# ОПТИЧЕСКИЕ СВОЙСТВА ЩЕЛЕВЫХ КРЕМНИЕВЫХ МИКРОСТРУКТУР: ТЕОРИЯ И ЭКСПЕРИМЕНТ

С. А. Дьяков<sup>*a,b*\*</sup>, Е. В. Астрова<sup>*c*</sup>, Т. С. Перова<sup>*b*</sup>,

С. Г. Тиходеев<sup>d</sup>, Н. А. Гиппиус<sup>d</sup>, В. Ю. Тимошенко<sup>a</sup>

<sup>а</sup> Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

<sup>b</sup> Trinity College Dublin, Dublin 2, Ireland

<sup>с</sup> Физико-технический институт им. А. Ф. Иоффе Российской академии наук 194021, Санкт-Петербург, Россия

<sup>d</sup> Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

Поступила в редакцию 7 октября 2010 г.

Экспериментально и теоретически исследованы спектры отражения щелевых кремниевых структур, состоящих из чередующихся кремниевых слоев и пустот (щелей) с периодом a = 4-6 мкм, в среднем ИК-диапазоне ( $\lambda = 2-25$  мкм) при освещении образцов по нормали к поверхности светом, поляризованным вдоль кремниевых слоев и перпендикулярно им. Расчет выполнен методом матрицы рассеяния с учетом потерь на рэлеевское рассеяние в щелевом слое посредством добавления мнимых частей к показателям преломления кремния и воздуха в области щелей. Наблюдается хорошее согласие между экспериментальными и расчетными спектрами коэффициента отражения во всем исследуемом спектральном диапазоне. Из анализа экспериментальных и расчетных спектров найдены близкие друг к другу значения эффективных показателей преломления и двулучепреломления исследуемых структур в длинноволновой области спектра, в то время как значения, рассчитанные в модели эффективной среды в длинноволновом приближении ( $\lambda \gg a$ ), дают существенно заниженные значения. Полученные результаты подтверждают эффективность используемого метода матрицы рассеяния для описания оптических свойств кремниевых микроструктур.

### 1. ВВЕДЕНИЕ

Щелевой кремний представляет собой периодическую одномерную структуру, состоящую из глубоких щелей с вертикальными стенками. Такие структуры обладают интересными оптическими характеристиками. В длинноволновой части спектра при  $\lambda \gg a$ , где a — период решетки, они проявляют свойства одноосного кристалла с высокой анизотропией эффективного показателя преломления [1, 2]. Для ИК-света с  $\lambda \approx a$  структура является одномерным фотонным кристаллом с широкими стоп-зонами [3, 4]. В щелевом кремнии обнаружены эффекты усиления комбинационного рассеяния при возбуждении лазерным излучением с  $\lambda = 1.06$  мкм [5]. Если для нормального падения света в области  $\lambda \gg a$  оптические характеристики щелевых структур хорошо описываются в рамках модели эффективной среды (так называемого приближения анизотропии формы в системе параллельных пластин [6]), то спектры в более коротковолновой области до настоящего времени не были описаны теоретически.

Целью настоящей работы является расчет спектров отражения и пропускания образцов щелевого кремния в диапазоне длин волн, порядка и превышающих период структуры, и сравнение их с экспериментом.

## 2. ЭКСПЕРИМЕНТ

Щелевые кремниевые структуры могут быть изготовлены различными методами «сухого» и жид-

<sup>\*</sup>E-mail: dyakovs@tcd.ie

| Образец | Период<br>а, мкм | Толщина<br>стенок<br>d <sub>Si</sub> , мкм | Глубина<br>щелей<br>l, мкм | Полная<br>толщина<br>образца,<br><i>Н</i> , мкм |
|---------|------------------|--------------------------------------------|----------------------------|-------------------------------------------------|
| 24a4    | 4                | 1.0                                        | 30                         | 200                                             |
| 24a5    | 5                | 1.2                                        | 30                         | 200                                             |
| 24a6    | 6                | 1.4                                        | 30                         | 200                                             |
| s5      | 5                | 1.8                                        | 42                         | 225                                             |
| s6      | 6                | 2.6                                        | 42                         | 225                                             |

Таблица 1. Геометрические параметры исследуемых образцов щелевого кремния

кофазного травления [7–11]. Среди этих методов анизотропное щелочное травление кремния ориентации (110) выгодно отличается тем, что позволяет изготавливать структуры с практически вертикальными стенками, обладающими наиболее гладкой поверхностью [12]. Ребра таких структур образованы кристаллографическими плоскостями (111), которые травятся примерно в 600 раз медленнее, чем плоскости (110) [9].

В настоящей работе исследовались щелевые структуры из кристаллического кремния *n*-типа с удельным сопротивлением 5 Ом см и ориентацией поверхности (110), изготовленные анизотропным травлением при  $T = 70 \,^{\circ}\text{C}$  в 44-процентном водном растворе гидроксида калия. Исходные образцы имели двустороннюю полировку, их поверхности покрывались термическим окислом или слоем нитрида кремния. Затем с лицевой стороны с помощью фотолитографии в этом слое вскрывались окна под щели. Длина этих окон составляла 400 мкм, ширина, в зависимости от периода, 2-4 мкм. Щели, стенки которых образованы плоскостями (111), составляли решетку с периодом а, равным 4, 5 и 6 мкм для разных образцов. В табл. 1 приведены параметры образцов, а на рис. 1а показано поперечное сечение одной из таких структур. На рис. 16 показана схема образца, разрезанного вдоль и поперек щелей. Известно, что торцевые стенки щелей, получаемых при анизотропном травлении Si(110), являются наклонными [9]. Кроме того, дно щелей в исследованных структурах является V-образным с углом при вершине около 120° [13]. В описанных ниже расчетах мы, однако, пренебрежем этими деталями и будем считать для простоты щели бесконечно длинными в направлении оси у и имеющими прямоугольное сечение в плоскости xz.



Рис. 1. Структуры щелевого кремния: a — изображение, полученное при помощи сканирующего электронного микроскопа;  $\delta$  — образец в разрезе и схема оптических измерений: Si — кремниевая подложка;  $S_{\parallel}$  ( $S_{\perp}$ ) — сечение, параллельное (перпендикулярное) щелям; штриховая линия — перпендикуляр к кремниевым стенкам; b — длина щели в ее нижней части; w и  $w_0$  — ширины укрепляющего кремниевого промежутка между щелями соответственно на поверхности образца и на глубине щелей

Геометрия оптических измерений показана на рис. 16. Спектры отражения и пропускания щелевых структур в поляризованном свете были измерены при помощи фурье-спектрометров Digilab FTS-60A и FTS-6000 в спектральном диапазоне 450–6000 см<sup>-1</sup> с разрешением 8 см<sup>-1</sup> при  $E_{\parallel}$ - и  $E_{\perp}$ -поляризациях. Электрическое поле, соответствующее  $E_{\parallel}$ -поляризации, направлено параллельно щелям, а  $E_{\perp}$ -поляризации — перпендикулярно. Спектры записаны при нормальном падении света на поверхность образца.

#### 3. РАСЧЕТ

Для расчета спектров отражения и пропускания света был использован метод матрицы рассеяния [14], основанный на разбиении структуры на горизонтальные слои, периодические или однородные по горизонтали и однородные по вертикали, на разложении решений уравнений Максвелла в ряд Фурье и сшивке решений в соседних слоях с использованием максвелловских граничных условий. Когда падающий свет освещает модулированную поверхность щелевого кремния, структура ведет себя как дифракционная решетка. Падающая волна связывается с дифрагированными (распространяющимися) и экспоненциальными волнами, и формально необходимо использовать бесконечно-мерную матрицу рассеяния, которая при численных расчетах обрезается до матрицы конечной размерности.

Для формулировки метода матрицы рассеяния для фотонно-кристаллических слоев нам необходимо определить сходящиеся и расходящиеся состояния в задаче рассеяния и развить метод расчета матрицы рассеяния, переводящей сходящиеся решения в расходящиеся. В основе рассматриваемого метода лежит разложение по плоским волнам в плоскости, перпендикулярной оси z, и на практике учитывается лишь конечное число  $N_g$  брэгговских гармоник. Двумерная, в общем случае, дифракционная решетка связывает падающую электромагнитную волну с частотой  $\omega$  и волновым вектором  $\mathbf{k} = (k_x, k_y, k_z),$ 

$$k_x = \frac{\omega}{c} \sin \vartheta \cos \varphi,$$
  

$$k_y = \frac{\omega}{c} \sin \vartheta \sin \varphi,$$
  

$$k_z = \frac{\omega}{c} \cos \vartheta,$$
  
(1)

со всеми брэгговскими гармониками на той же частоте  $\omega$  и волновыми векторами

$$\mathbf{k}_{\mathbf{G},a}^{\pm} = \left(k_{x,\mathbf{G}}, k_{y,\mathbf{G}}, \pm k_{z,\mathbf{G},a}\right).$$
(2)

В формулах (1), (2)  $\vartheta$  — угол между вектором **k** и положительным направлением оси  $z, \varphi$  — угол между проекцией  $\mathbf{k}$  на плоскость xy и осью x,

$$k_{x,\mathbf{G}} = k_x + G_x, \quad k_{y,\mathbf{G}} = k_y + G_y,$$
  
$$k_{z,\mathbf{G},a} = \sqrt{\frac{\omega^2 \varepsilon_a}{c^2} - (k_x + G_x)^2 - (k_y + G_y)^2}, \qquad (3)$$

 $\varepsilon_a$  — диэлектрические проницаемости вакуума (a == v) и подложки (a = s), а

$$\mathbf{G} = \frac{2\pi}{d} (g_x, g_y, 0), \quad g_{x,y} = 0, \pm 1, \pm 2, \dots$$
(4)

Рис. 2. Схемы образца щелевого кремния для расчета по методу матрицы рассеяния: а — модель идеального образца; б — модель реального образца, учитывающая диффузное рассеяние

являются векторами двумерной обратной решетки.

Входящий и исходящий наборы задачи рассеяния выбираются в виде гипервекторов  $\overline{\mathbb{B}}_{in}$  и  $\overline{\mathbb{B}}_{out}$ размерности 4N<sub>g</sub>, составленных из амплитуд сходящихся и расходящихся плоских волн:

$$\vec{\mathbb{B}}_{in} = \begin{pmatrix} \vec{\mathcal{A}}_v^+ \\ \vec{\mathcal{A}}_s^- \end{pmatrix}, \quad \vec{\mathbb{B}}_{out} = \begin{pmatrix} \vec{\mathcal{A}}_s^+ \\ \vec{\mathcal{A}}_v^- \end{pmatrix}, \quad (5)$$

где  $\vec{\mathcal{A}}_{v,s}^{\pm}$  —  $2N_{g}$ -мерные гипервекторы парциальных амплитуд сходящихся и расходящихся плоских волн. Полное описание линейного отклика фотонно-кристаллического слоя на частоте  $\omega$  содержится в полной матрице рассеяния S, которая связывает входящий гипервектор амплитуд  $\mathbb{B}_{in}$  с исходящим гипервектором  $\mathbb{B}_{out}$ :

$$\vec{\mathbb{B}}_{out} = \mathbb{S} \ \vec{\mathbb{B}}_{in}. \tag{6}$$

Определенная таким образом полная матрица рассеяния имеет размерность  $4N_g \times 4N_g$ . Расчет  $4N_g \times 4N_g$ -матрицы рассеяния  $\mathbb{S}$  фотонно-кристаллического слоя состоит из следующих основных моментов.

1. Фотонно-кристаллический слой разбивается на систему однородных вдоль оси z слоев (в случае модельной структуры на рис. 2*a* это четыре слоя: вакуум, модулированный слой кремния, однородный слой кремния и вакуумная подложка). В каждом слое из уравнений Максвелла находятся собственные моды оператора распространения вдоль оси z.







Рис. 3. Измеренный (жирная линия) и рассчитанные спектры отражения при  $E_{\parallel}$ -поляризации света для образца щелевого кремния s6. Расчеты проводились в предположении модели идеального образца для случаев конечной (рис. 2a) и полубесконечной кремниевых подложек (соответственно тонкие серая и черная линии)

2. Собственные значения оператора распространения определяют матрицу распространения, а собственные векторы образуют материальную матрицу, дающую связь между амплитудами собственных мод оператора распространения вдоль оси *z* в слое и локальными компонентами электромагнитного поля.

3. Из материальных матриц в двух соседних слоях можно построить интерфейсную матрицу, связывающую амплитуды собственных мод в соседних слоях, а на ее основе, используя итерационную процедуру (см., например, работу [15]), можно рассчитать полную матрицу рассеяния S всей фотонно-кристаллической структуры.

4. Зная компоненты матрицы рассеяния, легко найти коэффициенты отражения, пропускания, поглощения и дифракции, а также распределение электромагнитных полей в фотонно-кристаллическом слое.

#### 4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Как видно из сказанного выше, для расчета оптических свойств структуры необходимо представить ее в виде последовательности слоев, однород-



Рис. 4. Измеренные (сплошные кривые) и рассчитанные (пунктирные) спектры отражения при  $E_{\parallel}$ и  $E_{\perp}$ -поляризациях света для образцов щелевого кремния s5 и s6. При расчете предполагалось наличие рассеивающего слоя на границе модулированный слой – подложка, комплексный показатель преломления которого выбран равным 3.42 + 0.5i, показатель преломления в модулированном слое для кремния 3.42 + 0.2i, а для воздуха 1 + 0.05i (см. рис. 26)

ных по оси z и, возможно, периодических в направлении, перпендикулярном оси z. На рис. 2a приведен вариант такого разбиения исследуемых образцов на слои. Структура разделена на четыре слоя, два из которых, первый и четвертый (вакуум), являются полубесконечными, второй (щелевой слой кремний/воздух) — периодический в плоскости подложки и однородный в направлении оси z, а третий (кремниевая подложка) — полностью однородный слой. При выборе оптических коэффициентов мы пренебрегли поглощением света на свободных носителях заряда в кремнии, а также взаимодействием света с фононами кристаллической решетки.

Рассчитанные спектры отражения для описанной модельной структуры оказываются существенно отличающимися от измеренных (рис. 3). Частые осцилляции расчетной кривой (тонкая серая линия) являются следствием резонансов Фабри-Перо на достаточно толстой (порядка 200 мкм) кремниевой подложке. Для их наблюдения в эксперименте нужно, как минимум, чтобы длина когерентности используемого света превосходила толщину образца, что не выполняется в нашем случае. В расчетах, чтобы исключить такие осцилляции, обычно предполагают подложку полубесконечной. Соответствующая расчетная кривая также показана на рис. 3 (тонкая черная линия). Характерная частота оставшихся осцилляций расчетного спектра теперь примерно соответствует эксперименту (они связаны с резонансами Фабри-Перо на слое щелевого кремния, см. обсуждение ниже), однако амплитуда этих осцилляций и качественная форма спектра по-прежнему весьма далеки от наблюдающихся в эксперименте.

Причиной такого несоответствия может быть рэлеевское рассеяние света на нерегулярностях щелевой структуры как в модулированном слое, так и в переходном слое «модулированная часть-подложка», состоящем из V-образных углублений на дне щелей. Такое рассеяние может быть весьма существенным, поскольку отношение показателей преломления указанных слоев весьма велико.

Хорошо известно, что шероховатость поверхностей вносит значительные погрешности в определение показателей преломления материалов методами эллипсометрии [16], особенно их мнимых частей. Последнее совершенно естественно, так как шероховатости приводят к диффузному рассеянию и, в конечном счете, к потерям при распространении света. В литературе можно найти большое количество примеров (см., например, работы [17-20]), когда потери на рассеяние света на шероховатостях границ удавалось удовлетворительно учесть путем добавления мнимой части к действительным (при отсутствии шероховатостей) показателям преломления прозрачных материалов или путем увеличения мнимой части показателя преломления поглощающих материалов<sup>1)</sup>. Следуя этому рецепту, припишем кремнию в периодическом и переходном слоях комплексные части показателя преломления, соответственно равные  $k_1$  и  $k_2$ , а воздуху в периодическом слое —  $k_3$ . Для простоты будем считать, что параметры  $k_{1,2,3}$ не зависят от длины волны света.

Получающаяся в результате модельная структура изображена выше на рис. 26. Толщина t третьего слоя связана с V-образной формой дна и зависит от ширины щели:  $t = d_{air}/2\sqrt{3}$ , где  $d_{air} = a - d_{Si}$  — ширина щели.

Численное моделирование показывает, что параметры  $k_1$  и  $k_2$  начинают давать заметный вклад в спектры отражения при значениях, превышающих 0.1, а  $k_3$  — превышающих 0.03. Расчеты, проведенные с разными значениями  $k_1$ ,  $k_2$  и  $k_3$ , варьировавшимися в диапазоне 0.03–3, показали, что наилучшее согласие с экспериментальными спектрами отражения получается при  $k_1 = 0.2$ ,  $k_2 = 0.5$  и  $k_3 = 0.05$  (рис. 4). Такой подход позволил получить хорошее качественное совпадение расчетных и экспериментальных спектров отражения и для других образцов (см. рис. 5).

Полученные экспериментальные и теоретические спектры осциллируют вследствие резонансов Фабри-Перо при прохождении падающего света через модулированный слой структуры. Используя условие резонанса Фабри-Перо

$$\Delta\left(\frac{1}{\lambda}\right) = \frac{1}{2n_{eff}l},\tag{7}$$

где  $\Delta(1/\lambda)$  — разность обратных длин волн соседних резонансов Фабри-Перо, а l — глубина щелевого слоя, для экспериментальных и расчетных спектров отражения можно рассчитать получающиеся эффективные показатели преломления  $n_{eff}$  щелевого кремния (табл. 2) в наиболее низкочастотной области этих спектров, где лучше выполняется приближение эффективной среды. Данные величины могут быть сравнены со значениями, получающимися в модели эффективной среды при  $\lambda \gg a$  [6]:

$$n_{eff,\parallel}^2 = f n_{\rm Si}^2 + (1 - f) n_{air}^2,$$

$$\frac{1}{n_{eff,\perp}^2} = f \frac{1}{n_{\rm Si}^2} + (1 - f) \frac{1}{n_{air}^2},$$
(8)

где  $n_{eff,\parallel}$   $(n_{eff,\perp})$  — эффективный показатель преломления щелевого кремния, соответствующий направлению электрического поля волны, параллельному (перпендикулярному) щелям,  $f = d_{\rm Si}/a$  — фактор заполнения. Из табл. 2 следует, что метод матрицы рассеяния позволяет точнее рассчитать эффективные показатели преломления периодических слоев кремния, чем теория эффективной среды. Например, экспериментально полученные периоды осцилляций коэффициента отражения

<sup>&</sup>lt;sup>1)</sup> Строго говоря, нужно различать идеально-периодическую модуляцию поверхностей раздела в фотонно-кристаллической структуре и их нерегулярную шероховатость. Периодические модуляции учитываются в методе матрицы рассеяния точно и не требуют добавления комплексности для учета радиационных потерь [14].



Рис.5. Экспериментальные (верхние рисунки) и расчетные (нижние рисунки) спектры отражения образцов 24a4, 24a5 и 24a6

Таблица 2. Эффективные показатели преломления щелевого кремния, вычисленные из условия для резонансов Фабри – Перо для спектров отражения, полученных экспериментально, рассчитанных при помощи метода матрицы рассеяния, а также вычисленные в модели эффективной среды

|             | $n_{eff,\parallel}$ |               |               | $n_{e\!f\!f,\perp}$ |               |               | $\Delta n_{e\!f\!f} = n_{e\!f\!f,\parallel} - n_{e\!f\!f,\perp}$ |               |               |
|-------------|---------------------|---------------|---------------|---------------------|---------------|---------------|------------------------------------------------------------------|---------------|---------------|
| Образец     | 24a4                | 24a5          | 24a6          | 24a4                | 24a5          | 24a6          | 24a4                                                             | 24a5          | 24a6          |
| Эксперимент | $1.5 \pm 0.1$       | $1.7 \pm 0.1$ | $1.5 \pm 0.1$ | $2.7 \pm 0.1$       | $3.0 \pm 0.2$ | $3.2 \pm 0.3$ | $1.2 \pm 0.1$                                                    | $1.2 \pm 0.2$ | $1.7 \pm 0.3$ |
| Метод       |                     |               |               |                     |               |               |                                                                  |               |               |
| матрицы     | $1.5 \pm 0.1$       | $1.7 \pm 0.1$ | $1.4 \pm 0.2$ | $2.7\pm0.1$         | $3.0 \pm 0.1$ | $3.3 \pm 0.2$ | $1.2 \pm 0.1$                                                    | $1.3 \pm 0.2$ | $1.9\pm0.3$   |
| рассеяния   |                     |               |               |                     |               |               |                                                                  |               |               |
| Модель      |                     |               |               |                     |               |               |                                                                  |               |               |
| эффективной | $1.1 \pm 0.1$       | $1.1 \pm 0.1$ | $1.1 \pm 0.1$ | $1.9 \pm 0.1$       | $1.9 \pm 0.1$ | $1.9\pm0.1$   | $0.8 \pm 0.1$                                                    | $0.8 \pm 0.1$ | $0.8 \pm 0.1$ |
| среды       |                     |               |               |                     |               |               |                                                                  |               |               |

(69 см<sup>-1</sup> и 125 см<sup>-1</sup>) в низкочастотной области спектра для образца 24*a*4 оказываются весьма близкими к рассчитанным по методу матрицы рассеяния (72 см<sup>-1</sup> и 127 см<sup>-1</sup>). В то же время периоды осцилляций, соответствующие возникновению резонансов Фабри – Перо на однородном слое толщиной *l* и с показателями преломления, рассчитанными по формулам (8), оказываются равными 89 см<sup>-1</sup> и 148 см<sup>-1</sup>. Это различие объясняется, по-видимому, тем, что условие применимости приближения эффективной среды,  $a \ll \lambda$ , не выполняется с достаточной точно-

стью: в нашем случае  $a/\lambda = 0.18-0.27$ .

В высокочастотной области спектров отражения условие электростатического приближения не выполняется ( $\lambda \sim a$ ). Рассчитанные методом матрицы рассеяния периоды осцилляций в указанной области (140 см<sup>-1</sup> и 120 см<sup>-1</sup>) близки к экспериментальным (141 см<sup>-1</sup> и 138 см<sup>-1</sup>). Формальное использование формул (7), (8) приводит к результатам, значительно отличающимся от экспериментальных (13 см<sup>-1</sup> и 21 см<sup>-1</sup>). Итак, в работе были исследованы спектры отражения и пропускания структур щелевого кремния с разными периодами и толщинами стенок. Полученные экспериментально спектры сравнивались с рассчитанными методом матрицы рассеяния. Показано, что удовлетворительное согласие расчетов методом матрицы рассеяния с экспериментом можно получить, добавив мнимые части к показателям преломления кремния и воздуха в области модуляции для учета потерь на рэлеевское рассеяние на шероховатостях границ.

Работа выполнена при финансовой поддержке РФФИ (гранты  $\mathbb{N}\mathbb{N}$  08-02-01408, 09-02-00782). Один из авторов (С. А. Д.) благодарит IRCSET (Irish Research Council for Science, Engineering, and Technology) за финансовую поддержку.

# ЛИТЕРАТУРА

- Е. В. Астрова, Т. S. Perova, В. А. Толмачев, ФТП 37, 4 (2003).
- Е. Ю. Круткова, В. Ю. Тимошенко, Л. А. Головань и др., ФТП 40, 7 (2006).
- V. A. Tolmachev, T. S. Perova, E. V. Astrova et al., Phys. Stat. Sol. (a) 197, 2 (2003).
- V. A. Tolmachev, E. V. Astrova, Yu. A. Pilyugina et al., Opt. Mater. 28, 5 (2005).
- D. A. Mamichev, V. Yu. Timoshenko, A. V. Zoteyev et al., Phys. Stat. Sol. (b) 246, 1 (2009).
- М. Борн, Э. Вольф, Основы оптики, Наука, Москва (1973).

- 7. M. Elwenspoek and H. V. Jansen, *Silicon Micromachi*ning, Cambridge Univ. Press (2004).
- 8. З. Ю. Готра, Технология микроэлектронных устройств. Справочник, Радио и связь, Москва (1991).
- 9. D. L. Kendall, Ann. Rev. Mater. Sci. 9, 373 (1979).
- G. Barillaro, A. Nannini, and F. Pieri, J. Electrochem. Soc. 149, 3 (2002).
- E. V. Astrova and G. V. Fedulova, J. Micromech. Microeng. 19, 095009 (2009).
- E. V. Astrova, V. A. Tolmachev, Yu. A. Zharova et al., Sol. St. Phenom. 156–158, 547 (2010).
- A. Holke and H. T. Henderson, J. Micromech. Microeng. 9, 1 (1999).
- 14. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov et al., Phys. Rev. B 66, 045102 (2002).
- 15. D. Y. K. Ko and J. C. Inkson, Phys. Rev. B 38, 9945 (1988).
- R. M. A. Azzam and N. M. Bashara, *Ellipsometry* and *Polarized Light*, North-Holland Personal Libriary (1987).
- 17. R. M. A. Azzam and N. M. Bashara, Phys. Rev. B 5, 1 (1973).
- H. Benisty, D. Labilloy, and C. Weisbuch, Appl. Phys. Lett. 76, 532 (2000).
- H. Benisty, Ph. Lalanne, and S. Olivier, Opt. Quant. Electron. 34, 205 (2002).
- 20. A. A. Maradudin and D. L. Mills, Phys. Rev. B 11, 1392 (1975).