statis-tis. First of all, we found moments of the passivesalar at di�erent separations from the wall. The datashow the existene of a well-pronouned di�usive layerwhere the passive salar is mainly onentrated, in a-ordane with the theoretial expetations formulated

in Ref. [22℄. Outside the di�usive layer, the passivesalar moments demonstrate saling behavior with theexponents deviating from those proposed in Ref. [22℄,where the di�usion was assumed to be negligible out-side the di�usive layer. We veri�ed that the deviationsare indeed related to di�usion. The situation resem-bles the passive salar statistis in the Bathelor velo-ity �eld on sales larger than the pumping length wheredi�usion appears to be relevant [24℄, whih orrets thedi�usionless behavior examined in Ref. [25℄. Next, weintrodued the passive salar integrated along a surfaeparallel to the wall. The di�usion along the wall dropsout from the equation for the objet. We demonstratednumerially that as funtions of the separation from thewall, the moments of the integral passive salar have awell-pronouned saling behavior outside the di�usivelayer. We found the orresponding saling exponentsfor the moments with degrees n = 1�6 in spae dimen-sions d = 2�5. The moments exhibit an anomaloussaling signalling a strong intermitteny of the passivesalar statistis.The simulations enabled us to reveal objets un-derlying the intermitteny. These are tongues of thepassive salar pulled from the di�usive layer towardsthe bulk. The tongue ross setion diminishes as theseparation from the wall inreases (beause the veloityomponent perpendiular to the wall inreases). Thatexplains why di�usion an play an essential role evenin the region outside the di�usive layer. The subse-quent tongue evolution, inluding tongue folds, pro-dues long-lived strutures of omplex shape. Some-times, the tongues are pulled so strongly that they ir-reversibly push a passive salar portion away from thewall. Just this mehanism is responsible for the passivesalar transport to the bulk, whih naturally explainsits strong intermitteny.As an explanation of the passive salar statistis,we suggest a theoretial sheme based on the smallnessof the passive salar orrelation length along the walloutside the di�usive layer. This sheme allows �ndingexpliit expressions for the saling exponents hara-terizing di�erent objets. A omparison of the theoret-ial preditions with numerial results shows that theyagree satisfatorily. Some preliminary results of ourwork were published in Ref. [26℄.The struture of this paper is as follows. In Se. 2,we present our theoretial approah to the passivesalar dynamis and statistis in the peripheral regionand propose a sheme yielding the saling exponents.In Se. 3, we explain our omputational sheme, presentomputed moments of the passive salar and integralpassive salar, desribe the passive salar tongues, and402



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Passive salar transport in peripheral regions : : :ompare our numerial results with theory. In Conlu-sion, we summarize our results and disuss their possi-ble appliations and diretions of future investigations.2. THEORETICAL DESCIPTIONWe onsider the passive salar statistis in periphe-ral regions of a random �ow, i.e., regions near bound-aries (walls). Our prinipal example is the visous (la-minar) boundary layer of the developed high-Reynoldshydrodynami turbulene (see, e.g., book [8℄), but ourapproah an also be applied to other situations. Forexample, we an onsider the peripheral region of elas-ti turbulene [12℄. The only feature relevant for usis the smoothness of the �ow in the boundary layer,whereas the veloity varies randomly in time there.We let � denote the passive salar �eld. It an repre-sent both temperature variations or the onentrationof pollutants. The passive salar evolution (deay) inan external �ow is desribed by the advetion�di�usionequation �t� + vr� = �r2�; (1)where v is the �ow veloity and � is the di�usion (ther-modi�usion) oe�ient. Below, the �uid is assumedto be inompressible (that is, the �ow is divergent-less, rv = 0). Equation (1) implies that there areno soures of the passive salar in the bulk. However,we do not exlude a passive salar �ux from the vesselwalls.Equation (1) has to be supplemented by boundaryonditions at the wall. If � is the density of pollutantsand the wall is impenetrable for the pollutants, thenthe gradient of � in the diretion perpendiular to thewall is zero near the wall, whih orresponds to zeropollutant �ux to the boundary. In this ase, we dealwith the passive salar deay, leading ultimately to itshomogeneous distribution in spae. If � is the tempera-ture, then its gradient in the diretion perpendiular tothe wall an be nonzero, whih orresponds to a �niteheat �ux through the boundary (from the wall). If thewalls are made of a material that onduts heat well,then the value of � (temperature) has to be regardedas �xed at the boundary.We assume that the Pelet or Shmidt number islarge (that is, the di�usion oe�ient � is small in om-parison with the �uid kinemati visosity �). Then, aswas demonstrated in [22℄, the passive salar dynam-is in the peripheral region is slow in omparison withthe veloity dynamis. Therefore, the passive salar israpidly mixed in the bulk (for a time that an be esti-mated as the inverse Lyapunov exponent of the �ow),

whih leads to a homogeneous spaial distribution ofthe passive salar, � = onst. The subsequent pas-sive salar evolution is related mainly to the peripheralregions, whih supply the bulk by passive salar �u-tuations. We assume that the bulk an be treated asa big reservoir; then the bulk homogeneous value of �,�b, an be assumed to be independent of time. Below,we assume that the passive salar �eld is shifted by �b,whih leads to the ondition � ! 0 as we pass from theperiphery to the bulk.2.1. Correlation funtionsStatistial properties of the passive salar an bedesribed in terms of its orrelation funtionsFn(t; r1; : : : ; rn) = h�(t; r1) : : : �(t; rn)i; (2)where the angular brakets denote averaging over largetimes (larger than the veloity orrelation time). Be-ause the veloity tends to zero in approahing the walland the moleular di�usion is assumed to be weak, thepassive salar dynamis, determined by an interplay ofthe advetion and di�usion, is slower than the velo-ity dynamis in the peripheral region. Therefore, ininvestigating the passive salar dynamis, the veloityan be regarded as short-orrelated in time, and losedequations an be derived for the passive salar orrela-tion funtions (see, e.g., [18, 22℄)�tFn = � nXm=1r2mFn ++ nXm;k=1X�� �m� [D��(rm; rk)�k�Fn℄ ; (3)where D�� is expressed in terms of the pair veloityorrelation funtion asD��(r1; r2) = 1Z0 dt0hv�(t+ t0; r1)v�(0; r2)i: (4)Here, again, the angular brakets denote averaging overtimes larger than the veloity orrelation time.The struture of Eq. (3) is quite transparent: theevolution of the passive salar orrelation funtions isdetermined by the moleular di�usion (the �rst termin the right-hand side) and by the eddy di�usion (theseond term in the right-hand side). Therefore, thequantity D�� an be alled the eddy di�usion tensor,sine it desribes di�usion of the passive salar relatedto the random �ow. This e�et an be ompared tothe turbulent di�usion of the passive salar in turbu-lent �ows in the bulk on sales larger than the visous403 13*



A. Chernykh, V. Lebedev ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011length. But in our ase, the eddy di�usion tensor D��is assoiated with a smooth �ow, and an be used todesribe the passive salar dynamis on sales smallerthan the turbulent visous length.We assume that the walls of the vessel are smoothand that the boundary layer width is muh less than theurvature radii of the wall. Then it an be treated as�at in the leading approximation. We introdue a ref-erene system with the z axis perpendiular to the walland assume that the �uid oupies the region z > 0.The smoothness of the veloity leads to the propor-tionality laws vx; vy / z and vz / z2 for the veloityomponents along and perpendiular to the wall. Thelaws are onsequenes of the veloity smoothness, ofthe nonslipping boundary ondition v = 0 at the wall,and of the inompressibility ondition rv = 0.Below, we assume that the veloity statistis is ho-mogenous in time, and also assume its homogeneityalong the wall. Due to the assumed homogeneity, ve-loity orrelation funtions depend on time di�erenesand on the di�erenes of the oordinates x and y. Forexample, eddy di�usion tensor (4) is independent oftime and does depend on the di�erenes x1 � x2 andy1 � y2. However, it depends on both z1 and z2 dueto the strong inhomogeneity of the system in the di-retion perpendiular to the wall. The z-dependeneof the eddy di�usion tensor omponents an be founddiretly from the proportionality laws vx; vy / z andvz / z2. For example,Dzz(x; y; z1;x; y; z2) = �z21z22 ; (5)where � is a onstant haraterizing the strength of theveloity �utuations in the peripheral region.The equation for the �rst moment of � (the averagevalue of the passive salar �eld), h�i, is�th�i = �z ��z4�zh�i�+ ��2z h�i; (6)as follows from Eqs. (3) and (5). Comparing the ad-vetion and di�usion terms in Eq. (6), we �nd a har-ateristi di�usion length rbl de�ned asrbl = (�=�)1=4: (7)This quantity determines the thikness of the di�usionboundary layer formed near the wall. Due to the small-ness of � (we reall that the Pelet or Shmidt numberis assumed to be large), the di�usion length is muhless than the thikness of the peripheral region, wherethe law vz / z2 holds.We onsider an advaned stage of the passive salardeay or a statistially stationary situation aused by apermanent passive salar �ux through the wall. Then

the passive salar � is nonzero primarily in the di�usiveboundary layer, at z . rbl. We reall that we shiftedthe �eld � ! � � �b, where �b is its value in the bulk.After the shift, the �eld � ould be positive or nega-tive (depending on boundary onditions) and shouldtend to zero in the bulk, that is, as z ! 1. But weare mainly interested in the passive salar transportthrough the region z � rbl, where the passive salar isarried from the di�usive boundary layer to the bulk.There, we may neglet the moleular di�usion term inEq. (6), whih yields the proportionality lawh�i / z�3: (8)This gives the deay rate of h�i as z inreases. We notethat the law in (8) orresponds to a onstant averagepassive salar �ow through the planes z = onst, thatis, the �ux is independent of z.It an be antiipated that at z � rbl, the higherpassive salar moments have some saling behavior ash�i has. We introdue the orresponding saling expo-nents h�ni / z��n : (9)If the moleular di�usion is irrelevant outside the dif-fusion boundary layer, then �n = 3 [22℄. However, ournumerial data imply that the moleular di�usion isrelevant even at z � rbl (we give an explanation ofthis phenomenon in what follows). Therefore, the ex-ponents �n are not equal to 3 and their values are asubjet of speial investigation.We turn to passive salar orrelation funtions (2).At z � rbl, their dependene on the oordinates alongthe wall are haraterized by a orrelation length l thatan be found from the balane of the moleular andthe eddy di�usion along the wall. The eddy di�usivityterm in Eq. (3) an be estimated as �z2 (see Eq. (5);the z2 law follows from the z-dependene of the veloityomponents). Comparing the moleular di�usion term� �=l2 and the eddy di�usion term in Eq. (3), we �ndl �p�=� z�1: (10)The quantity is of the order of rbl at z � rbl and de-reases as z�1 as z inreases.2.2. Integral passive salarTo exlude the e�ets of moleular di�usion, we in-trodue an integral of the passive salar �eld along asurfae parallel to the wall,�(t; z) = A�1 Z dx dy �(t; x; y; z); (11)404



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Passive salar transport in peripheral regions : : :where A is the area of the surfae and z is its separationfrom the wall. We let�n(t; z1; : : : ; zn) = h�(t; z1) : : :�(t; zn)i (12)denote the orresponding orrelation funtions. Inte-grating Eq. (3) over xk and yk, we obtain�t�n = � nXm=1 �2mz�n + Z dx1 : : : dxndy1 : : : dyn ��8<: nXm;k=1�mz [Dzz�kzFn℄ ++ Xm 6=k �mz [(�kzDzz)Fn℄9=; ; (13)where Dzz = Dzz(rm; rk). In deriving Eq. (13), wetook some integrals by part and used the onstraint��xkDzx(rm; rk) + ��ykDzy(rm; rk) ++ ��zkDzz(rm; rk) = 0;whih is a onsequene of the inompressibility ondi-tion rv = 0.We expet a saling behavior of orrelation fun-tions (12) at z � rbl. Then the last term in Eq. (13)an be estimated as �z4�2z�. Consequently, the termwith the moleular di�usion � in Eq. (13) an be ne-gleted in the region. The argument is the same as theone used for the moment h�i, where the law (8) wasderived from Eq. (6). We also note that in the deay-ing ase, the time derivative in Eq. (13) an be esti-mated as �=r2bl = p��, a term that is muh less than�z4�2z � �z2 at z � rbl. Therefore, the term with thetime derivative an be negleted in the region as well,and we obtain quasistationary equations for �n. Thisre�ets the adiabatiity of the passive salar statistis.It is reasonable to assume that the orrelation fun-tion Fn(t; r1; : : : ; rn) is orrelated along the xy plane ondistanes of the order of the orrelation length l in (10),whih is muh smaller than the harateristi veloitylength (the width of the peripheral region). Then Dzzin Eq. (13) an be replaed by �z2mz2k, and we obtainlosed equations for the orrelation funtions�t�n(t; z1; : : : ; zn) = � nXm;k=1 ��zm �z2mz2k ��zk�n�++ 2� Xm 6=k ��zm �z2mzk�n� ; (14)

where we omitted the moleular di�usion term (see theabove argumentation).Equations (14) lead to the following losed equa-tions for the moments of the integral passive salar:�th�ni = � �z4�2z+4nz3�z+4n(n�1)z2� h�ni: (15)In the stationary (or quasistationary) ase (where�th�ni is negligible), we obtain a homogeneous di�er-ential equation for the nth moment, whih admits apower solution h�ni / z��n : (16)The exponents �n an be easily found from Eq. (15) as�n = 2n� 1=2 +p2n+ 1=4 : (17)We have hosen the positive sign of the square rootleading to the referene value �1 = 3, as it should bein aordane with Eq. (8). We observe an anoma-lous saling, that is, a nonlinear dependene of �n onn, whih an be ompared to the anomalous saling ofthe passive salar in the Kraihnan model [14�16℄.A natural onjeture that allows relating the mo-ments of the passive salar � and those of the integralpassive salar � is that the passive salar orrelationlength l an be used as a realulation fator. We thenobtain the estimateh�ni � l(d�1)(n�1)An�1 h�ni; (18)where d is the spae dimension, whih is equal to 3 inreal �ows but an be arbitrary in numerial simulations.Estimate (18) and Eq. (10) lead to the relation�n = �n � (n� 1)(d� 1); (19)between the exponents introdued in Eqs. (9) and (16).3. SIMULATIONSWe onduted Lagrangian simulations where thedynamis of a large number of partiles subjeted to�ow advetion and Langevin fores (produing di�u-sion) was examined. A set of partiles was used insteadof the passive salar �eld �, whih an be interpreted asthe density of the partiles. A major advantage of ourapproah is its appliability to di�erent spae dimen-sions d. Indeed, the number of variables (oordinatesof partiles) in the sheme grows not exponentially butas a power of d (at a �xed number of the partiles).To establish prinipal qualitative features of thepassive salar transport, we mainly performed 2d sim-ulations. The setup is periodi in x (the oordinate405
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Fig. 1. An example of the telegraph proessalong the wall) with a period L. In the majority ofsimulations, the veloity �eld was hosen to bevx = z��1 os 2�xL + �2 sin 2�xL � L� ; (20)vz = z2��1 sin 2�xL � �2 os 2�xL � ; (21)where �1 and �2 are independent random funtionsof time. We emphasize that the veloity �eld in (20)and (21) satis�es the inompressibility ondition�xvx + �zvz = 0 for any funtions �1(t) and �2(t). Ifthese are hosen to have idential Gaussian probabilitydistributions, then the statistis of veloity �eld (20)and (21) is homogeneous in x (along the wall). In oursimulations, we have hosen L = 10.In reality, the proportionality laws vx / z andvz / z2 are satis�ed inside the laminar boundary layer,but in our setup, the expressions for the veloity om-ponents like (20) and (21) are formally used at all z,whih means that the bulk orresponds to z = 1.However, the law vz / z2 implies that the partilesmay reah the z-in�nity in a �nite time. This ensuresa �nite partile �ux to the bulk sine a �nite numberof partiles sometimes pass there. Hene, the passivesalar transport to the bulk is well de�ned in our setup.Beause the veloity orrelation time in the periph-eral region is muh less than the passive salar mix-ing time, we should regard �1(t) and �2(t) as whitenoises. But zero orrelation time annot be realized inomputer simulations. We model the funtions by tele-graph proesses, where both �1 and �2 remain onstantsinside time slots of a small duration � , and the values of�1 and �2 inside the slots are hosen to be random vari-ables with idential normal distributions. An exampleof suh a telegraph proess is plotted in Fig. 1. In our

simulations, the averages were h�21i = h�22i = 1 and dif-ferent slot sizes were used, � = 0:001, 0.002, and 0.004.Then, in aordane with de�nition (5), � = �=2.In our sheme, a partile trajetory %(t) obeys theequation �t% = v(t;%) + �(t); (22)where the �rst term represents the partile advetionand the seond term represents the Langevin fore. Weemphasize that the variables � pertaining to di�erentpartiles are independent, whereas the variables �1 and�2 are idential for all partiles, aording to the phys-ial meaning of the variables. The Langevin fore �is also modeled by a telegraph proess with the sametime slot duration � and with normal distributions ofthe values in the slots. To ensure a given value of thedi�usion oe�ient �, we hooseh�2xi = h�2z i = 2�=�: (23)In a majority of simulations, we hose � = �=2, andtherefore the di�usive length was rbl = 1, in aordanewith de�nition (7).Inside a time slot, all the variables �1, �2, and �are time-independent onstants and Eq. (22) beomesan autonomous ordinary di�erential equation. It wassolved as follows. A time slot was divided into a num-ber of time intervals and the equation was solved (with-out the Langevin fore) using the seond-order Runge�Kutta method. The number of intervals is z-dependent,being proportional to z at z > 2:5. For z > 12, wesolved equations for 1=%z instead of %z. Both featuresare motivated by the strong dependene of the veloityon z, vz / z2. After solving the equation inside a slot, aterm produed by the Langevin fore was added. To ex-amine the role of di�usion outside the di�usive bound-ary layer, we swithed o� the di�usion (the Langevinfores) in some simulations at distanes z > zd (withzd hosen di�erently in di�erent ases).The partiles are permanently injeted near the wallin random positions at the beginning of eah timeslot. The simulations were performed in the stripe0 < z < 100; the partiles rossing the lines z = 0and z = 100 were exluded from the set. The numberof partiles leaving the region 0 < z < 100 through thewall is muh larger than the number of partiles esap-ing through the line z = 100. Those last ones orre-spond to the passive salar transport to the bulk. Abalane between the partile injetion and losses leadsto a statistial equilibrium ahieved gradually in thesimulation. Hene, our simulations over the statis-tially stationary passive salar transport. It orre-406
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8642 10Fig. 2. An example of a passive salar struture formed near the wall in a 2d random �ow. Di�erent partiles are designatedby small rossessponds both to a steady temperature distribution sup-ported by a onstant heat �ux from the wall and toa deay of the onentration of pollutants that an betreated adiabatially.An extension of our sheme to higher dimensions,d > 2, is straightforward. We use the same equa-tion (22) where all quantities have d omponents. TheLangevin fores � are determined by the same re-lations (23) and a generalization of expressions (20)and (21) is as follows. The veloity v is determined bya set of 2(d� 1)2 random variables �1ij and �2ij :vi = z n�1Xj=1 ��1ij os 2�xjL + �2ij sin 2�xjL � L� ; (24)vz = z2 n�1Xj=1 ��1jj sin 2�xjL � �2jj os 2�xjL � ; (25)where the subsripts i, j label the �rst d� 1 spae o-ordinates and the last dth oordinate is z. Here, all�, �1ij , and �2ij are again telegraph proesses with thesame statistial properties as above, and we use theseond-order Runge�Kutta sheme inside a time slot.In terms of the partiles, the passive salar �eld �is de�ned as the number of partiles per unit volume.The orrespondene is orret if � is positive. If � is ne-gative, then the partile density represents ��, whih

satis�es the same equation (1) as � does. Thus, in oursimulations, we should treat � as the number of parti-les inside a box divided by the box volume. Of ourse,the de�nition works well if the box is small (in ompar-ison with all harateristi sales of the problem) andthe number of partiles inside the box is large. To sat-isfy these ontraditory onditions, we must deal with asu�iently large total number of partiles. That is whythe injetion rate in our simulations is hosen to pro-due a large number of partiles, 105�106, in statistialequilibrium. 3.1. TonguesOur simulations show that the passive salar trans-port to the bulk is related to spei� strutures ofthe passive salar. The passive salar is onentratedmainly in the narrow di�usive layer near the wall. How-ever, a �uid jet is sometimes generated that arries thepassive salar from the wall towards the bulk and pro-dues a passive salar tongue with the width (rosssetion) dereasing as z inreases. This property isa onsequene of the law vz / z2 implying that thez-omponent of the tongue veloity inreases as z in-reases. We thus ome to a geometri interpretation ofthe passive salar orrelation length l: it is the har-ateristi size of the tongue ross setion (taken alongthe wall). The ross setion behavior orresponds to407
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Fig. 3. Histograms of the passive salar �ux at di�er-ent separations from the wall. The root-mean-square�utuations are muh larger than the average value andthe histograms are pratially symmetri. At z = 0, theprobability distribution is Gaussian, whereas at z > rbl,it has exponential tailsthe expeted derease of the orrelation length as z in-reases. We stress that in aordane with Eq. (10),the harateristi tongue ross setion depends on thedi�usion oe�ient �.A tongue is typially pulled from a �bump� of thepassive salar distribution. After some time, the tongueis tilted and then pressed bak to the di�usive layer.Then next tongue is pulled, usually from the bump re-maining at the bottom of the previous tongue, and is inturn pressed bak to the di�usive layer. As a result, aompliated multifold struture is formed, an exampleof whih is shown in Fig. 2, whih represents a snapshotgenerated in our simulations.Sometimes the tongue is pulled up to the z-in�nity,and then a portion of the passive salar (a number ofpartiles) is pushed to the bulk. After that, the tongueis tilted and the passive salar urrent to the bulk stops.This implies that the passive salar �ux, R dx �vz in 2d,is a highly intermittent quantity at z > rbl. This on-lusion is on�rmed by the �ux histograms drawn inFig. 3 for di�erent z. In the simulations, the passivesalar �ux was measured as the number of partilesrossing the plain z = onst in a time interval � . Atz = 0, the �ux probability distribution is pratiallyGaussian, being formed by a balane between the ran-dom injetion of the partiles and their leaving the wall.But the distribution beomes less and less Gaussianas z inreases. The histograms in Fig. 3 are prati-ally symmetri. The property is beause only a smallamount of partiles in the tongue are pulled to the bulk,
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Fig. 4. Log�log plot of the moments h�nÆ i times z3,for Æ = 0:03125 and n = 1�6. The graph re�etssimulations where di�usion ours everywhere, and isswithed o� at z = 3 or z = 12the majority of the partiles returns, produing pra-tially equal �uxes to the bulk and towards the wall.This explains why the root-mean-square �utuation ofthe �ux at z � rbl is muh larger than its average value.3.2. MomentsBased on numerial data, we an ompute momentsand orrelation funtions of di�erent quantities hara-terizing the passive salar statistis. We an onsiderboth loal funtions and integral objets. All the quan-tities are omputed as time averages.We introdue an objet �Æ that is the number ofpartiles inside a square box of size Æ divided by itsarea Æ2 (in 2d). The quantity �Æ is lose to � if thenumber of partiles is large and the size of the box issu�iently small. The moments Mn = h�nÆ i of �Æ areomputed for n = 1�6 as averages over time intervals106�107� with Æ = 0:03125. The results are presentedin Fig. 4, where the moments multiplied by z3 are plot-ted in log�log oordinates (solid urves). We see thatthe predition for the �rst moment in (8) is perfetlysupported, whereas higher moments deviate stronglyfrom the di�usionless law / z�3. We onlude that thedi�usion is indeed relevant at z > rbl.To verify this onlusion, we repeated the simula-tions swithing the di�usion o� at z > 3 and at z > 12.The results are shown in Fig. 4 with dashed urves. Wesee the appearane of plateaus, starting just from z = 3or z = 12 and orresponding to the law/ z�3, in aor-dane with Ref. [22℄. The plateaus are observed in re-strited regions of separations from the wall z, slightlydiminishing as n inreases. An explanation is that ut-408
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Fig. 5. Log�log plot of the moments h�nÆ i times z3, forÆ = 0:03125 and n = 1�6 in the ase where di�usion issubstituted by a onstant veloity arrying the partilesaway from the wallo�s of the plateaus are observed where Æ beomes ofthe order of the passive salar orrelation length (alongthe wall). To hek this, we repeated the simulationsfor larger values of Æ and observed that the plateausshrink as Æ inreases. This on�rms our explanation.To be absolutely sure that the di�usion is relevant,we performed simulations without di�usion but witha onstant veloity V added that arries the partilesaway from the wall. The results are presented in Fig. 5,where the moments h�nÆ i times z3 are plotted. We seethe plateaus signalling that outside the boundary layer,the passive salar moments behave in aordane withthe di�usionless predition.The next objet of our investigation is the integralquantity � that is the passive salar integrated alongthe wall, see de�nition (11). Numerially, it is deter-mined by the number of partiles in a slie of thiknessÆ, parallel to the wall, divided by its volume (area);we let the ratio be denoted by �Æ. In our 2d setup,the area is equal to LÆ, where Æ is hosen to be muhless than z. The moments h�nÆ i are omputed by timeaveraging over a long time � 107� . To hek the ro-bustness of the results, we performed omputations fordi�erent time slots � = 0:001, 0.002, and 0.004 andfor four di�erent values of the di�usion oe�ient �.Figure 6 demonstrates that the values of eah momentollapse to a single urve in the logarithmi oordinatesln(z=rbl) and ln(h�ni=Cn), where the fatorsCn are theorresponding moments near the wall.It an be veri�ed that in aordane with our theo-retial expetations, the moments of �Æ are insensitive
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Fig. 8. Exponents of the moments h�nÆ i, for n = 1�6and spae dimensions d = 2�5. For omparison, thetheoretial urve �n = 2n � 1=2 +p2n + 1=4 is plot-ted (solid line)�vxLz = �1 os 2�xL + �2 sin 2�xL ++ �3 os 4�xL + �4 sin 4�xL ; (26)vzz2 = �1 sin 2�xL � �2 os 2�xL ++ 2�3 sin 4�xL � 2�4 os 4�xL : (27)Again, there is no visible di�erene between these setsof data.We observe that the moments of � are dereas-ing funtions of z that are power-like in the regionz > rbl. Extrating the saling exponents �n (see def-inition (17)) for n = 1�6 in 2d, we obtain values thatare presented in Fig. 8 as the lower set of points (asmooth urve is drawn through the points to guide theeye). We onduted analogous simulations for higherdimensions, up to d = 5. The results are also depitedin Fig. 8. We see that the exponents �n depend on d,but for d � 3, they are lose to theoretial values (17)represented by a solid line.It an be assumed that the deviations from theo-retial values (17) are related to the existene of addi-tional passive salar (relatively long) orrelations alongthe wall that an be produed by the multifold stru-tures of the type shown in Fig. 2. The long orrela-tions should lead to inreasing moments of the passivesalar in omparison with the short-orrelated ase. Itis natural to expet that the fold e�et beomes lesspronouned in higher dimensions. Indeed, Fig. 8 shows
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Fig. 9. Exponents of the moments h�nÆ i, for n = 1�6and spae dimension d = 2 for two di�erent veloi-ty �elds: ontaining only the �rst harmoni (dashedline) and three (9th, 10th, and 11th) harmonis (dot-ted line). For omparison, the theoretial urve �n == 2n � 1=2 +p2n+ 1=4 is plotted (solid line)that the deviations from the values in (17) derease asthe spae dimensionality d inreases. This on�rms ourexplanation.To hek our onjeture, we onduted simula-tions for the veloity �eld, similar to expressions (26)and (27), ontaining a set of harmonis in terms of theperiod L: the 9th, 10th, and 11th ones. In suh a ve-loity �eld, orrelations related to the multifold tonguestrutures must be suppressed, and, onsequently, theexponents �n must be lose to theoretial values (17).This expetation is on�rmed by our simulations; theresults are presented in Fig. 9, where the measured ex-ponents are plotted. We see a good agreement of themeasured and theoretial exponents.The exponents �n of the moments of �Æ, see de�ni-tion (9), as well as �n, an be extrated from our nu-merial data. It is interesting to hek theoretial pre-dition (19). For this, we plotted the di�erene �n��nas a funtion of n (see Fig. 10). For omparison, thetheoretial straight line n�1 (orret in 2d) is drawn inthe same �gure. We see a good agreement, on�rmingthe saling (10) of the passive salar orrelation lengthl(z) along the wall.4. CONCLUSIONWe performed extensive numerial simulations ofthe passive salar mixing in peripheral regions of ran-410
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Fig. 10. The di�erene of the saling exponents of mo-ments for the integral passive salar and for the passivesalar, �n � �n, omputed at Æ = 0:03125 in 2d. Foromparison, the theoretial predition n�1 is drawndom �ows suh as high-Reynolds turbulene. The sim-ulations on�rm earlier theoretial expetations and re-veal numerous new details. At advaned stages of thepassive salar mixing, passive salar �utuations areonentrated mainly in a narrow di�usive layer near theboundary if the Pelet or the Shmidt number is large.We found that the passive salar transport from thedi�usive boundary layer to the bulk is related to pas-sive salar tongues formed by jets direted to the bulk.The tongues are objets responsible for the strong inter-mitteny harateristi of the passive salar transportthrough the peripheral region.We examined the passive salar statistis outsidethe di�usive boundary layer and realized that the mo-ments of both the passive salar � and the passive salarintegrated along the wall, �, exhibit well-pronounedsaling in terms of the separation from the wall z. Weompared the orresponding exponents extrated fromour simulations with our theoretial sheme and estab-lished their agreement. However, are must be takenbeause our theoretial preditions are orret for anin�nite vessel and an be violated in simulations wherethe veloity orrelation length along the wall oinideswith the veloity period. We also found an agreementbetween the theoretial predition for the tongue rosssetion dependene on z and our simulations. There-fore, the simulations on�rm our theoretial predi-tions.There remain some problems to be solved in future.We will extend our onsideration to inorporate average�ows (like in pipes) that are shear-like near the wall.

Another natural extension of our approah is related tohemial reations in random �ows. We also note poly-mer solutions, where the polymer elongation is verysensitive to the harater of the �ow. The problem issigni�ant, e.g., for the elasti turbulene. However, along-time memory harateristi of the polymer solu-tions ould modify our results. We onsidered smoothwalls in our work. There is a set of questions relatedto the wall roughness, possible orners, averns andpeaks. All these may modify our onlusions, and thisis a subjet of speial investigation.Our results agree qualitatively with the data knownfrom investigations of turbulent plumes in turbulent�ows, where a ompliated spae struture of thepassive salar �utuations is observed [27�31℄. Webelieve that statistial properties of the struturean be explained on the basis of our results implyingprodution of the passive salar tongues pushing tothe bulk. The explanation requires generalizing oursheme to the ase where turbulent veloity �utua-tions in the bulk are inluded.We thank M. Chertkov, I. Kolokolov, V. Steinberg,and K. Turitsyn for the numerous helpful disussions.Simulations were performed on the luster Parma atthe Landau Institute for theoretial physis, RAS, andthe NGU luster. The work was partly supported bythe RFBR (grant � 09-02-01346-a) and by the RussianFederal Target Program �Kadry�.REFERENCES1. A. M. Obukhov, Izv. Akad. Nauk. SSSR, Ser. Geogr.and Geophys. 13, 58 (1949).2. S. Corrsin, J. Appl. Phys. 22, 469 (1951).3. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 32, 16(1941).4. K. R. Sreenivasan, Phys. Fluids 8, 189 (1996).5. Z. Warhaft, Ann. Rev. Fluid Meh. 32, 203240 (2000).6. J. Shumaher and K. R. Sreenivasan, Phys. Fluids 17,125107 (2005).7. R. J. Miller, L. P. Dasi, and D. R. Webster, Exper.Fluids 44, 719 (2008).8. A. S. Monin and A. M. Yaglom, Statistial Fluid Me-hanis, MIT Press, Cambridge, Mass. (1975).9. M. Lesieur, Turbulene in Fluids, Kluwer, Dordreht,Netherlands (1997).411
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