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The energy spectra and transport of electronic excitations in one-dimensional aperiodic sequences of quantum
dots of Thue-Morse and double-periodic type are studied. The influence of external magnetic and electric
fields on the energy spectra and transport is considered. For aperiodic sequences of quantum dots, in contrast
to aperiodic sequences of atoms, the influence of relatively small magnetic and electric fields is essential, but
localization occurs at finite values of the perturbations. The transmission coefficient is determined using the
quasiclassical approximation with the Coulomb blockade taken into account. The resonance tunneling is studied.

1. INTRODUCTION

A large class of materials of great importance for
quantum electronics, such as the arrays of metallic [1, 2]
or semiconducting [3] quantum dots (QDs), consist
of weakly coupled nanometer-scale islands. Various
physical effects have been investigated in large peri-
odic arrays of QDs [4]. The study of aperiodic se-
quences of QDs began quite recently [5]. In aperi-
odic structures, a small perturbation does not localize
electrons, and transport is available at finite values of
perturbations (external fields), in contrast to periodic
one-dimensional structures, where even an infinitesimal
perturbation localizes the current states [6].

In this paper, we study the electronic spectra and
electronic transport properties in one-dimensional ape-
riodic sequences of QDs of the Thue—Morse and double-
periodic type [7]. Two ways to construct the aperiodic
sequences are considered: by defining the confining po-
tential steepness and by defining the distances between
QDs. Aperiodic sequences of QDs based on GaAs and
its solid solution Al,Ga;_,As and In,Ga;_,As with
xz = 0.1-1 are considered. In the quasiclassical ap-
proximation, we obtain the tunneling probability for
double QDs and aperiodic sequences of QDs and in-
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vestigate the influence of control parameters such as
external fields and the confining potential steepness on
the electronic transport and electronic spectra. The
resonance tunneling states appear when energy levels
of neighboring QDs become equal as a result of shifting
electronic energy levels by the external fields.

2. THE THUE-MORSE AND
DOUBLE-PERIODIC APERIODIC
SEQUENCES

The Thue—Morse sequence can be defined by the re-
cursive relations S, = S,,_1S;}_, and S;f = S| S,
(for n > 1) with Sp = A and S§ = B. Another way
to build this sequence is through the inflation rules
A — AB and B — BA. Generations of the Thue-
Morse sequence are

SO - A, Sl == AAB7 S2 == AABBAA7
S3 = ABBABAAB.

The double-periodic sequence is invariant under the
transformation A -+ AB, B — AA. Generations of the
double-periodic sequence are

SO == A, Sl - AAB7 SQ - 14BA/4147
S3 = ABAAABAB.
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We use the two ways to build each aperiodic struc-
ture under investigation.

1) By defining the confining potential steepness.
This means that A is a QD with the parabolic con-
fining potential steepness a; and B is a QD with the
parabolic confining potential steepness as. The dis-
tances between the QDs are equal.

2) By defining the distance between the QDs. This
means that A is a pair of QDs with a separation d4
and B is a pair of QDs with a separation distance dg.
The confining potential steepnesses are the same for all
QDs.

3. ELECTRON ENERGY SPECTRA

We use the parabolic potential model. The Hamil-
tonian of a single electron in a two-dimensional QD in
a magnetic field with the vector potential A is [8]

i
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where m* = 0.07mg is the effective electron mass in
GaAs, « is the steepness of the confining potential,
A = (1/2)B x r, r is the radius vector, and B is the
magnetic field. Hamiltonian (1) leads to the energy
spectrum [9]
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where £ = €2B?/m* + a is the effective confining po-
tential steepness and w, is the cyclotron frequency,
n=0,1,2,...,m=0,%1,...

For a one-dimensional sequence of QDs and m = 0,

the energy spectrum is
& 1
= . 3
—~ (n*3 (3)

The expression for the energy spectrum of an electron
in a QD in the electric field F is

E=,2 (n+—1>-—62F2. (4)

m* 2 2

E=nh

We obtain the electron energy spectra of aperiodic se-
quences in the pairwise interaction approximation. We
consider the energy of the Nth generation of the se-
quence in the form

Exn =NjEjs+ NpEp +
NapEY + NaaEY + NgpELL. (5
+ NupE,p + NaaE, + NgpEgg. (5)
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Fig.1. The electron energy spectra of the nth genera-

tion of the aperiodic sequences and energy levels shifts

without external fields, in the magnetic field B =0.6 T

(with F = 0), and in the electric field F = 10* V/m

(with B = 0): a— Thue—Morse sequence; b — double-
periodic sequence
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aix asx
U, = Us =
1 5 2 )
xo
a b
Fig.2. The potential barrier generated by parabolic

confining potentials on neighboring QDs

The number of type-A dots is N4 and of type-B dots
is Np, and the numbers of pairs of QDs of the types
AB, AA, and BB are N, Naa, and Ngp; E4 and
Ep are the particle energies in the QDs A and B; and
Egl)?, EE&, and E](Bll)g are the first-order corrections to
the energy of a pair of QDs of the corresponding type.
First-order corrections are obtained from the perturba-
tion theory:

5 _ Hyy +H22i\/4H122+(H11 — Hyp)? 6
Vo= 5 , (6)

where

Hy= [ ¢V de,
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Fig.3. The tunneling probability through a double QD versus (a) the distance between QDs (the confining potential steep-
ness a = 0.5- 1077 J/m?) and (b) the confining potential steepness (the distance between QDs d = 130 nm); n = 0 for
both QDs
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Fig.4. The electron tunneling probability through three generations of aperiodic (a) Thue—Morse and (b) double-periodic
sequences versus the distance dp between QDs in an external magnetic field B. The distance d4 = 90 nm, the confining
potential steepness o = 0.5 - 1077 J/m?

e’ 4. THE TUNNELING PROBABILITY

- dreeg|d — x|
We consider the tunneling probability in quasiclas-

is the Coulomb interaction, ¢(®) is the nonperturbed sical approximation [8]. We study the influence of sev-
wave function of the ith QD, ¢ = 12.9 is the dielectric eral control parameters on the tunneling probability.

constant of GaAs, d is distance between QDs. The layered structure of GaAs and its solid solutions
The energy spectrum is shown in Fig. 1. The ex- Al,Ga;_,As and In,Ga;_,As with 0.1 < x < 1.0 is
ternal fields were used to tune the electron energy lev- considered as a sequence of QDs separated by a GaAs

els. In contrast to sequences of atoms, the influence of ~ barrier layer. The probability of tunneling through the
external fields becomes essential for magnetic fields B potential barrier generated by parabolic confining po-
about 1 T and electric fields F' about 10* V/m. tentials of neighboring QDs (Fig. 2) is equal to
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Fig.5. The electron tunneling probability through three generations of aperiodic (a) Thue—Morse and (b) double-periodic
sequences versus the external magnetic field B. The distances are d4 = 90 nm and dg = 110 nm, and the confining
potential steepness is a = 0.5 - 1077 J/m?

Fig.6. The electron tunneling probability through three generations of aperiodic (a) Thue—Morse and (b) double-periodic
sequences versus the distance dp between QDs in an external electrical field F'. The distance da = 90 nm, the confining
potential steepness & = 0.5 - 107" J/m?

1 —2
D=¢ % (1 + 162”) ; (7)

where v = h~! ‘f:pdx , @ and b are turning points,

p = /2m*(E —U) is the momentum of the electron,
Ui = aqz?/2 for @ € [a,70), and Us = aj2?®/2 for
x € [x0,b).

For a wide and high potential barrier treated in the
quasiclassical approximation, we have e=27 <« 1 and

D=e?7, (7"

In Fig. 3, we show the dependence of the tunneling
probability for double QDs with equal confining poten-
tials on the confining potential steepness and the dis-
tance between the QDs. It can be seen that an increase
in the distance leads to a decrease in the tunneling
probability. The tunneling probability decreases as the
confining potential steepness increases. We estimated
the tunneling probability through several generations of
Thue-Morse and double-periodic sequences with a def-
inite distance between the QDs. The influence of differ-

797



P. Yu. Korotaev, N. E. Kaputkina, Yu. E. Lozovik, Yu. Kh. Vekilov MXKIT®, Tom 140, Boimn. 4 (10), 2011

ent control parameters such as the distance between the
QDs, the confining potential steepness, and the values
3 ' ' ' ' of external fields were considered. Three generations of
¢} each sequence were investigated. The elastic cotunnel-
Oo ing was considered at zero temperature [10], because

© the crossover temperature between elastic and inelastic
2L o i cotunneling in our case is about 10 K. The resulting
o transmission coefficient is then equal to the product
Oo of transmission coefficients between pairs of QDs (the

OO possible oscillations of the transmission coefficient were
OO not taken into account):

[¢]

% D = D}*Dp”, (8)

where D4 and Dp are the tunneling probabilities of
pairs of QDs separated by the respective distances d 4
and dg, N4 and Np are the numbers of type A and
type B QDs. The results are shown in Figs. 4-6. In
contrast to arrays of atoms, the magnetic fields of about
0.1 T and electric fields of about 10* V/m essentially
affect the tunneling probability. Also in contrast to

0 . .
170 180 190 200 210 220
dp, nm

Fig. 7. The electron tunneling probability through three
generations of the Thue—-Morse aperiodic sequence vs.

the distance between QDs at T = 273 K, the confin- one-dimensional periodic sequences, the tunneling is
ing potential steepness v = 10”7 J/m?, the distance possible at finite values of fields (0-0.6 T in Fig. 4).
da = 150 nm, and n = 1 for all QDs. Circles cor- We estimated the influence of the Coulomb block-
respond to the absence of the Coulomb blockade, and ade on the tunneling probability in aperiodic sequences
triangles correspond to the Coulomb blockade taken of QDs. A spherical QD was considered with the ca-
into account pacitance C' = 4meger, where ¢ = 12.9, and r is the

QD radius. The energy of such a spherical capacitor
is E = €2/2C. The tunneling probability with the
Coulomb blockade was estimated as

D10
3+ ' ' E DC = DW7 (9)
where W = exp(—E/kT) and D is defined in Eq. (7').
The results for the Thue-Morse sequence are shown
in Fig. 7. It can be seen that the Coulomb blockade es-
2+ 1 sentially decreases the tunneling probability through
aperiodic sequence of QDs.
1L | 5. THE RESONANCE TUNNELING EFFECT
In general, when the confining potential steepness is
defined, the electron energy levels corresponding to the
same n for different QDs are not equal (see Eq. (2)).
- - We can use external fields to shift and align the electron
0 0.2 0.4 0.6

energy levels in neighboring QDs. When energy levels
become equal, the resonance tunneling states (current
states) appear. This elastic tunneling is the most es-
sential contribution to electron transport [11]. The ob-
tained resonance peak corresponds to electron tunnel-
ing from n = 1 of the first QD with ay = 5-1078 J/m?
to n = 0 of the second QD with ap = 7.7-1077 J/m?,
when these levels are aligned by the external magnetic

B, T

Fig.8. Resonance tunneling through a double QD. The

electron energy levels are shifted by the magnetic field

and aligned at B = 0.31 T. The distance between the
QDs is d =110 nm

798



XKIT®, Tom 140, Boimn. 4 (10), 2011

Electronic excitations and transport . ..

D 102
3 T T

130 134 138

d, nm

Fig. 9.

135

140

d, nm

The electron tunneling probability through three generations of (a) Thue-Morse and (b) double-periodic se-

quences versus the distance between the QDs. Steepnesses of the confining potential are a; = 7.7 - 107® J/m? and
a2 =7.7-1077 J/m?. The electron energy levels are aligned by the magnetic field B = 0.155 T

field (Fig. 8). In this case, the tunneling probability is
given by
Nap

Dy = Dy4* Dpg” g (10)

where Dga, Dpp, and D sp are the tunneling proba-
bilities through double QDs AA, BB, and AB; Naa
and Ngpg are numbers of pairs of types AA and BB;
and N4p is total number of pairs of types AB and
BA for the sequence. This means that the tunneling
conductivity corresponds to an independent sequential
tunneling from one QD to another, as is usually the
case with elastic cotunneling [10]. We obtained the de-
pendence of the tunneling probability for each type of
QD pairs on the distance between the QDs. The tun-
neling probabilities for different types of QDs differ by
several orders of magnitude, and the smallest tunnel-
ing probability is through a pair of BB-type QDs in the
case a1 < ag. The tunneling probability through the
Thue—Morse and double-periodic sequences in the case
a1 < ay is presented on Fig. 9. The electron tunneling
probability in the double-periodic sequence is several
orders of magnitude higher than in the Thue—Morse se-
quence, because the double-periodic sequence does not
contain BB pairs. If a; > a2, then the lower tunnel-
ing probability is through the AA pair. In this case,
the tunneling probability in the Thue—Morse sequence
is higher than in the double-periodic sequence. As we
can see, the aperiodic structure type (e.g., the Thue—
Morse or double-periodic) and the control parameters
(e.g., the confining potential) have an essential effect
on the tunneling probability.
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6. CONCLUSIONS

We have investigated the influence of the electric
and magnetic fields on the electron energy spectrum
and electron transport in the Thue-Morse and double-
periodic sequences of quantum dots. Unlike with
sequences of atoms, relatively small fields about 1 T
and 10* V/m essentially affect the energy spectrum
and transport properties. The tunneling probability
was estimated in the quasiclassical approximation and
the Coulomb blockade effect was taken into account.
In contrast to periodic sequences, the current states
survive at finite values of external fields. The magnetic
and electric fields shift the electron energy levels, and
resonance tunneling occurs when the energy levels
become equal. Increasing the external electric and
magnetic fields leads to localization of excitations, but
the localization of excitations occurs at finite values of
the perturbations in contrast to the case of periodic
one-dimensional sequences.
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