РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В СВЕРХПРОВОДЯЩИХ ОКСИДАХ BaPb_{1-x}Sb_xO₃: ИССЛЕДОВАНИЕ МЕТОДАМИ ДВОЙНОГО ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА

Ю. В. Пискунов^{*}, В. В. Оглобличев, И. Ю. Арапова, А. Ф. Садыков, А. П. Геращенко, С. В. Верховский

Институт физики металлов Уральского отделения Российской академии наук 620990, Екатеринбург, Россия

Поступила в редакцию 6 апреля 2011 г.

Методами ЯМР экспериментально исследовано влияние зарядового беспорядка на формирование неоднородного состояния электронной системы зоны проводимости в сверхпроводящих оксидах $BaPb_{1-x}Sb_xO_3$. Выполнены систематические измерения ЯМР-спектров ¹⁷ О и идентифицированы вклады в эти спектры атомов ¹⁷ О, имеющих различное ближнее окружение катионов. Установлено, что в пределах двух координационных сфер вблизи ионов сурьмы формируются микрообласти с повышенной спиновой плотностью носителей. Обнаружены микроскопически распределенные по образцу зародыши полупроводниковой фазы оксида (области с повышенным содержанием сурьмы) в составах с x = 0.25 и x = 0.33. Впервые выполнены эксперименты по измерению сигнала двойного резонанса спинового эха ¹⁷ О-²⁰⁷ Pb, ¹⁷ О-¹²¹ Sb в металлической фазе оксидов $BaPb_{1-x}Sb_xO_3$. Определены константы косвенного гетероядерного спинспинового взаимодействия ¹⁷ О-²⁰⁷ Pb в зависимости от величины локального найтовского сдвига ²⁰⁷ K_s . Оценки констант косвенного взаимодействия ядер ближайших соседей, атомов О-Pb и Pb-Pb, а также анализ эволюции ЯМР-спектров ¹⁷ О при изменении концентрации сурьмы дают убедительные свидетельства в пользу развития микроскопически неоднородного состояния электронной системы в металлической фазе оксидов $BaPb_{1-x}Sb_xO_3$.

1. ВВЕДЕНИЕ

В настоящее время изучение причин формирования и развития неоднородного состояния электронной системы в перовскитоподобных оксидах, их взаимосвязи с возникновением и особенностями сверхпроводимости в этом классе соединений является одним из наиболее интенсивно развивающихся направлений физики конденсированного состояния. К данному классу сверхпроводящих перовскитов относятся металлооксиды на основе свинца BaPb_{1-y}Bi_yO₃ (BPBO) [1] и BaPb_{1-x}Sb_xO₃ (BPSO) [2]. Для фазовых диаграмм данных оксидов общим является наличие при 0.10 < x, y < 0.35 области сверхпроводящих составов, примыкающей к концентрационному переходу металл-полупроводник (x_c , $y_c \approx 0.35$). Если принять во внимание подобие кристаллического строения оксидов ВРВО и ВРЅО, то крайне интригующим моментом является большое различие значений критической температуры T_c : $T_{c,max}(y = 0.25) = 13$ К, $T_{c,max}(x = 0.25) = 3.5$ К, что не находит приемлемого объяснения в рамках традиционного механизма куперовского спаривания с использованием усредненных по кристаллу данных о плотности состояний вблизи энергии Ферми, $N(E_F)$ [3–5].

Недостаточность использования приближения однородного кристалла для описания основного состояния электронной системы гетеровалентно-допированных перовскитов $\operatorname{BaPb}_{1-x}(\operatorname{Sb},\operatorname{Bi})_xO_3$ выявлена в результате исследований электронного транспорта [6–8], особенностей строения валентной зоны и зоны проводимости методами рентгеновской и фотоэлектронной спектроскопии [9,10], зонных расчетов [11,12] и нейтронографических [13] иссле-

^{*}E-mail: piskunov@imp.uran.ru

дований структурного ближнего порядка. В связи с этим широко обсуждается вопрос о роли локальных структурных, зарядовых и спиновых неоднородностей в механизме формирования сверхпроводящего состояния в оксидах BaPb_{1-x}(Sb,Bi)_xO₃.

качестве основной причины развиваю-В щейся электронной неустойчивости в оксидах ВаРь_{1-у}Ві_уО₃ рассматривается наличие в них ионов висмута с разной валентностью, Bi³⁺ и Ві⁵⁺ [14] вследствие неустойчивости валентных состояний ионов Bi⁴⁺. Что касается оксидов $BaPb_{1-x}Sb_xO_3$, в них, по данным ¹²¹Sb-мессбауэровской спектроскопии [15,16], ионы сурьмы имеют только одну валентность «5+». Поэтому для удовлетворения условия электронейтральности соединения было предположено, что в оксидах BPSO состояние со смешанной валентностью образуется в системе ионов свинца Pb^{2+} и Pb^{4+} [16–18]. Вопрос о том, какое отношение имеют эти микроскопические зарядовые неоднородности к явлению сверхпроводимости, а также к необычным свойствам этих соединений в нормальном состоянии, до сих пор остается открытым. Локальный метод ЯМР представляется наиболее перспективным для изучения особенностей статического распределения и низкочастотной динамики локальных электрических и магнитных полей, отражающих симметрию ближнего порядка атомов.

Ранее, в результате комплексных ЯМР-исследований, включающих в себя измерения ЯМР-спектров ²⁰⁷ Pb, сдвигов Найта ²⁰⁷ K_s , скорости ²⁰⁷ T_1^{-1} спин-решеточной релаксации и затухания амплитуды $^{207}M(2\tau)$ спинового эха ядер свинца, было показано, что в сверхпроводящих оксидах $BaPb_{1-x}Sb_xO_3$ ($x \le 0.33$) развивается микроскопически неоднородное состояние электронной системы [19]. В данной работе представлены результаты исследования пространственной дисперсии спиновой плотности электронов в металлической фазе оксидов $\operatorname{BaPb}_{1-x}\operatorname{Sb}_x\operatorname{O}_3$ ($x \leq 0.33$). Сведения о микроскопически неоднородном распределении по кристаллу спиновой плотности получены на основе анализа ЯМР-спектров ¹⁷О и констант косвенного спин-спинового взаимодействия ядер ¹⁷О и ²⁰⁷Pb, J^{Pb-O}, измеренных с помощью методов двойного ядерно-ядерного магнитного резонанса.

2. ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Поликристаллические образцы оксида $BaPb_{1-x}Sb_xO_3$ с x = 0, 0.10, 0.18, 0.25, 0.33

были приготовлены с использованием традиционной керамической технологии твердофазного синтеза, описанной в работах [2,8]. Затем они были обогащены изотопом кислорода ¹⁷ О посредством многочасового отжига в потоке газа с 40-процентным содержанием ¹⁷ О₂ [20]. Рентгеноструктурный анализ не обнаружил наличия в исследуемых объектах каких-либо примесных фаз помимо основной орторомбической фазы оксида BPSO. ЯМР-эксперименты были проведены на импульсном спектрометре в магнитном поле 94 кЭ. Компоненты тензора магнитного сдвига кислорода, ¹⁷ K_{iso} и ¹⁷ K_{ax} , определены относительно положения резонансной линии ¹⁷ О в H₂O.

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ИХ ОБСУЖДЕНИЕ

Атомы кислорода в соединении $BaPb_{1-x}Sb_xO_3$ располагаются в вершинах октаэдров, в центре которых находятся атомы свинца или сурьмы. Ядро изотопа ¹⁷О обладает спином ${}^{17}I = 5/2$ и электрическим квадрупольным моментом $^{17}Q\ =$ $= -0.026 \cdot 10^{-24}$ см². В этом случае резонансная частота $\nu_{\rm O}(m \leftrightarrow m-1)$ изотопа ¹⁷ О определяется не только сверхтонкими магнитными взаимодействиями, как в случае атомов свинца, но также взаимодействием квадрупольного момента ядра Q с градиентом электрического поля eV_{ii} (i = x, y, z), создаваемого электронным и ионным окружением. На рис. 1 представлены ЯМР-спектры ¹⁷О центрального перехода ($m = +1/2 \leftrightarrow -1/2$) в поликристаллических образцах $\operatorname{BaPb}_{1-x}\operatorname{Sb}_x\operatorname{O}_3$ при различных значениях х в поле 94 кЭ. Также были измерены спектры сателлитных линий, соответствующих переходам $m = \pm 1/2 \leftrightarrow \pm 3.2$ и $m = \pm 3/2 \leftrightarrow \pm 5.2$ (не показаны). В составе ВаРbO₃ ЯМР-спектр ¹⁷О удовлетворительно описывается в предположении магнитной эквивалентности всех позиций атомов кислорода в кристалле. Используя процедуру математического моделирования порошковых спектров и привлекая дополнительно данные о резонансных частотах сателлитных линий, для исходного оксида BaPbO₃ мы определили компоненты тензора магнитного сдвига, ${}^{17}K_{iso}$ и ${}^{17}K_{ax}$, а также значения квадрупольной частоты ν_O и параметра асимметрии η . Величины ν_Q и η связаны с компонентами V_{ii} тензора градиента электрического поля следующим образом [21]:

$$\nu_Q = \frac{3eQV_{zz}}{4\pi I(2I-1)\hbar}, \quad \eta = \frac{V_{xx} - V_{yy}}{V_{zz}}.$$
 (1)

Рис.1. ЯМР-спектры ¹⁷О (переход $m = +1/2 \leftrightarrow -1/2$) в поликристаллических образцах ВаРb_{1-x}Sb_xO₃ при x = 0, 0.10, 0.18, 0.25, 0.33 в магнитном поле $H_0 = 94$ кЭ при температуре T = 20 К (символы) и результат моделирования порошковых спектров набором из нескольких линий (1-4) с различными значениями компонент тензора магнитного сдвига и тензора градиента электрического поля (сплошная линия)

Результат компьютерного моделирования ЯМР-спектра ¹⁷О в ВаРbО₃ показан на рис. 1: спектр центрального перехода удовлетворительно описывается одиночной квадрупольно расщепленной линией; тензор градиента электрического поля обладает симметрией, близкой к аксиальной ($\nu_Q = (1.13 \pm 0.01)$ МГц, $\eta < 0.05$).

В оксидах с x > 0 кристаллографическая эквивалентность позиций атомов кислорода нарушается, поскольку теперь в ближайшее окружение ¹⁷О могут, наряду с ионами Pb⁴⁺, входить ионы Sb⁵⁺. Неэкивалетность кислородных позиций может проявляться в различных значениях сдвигов их резонансных линий, частот ν_Q и скоростей ядерной магнитной релаксации. Действительно, на спектрах центрального перехода ¹⁷О в составах с x > 0, представИнтенсивность, отн. ед.

Рис.2. Относительные интенсивности спектральных линий 1 (●), 2 (■), 3 (▲), 4 (♦), полученные при анализе экспериментальных спектров. Сплошные кривые — результат расчета интенсивностей линий 1, 2, 3, 4 в предположении статистически случайного распределения сурьмы по образцу

ленных на рис. 1, видна слаборазрешенная тонкая структура, и они не могут быть описаны одиночной резонансной линией.

Весьма эффективная методика обнаружения неэквивалентности позиций кислорода в $BaPb_{1-x}Sb_xO_3$ — сравнение спектров, записанных с помощью методики спинового эха при разных временах задержки τ между импульсами, формирующими эхо. Спектры записывались при $\tau = 30-1000$ мкс. В соединении BaPbO₃ форма линии практически не зависит от того, с какой задержкой между импульсами записывается спектр, в то время как в оксидах с x > 0 такая зависимость имеет место. Изменение формы кривой спектральной интенсивности $g(\nu)$ указывает на присутствие в оксидах с x > 0 нескольких групп атомов кислорода с разной величиной локального магнитного поля, статическая часть которого определяет магнитный сдвиг резонансной линии, а его флуктуации время ${}^{17}T_2$ необратимого затухания спинового эха.

Измерения ЯМР-спектров ¹⁷О с помощью методики спинового эха при разных временах задержки τ между импульсами, формирующими эхо, измерение времен T_2 спин-спиновой релаксации на различных участках ЯМР-спектров ¹⁷О, а также использование специальной программы анализа спектров позволили установить, что спектры кислорода в оксидах $BaPb_{1-x}Sb_xO_3$ с x = 0.10, 0.18, 0.25, 0.33 представляют собой суперпозицию четырех отдельных линий (1, 2, 3, 4), как это показано на рис. 1. Подгоночными параметрами в процедуре компьютерного моделирования спектров являлись интенсивность, компоненты тензора магнитного сдвига отдельных линий, а также магнитное уширение линий, величина которого была определена как ширина $(\delta \nu)_{0.5}$ гауссовой функции распределения изотропного магнитного сдвига. Результаты обработки спектров, полученные в настоящей работе, приведены в таблице. С ростом концентрации сурьмы компоненты тензора магнитного сдвига $\{K_{iso}, K_{ax}\}_i$ отдельных линий остаются неизменными в пределах погрешности определения величин. На рис. 2 представлены зависимости от х интенсивностей линий 1, 2, 3, 4, полученные в процессе анализа спектров (символы) и в результате расчетов концентраций атомов кислорода, имеющих различное ближнее окружение катионов, а именно, атомов ¹⁷О, у которых в двух первых катионных сферах отсутствует сурьма (линия 1), сурьма присутствует только во второй координационной сфере (линия 2), в первой координационной сфере имеется один ион (линия 3) или два иона (линия 4) сурьмы. В результате сравнения данных зависимостей было предложено следующее структурное отнесение резонансных линий 17 О в BaPb_{1-x}Sb_xO₃, представленных на рис. 1:

вклад в интенсивность линии 1 дают атомы кислорода, у которых в двух первых катионных сферах отсутствуют ионы сурьмы;

интенсивность линии 2 формируется атомами кислорода, у которых во второй катионной сфере присутствуют ионы сурьмы, но отсутствуют в первой;

линия 3 связана с атомами кислорода, у которых в первой катионной сфере присутствует один ион сурьмы;

линия 4 относится к кислороду, расположенному в зародышах полупроводниковой фазы (области с повышенным содержанием сурьмы).

Идентификация спектральных линий кислорода, предложенная выше, была подтверждена экспериментами по двойному резонансу спинового эха (ДРСЭ) [22,23]. Неоднородность электронной спиновой плотности, развивающаяся в оксидах $BaPb_{1-x}Sb_xO_3$ при x > 0, проявляется в распределении магнитных сдвигов линий ЯМР как ¹⁷O, так и ²⁰⁷Pb. В составе $BaPb_{0.9}Sb_{0.1}O_3$ тонкая структура ЯМР-спектров этих изотопов является наиболее разрешенной (рис. 1, 3). Тонкая структура спектра кислорода и различие релаксационных характери-

Рис. 3. ЯМР-спектры 207 Pb в оксиде ВаРb_{1-x}Sb_xO₃, записанные в магнитном поле $H_0 = 94$ кЭ при T = 20 К. Стрелками указаны частоты $\nu'_{\rm Pb} = 84.2$ МГц, $\nu''_{\rm Pb} = 85.1$ МГц и $\nu''_{\rm Pb} = 83.65$ МГц, возбуждаемые в ходе эксперимента по ДРСЭ 17 O- 207 Pb

стик ядер кислорода, формирующих отдельные линии спектра, обусловлены распределением локальных магнитных полей, создаваемых на ядрах атомов кислорода соседними катионами Pb(Sb). Чтобы выяснить, какие особенности ЯМР-спектра ¹⁷О соответствуют тому или иному катионному окружению кислорода в решетке, были выполнены ДРСЭ-эксперименты на ядрах $^{17}\mathrm{O-}^{207}\mathrm{Pb}$ и ¹⁷О-¹²¹Sb. Суть данного метода заключается в возможности селективного изменения локальных полей, создаваемых ядрами определенного сорта (со спином S) на позициях ядра-зонда (со спином *I*). Если в исследуемом соединении неодинаковые спины I и S связаны спин-спиновым взаимодействием $\mathcal{H}_{IS} = \hbar a^{IS} I_z S_z$, где a^{IS} — константа спин-спинового взаимодействия, то методом ДРСЭ можно выделить вклад этой гетероядерной связи в суммарное взаимодействие ядерного момента I с окружением.

Эксперименты по ДРСЭ проводились в два этапа. На первом этапе (рис. 4) последовательность радиоимпульсов $(\pi/2)_{\rm O} - \tau - \pi_{\rm O}$ прикладывалась на

Образец	Номер линии	K_{iso} , ppm	K_{ax} , ppm	η	$ u_Q, \mathrm{M}\Gamma$ ц	$(\delta \nu)_{0.5},\kappa \Gamma$ ц
${ m BaPbO_3}$	1	330 ± 5	-30 ± 5	0.03	1.12 ± 0.01	3.50 ± 0.10
$\mathrm{BaPb}_{0.9}\mathrm{Sb}_{0.1}\mathrm{O}_3$	1	330 ± 5	-30 ± 5	< 0.05	1.12 ± 0.01	2.25 ± 0.06
	2	470 ± 15	-40 ± 20		1.12 ± 0.01	3.20 ± 0.10
	3	690 ± 10	0 ± 10		1.13 ± 0.02	6.30 ± 0.25
$\mathrm{BaPb}_{0.82}\mathrm{Sb}_{0.18}\mathrm{O}_3$	1	390 ± 10	-20 ± 5	0.03	1.12 ± 0.01	3.70 ± 0.10
	2	470 ± 15	-40 ± 20	0.03	1.12 ± 0.01	5.05 ± 0.08
	3	790 ± 10	60 ± 5	0.03	1.13 ± 0.02	6.40 ± 0.13
${ m BaPb_{0.75}Sb_{0.25}O_3}$	2	470 ± 15	-40 ± 20	0.03	1.12 ± 0.01	3.40 ± 0.10
	3	560 ± 10	40 ± 5	0.03	1.13 ± 0.02	6.30 ± 0.08
	4	270 ± 20	-10 ± 5	0.04	1.12 ± 0.03	4.90 ± 0.25
${ m BaPb}_{0.67}{ m Sb}_{0.33}{ m O}_3$	2	470 ± 15	-40 ± 20	0.03	1.12 ± 0.01	3.70 ± 0.10
	3	590 ± 10	60 ± 10	0.03	1.13 ± 0.02	6.65 ± 0.10
	4	350 ± 10	20 ± 5	0.04	1.12 ± 0.03	4.90 ± 0.25

Таблица. Компоненты тензора магнитного сдвига (K_{iso} , K_{ax}), квадрупольные частоты ν_Q и параметры асимметрии η отдельных линий, формирующих тонкую структуру ЯМР-спектра ¹⁷О в оксидах $BaPb_{1-x}Sb_xO_3$

Рис. 4. Последовательности радиоимпульсов для двух этапов экспериментов по ДРСЭ $^{17}\mathrm{O-}^{207}\mathrm{Pb}$

частоте $\nu_{\rm O} = 54.3~{\rm MFu}$ к системе ядерных спинов I кислорода и в момент времени 2τ регистрировалась амплитуда $^{17}M(2\tau)$ спинового эха. Поскольку гамильтониан \mathcal{H}_{IS} не имеет явной зависимости от времени на интервале $(0, 2\tau)$, в результате действия $\pi_{\rm O}$ -импульса имеем

$$\mathcal{H}_{IS}(\tau - 0) = -\mathcal{H}_{IS}(\tau + 0).$$

В этом случае эффект расфокусировки ядерной намагниченности спинов I в статических локальных полях спинов S в интервале $(0, \tau)$ сопровождается последующей фокусировкой ядерной намагниченности спинов I в интервале $(\tau, 2\tau)$, предшествующем формированию сигнала эха. На втором этапе одновременно с импульсом прикладывался дополнительный импульс π_{Pb} на частоте $\nu_{\rm Pb} = 84-86 \ {\rm M}$ Гц, инвертирующий направление локальных полей от спинов S и сохраняющий неизменным знак гамильтониана $\mathcal{H}_{IS}(t-0) = \mathcal{H}_{IS}(t+0)$ в течение времени эволюции 27. В результате амплитуда ${}^{17}M(2\tau,\nu_{\rm Pb})$ спинового эха в момент 2τ должна уменьшиться по сравнению с величиной $^{17}M(2\tau)$ за счет дополнительного затухания, внесенного на втором этапе взаимодействия \mathcal{H}_{IS} . Отношение $m(2\tau, \nu_{\rm Pb}) = M(2\tau, \nu_{\rm Pb})/M(2\tau)$ получило название сигнала ДРСЭ.

Разность спектров, полученных на первом и втором этапах ДРСЭ-эксперимента, определяет, какие особенности спектральных линий ¹⁷ О и ²⁰⁷ Pb соответствуют друг другу. Или, другими словами, какому участку полного кислородного спектра соответствуют ядра ¹⁷ О, расположенные вблизи ядер ²⁰⁷ Pb, резонансные частоты которых находятся в определенной области частот $\Delta \nu_{\rm Pb}$. В настоящем исследовании ДРСЭ-эксперименты были выполнены

Рис.5. Разностные спектры $\Delta m(\nu, \nu_{\rm Pb}) = {}^{17}M(\nu) - {}^{17}M(\nu, \nu_{\rm Pb})$: сплошная линия — результат моделирования разностных спектров набором из нескольких линий (1–4), параметры которых совпадают с параметрами соответствующих линий, приведенных в таблице

при селективном возбуждении ядер атомов ²⁰⁷ Pb на частотах $\nu'_{\rm Pb} = 84.20$ МГц, $\nu''_{\rm Pb} = 85.10$ МГц и $\nu''_{\rm Pb} = 83.65$ МГц (см. рис. 3). На рис. 5 представлены разностные спектральные линии

$$\Delta m(\nu, \nu_{\rm Pb}) = {}^{17}M(\nu) - {}^{17}M(\nu, \nu_{\rm Pb})$$

Здесь ¹⁷ $M(\nu)$ — спектр кислорода, записанный без возбуждения ядер ²⁰⁷Pb, ¹⁷ $M(\nu, \nu_{Pb})$ — спектр кислорода, записанный при возбуждении ядер ²⁰⁷Pb на частоте ν_{Pb} . Разностный ЯМР-спектр ¹⁷O, полученный при возбуждении ядер ²⁰⁷Pb на частоте $\nu'_{Pb} = 84.2 \text{ M}\Gamma$ ц, полностью совпадает со спектром ¹⁷O в образце ВаРbO₃ и с линией 1 на рис. 1. Кроме того, линия свинца на частоте $\nu'_{Pb} = 84.2 \text{ M}\Gamma$ ц относится к тем позициям свинца, для которых в двух ближайших координационных сферах отсутствуют атомы сурьмы [19]. Таким образом, результат ДРСЭ-экспериментов однозначно указывает на то, что вклад в интенсивность линии 1 дают атомы кислорода, у которых в двух первых катионных сферах отсутствуют ионы сурьмы.

Селективное возбуждение ²⁰⁷Pb на частоте $\nu_{\rm Pb}^{\prime\prime} = 85.1~{\rm M}\Gamma$ ц, соответствующей позициям свинца, в окружении которого присутствуют ионы Sb, привело к изменениям спектральной интенсивности существенно других фрагментов ЯМР-спектра ¹⁷О. Полученный при этом разностный спектр хорошо описывается линиями 2 и 3 с параметрами, указанными в таблице, что подтверждает предложенную ранее структурную идентификацию данных линий. На рис. 5 также приведен разностный спектр ¹⁷О, полученный при селективном возбуждении линии $^{207}\mathrm{Pb}$ на частоте $\nu_{\mathrm{Pb}}^{\prime\prime\prime}~=~83.65~\mathrm{M}\Gamma$ ц в образце с x = 0.33 (см. рис. 3). Он удовлетворительно моделируется двумя линиями, 3 и 4. Тем самым, данный результат подтверждает сделанное нами ранее предположение [19] о том, что спектральная линия ²⁰⁷Pb на частоте $\nu_{\rm Pb}^{\prime\prime\prime} = 83.65~{\rm M}$ Гц соответствует областям образца с повышенным содержанием сурьмы, в которых имеет место зарождение полупроводниковой ϕ азы BaPb_{1-x}Sb_xO₃.

Уникальную информацию об особенностях пространственной дисперсии спиновой восприимчивости $\chi_s(q)$ и сверхтонких электрон-ядерных связях можно получить, исследуя косвенные спин-спиновые взаимодействия между ядерными спинами. Подобные сведения являются ключевыми при обсуждении неоднородного состояния электронной спиновой системы с существенными кулоновскими корреляциями. В подавляющем большинстве случаев в твердом теле не представляется возможным измерить константу J^{IS} косвенного спин-спинового взаимодействия по характерному расщеплению линии неоднородно уширенного спектра ЯМР. В данной работе удалось измерить константы J^{O-Pb} в оксиде BaPb_{0.9}Sb_{0.1}O₃ в ходе экспериментов по ДРСЭ $^{17}O-^{207}Pb.$

Спин-спиновое взаимодействие \mathcal{H}_{IS} между ядерными спинами O(I)-Pb(S) содержит дипольный и косвенный вклады [24, 25]:

$$\mathcal{H}_{IS} = \mathcal{H}_{IS,dip} + \mathcal{H}_{IS,ind} = \hbar \sum_{i=1}^{N} (D_i^{IS} + J_i^{IS}) I_z S_{zi}, \quad (2)$$

где

$$D_i^{IS} = \frac{\gamma_I \gamma_S \hbar}{r_i^3} \left(1 - 3\cos^2 \theta_i \right), \qquad (3)$$

N — число ближайших соседей ядерных спинов Sу спина I, r_i — расстояние между взаимодействующими спинами, θ_i — угол между направлениями

Рис. 6. ДРСЭ-сигналы $m(2\tau, 84.2 \text{ MFu}) = {}^{17}M(2\tau, 84.2 \text{ MFu})/{}^{17}M(2\tau)$ (a) и $m(2\tau, 85.1 \text{ MFu}) = {}^{17}M(2\tau, 85.1 \text{ MFu})/{}^{/17}M(2\tau)$ (b), измеренные в двух частотных диапазонах, соответствующих сдвигам Найта ${}^{207}K_s = 0.78$ % (a) и ${}^{207}K_s = 1.66$ % (b). Сплошные линии — результаты аппроксимации данных $m(2\tau, \nu_{\rm Pb})$ функцией $y(2\tau) = A \exp(-2\tau/T_2)\cos(a^{\rm O-Pb}\tau) + b$

вектора \mathbf{r}_i и внешнего магнитного поля \mathbf{H}_0 ; γ_I и γ_S — гиромагнитные отношения ядерных спинов I и S. Первое слагаемое в выражении (2) учитывает классическое дипольное взаимодействие магнитных моментов спинов I и S. Второе описывает косвенное взаимодействие ядерных спинов через систему электронов зоны проводимости. Величина косвенного взаимодействия является существенной, когда один из взаимодействующих спинов принадлежит тяжелому (с зарядом ядра Z > 50) атому, валентные электроны которого участвуют в формировании зоны проводимости. В оксидах BaPb_{1-x}Sb_xO₃ тяжелыми атомами являются Pb (Z = 82) и Sb (Z = 51). В выражении (2) мы пренебрегли несекулярными компонентами спин-спинового взаимодействия (такими как $I_x S_x$, $I_y S_y$), которые описывают процессы взаимного переворота спинов, так называемые флип-флоп-переходы ($\uparrow\downarrow\leftrightarrow\downarrow\uparrow$), сопровождаемые поглощением или испусканием кванта энергии $h(\nu_i - \nu_i)$. Такое приближение справедливо, если разность частот прецессии соседних взаимодействующих спинов много больше константы спин-спинового взаимодействия $a^{IS} = D^{IS} + J^{IS}$, т. е.

$$|\nu_i - \nu_j| \gg |a_{ij}^{IS}|. \tag{4}$$

Упрощение гамильтониана до формы (2) в данном случае вполне обосновано, так как ларморовские частоты ядер ¹⁷ О и ²⁰⁷ Pb в магнитном поле $H_0 = 94$ кЭ различаются на десятки мегагерц. Гамильтониан косвенного взаимодействия $H_{IS,ind}$ можно записать в следующем виде [24, 26]:

$$\mathcal{H}_{IS,ind} = \hbar^2 \gamma_I \gamma_S H^S_{hf} H^I_{hf} \Omega^{IS} \chi'(\mathbf{r}) I_z S_z, \qquad (5)$$

где Ω^{IS} — объем сферы Вигнера–Зейтца; H^{I}_{hf} и

 H^S_{hf} — сверхтонкие поля, создаваемые электронами зоны проводимости соответственно на ядрах I и S. Как видно из выражений (2) и (5), константа J^{IS}_i косвенного спин-спинового взаимодействия связана с действительной частью $\chi'(\mathbf{r})$ нелокальной восприимчивости.

В работе [23] было показано, что когда гетероядерное взаимодействие между спинами I и S определяется лишь секулярной частью выражения (2) гамильтониана \mathcal{H}_{IS} , зависимость величины ДРСЭ-сигнала $m(2\tau, \nu_{\rm Pb}) = M(2\tau; \nu_{\rm Pb})/M(2\tau)$ от расстояния τ между регистрирующими импульсами имеет вид

$$m(2\tau,\nu_{\rm Pb}) = \exp\left(-\frac{2\tau}{T_2}\right) \prod_{n=1}^N A_n \cos(a_n^{\rm O-Pb}\tau), \quad (6)$$

где A_n — амплитуда колебаний, T_2 — характерное время затухания сигнала $m(2\tau, \nu_{\rm Pb})$, обусловленное другими механизмами спин-спиновой и спин-решеточной релаксаций. В случае оксидов BPSO, представляющих собой разбавленную систему ядерных магнитных моментов с малой относительной концентрацией в образце ЯМР-изотопов ²⁰⁷ Pb (²⁰⁷ c = = 0.226) и ¹⁷ O (¹⁷ c = 0.15), выполняется условие $N \approx 1$. Тогда для изолированной пары ¹⁷ O–²⁰⁷ Pb выражение (6) принимает наиболее простой вид:

$$m(2\tau, \nu_{\rm Pb}) = A \exp\left(-\frac{2\tau}{T_2}\right) \cos(a_n^{\rm O-Pb}\tau).$$
(7)

На рис. 6 представлены кривые затухания ДРСЭ-сигналов

$$m(2\tau; 84.2 \text{ M}\Gamma \text{II}) = \frac{{}^{17}M(2\tau; 84.2 \text{ M}\Gamma \text{II})}{{}^{17}M(2\tau)}$$

в ВаРb_{0.9}Sb_{0.1}O₃, полученные при двух различных частотах $\nu_{\rm Pb}$. Зависимости $m(2\tau)$ имеют выраженный осциллирующий характер и удовлетворительно аппроксимируются выражением (7) со значениями $T_2 = 2.7(2)$ мс, $a^{\rm O-Pb} = 4.5(1) \cdot 10^3$ с⁻¹ для $\nu_{\rm Pb} =$ = 84.2 МГц и $T_2 = 0.7(2)$ мс, $a^{\rm O-Pb} = 7.7(1) \cdot 10^3$ с⁻¹ для $\nu_{\rm Pb} = 85.1$ МГц.

Выше было сказано, что спин-спиновое взаимодействие H_{IS} между ядерным спином I и спинами S, принадлежащими более тяжелым атомам Pb(Bi), содержит два основных вклада: косвенное J^{IS} и дипольное D^{IS} взаимодействия. Константа дипольного вклада D^{IS} зависит от θ — угла между направлением магнитного поля и вектором r, соединяющим О и Рb (см. формулу (3)). В порошках BPSO основной вклад в осцилляции ДРСЭ-сигнала дают пары вблизи $\theta \approx \pi/2$ (для $\theta \approx 0$ происходит частичная взаимная компенсация косвенного и дипольного вкладов). Используя значения $\gamma_{\rm O} = 3626 \ ({\rm c} \cdot {\rm G})^{-1}$, $\gamma_{\rm Pb} = 5597 \ ({\rm c}{\cdot}{\Im})^{-1}, \ r = 2.127 \cdot 10^{-8} \ {\rm cm} \ [2], \ {\rm coffac}$ но формуле (3), получаем следующее значение константы дипольного взаимодействия магнитных моментов соседних ядер O-Pb:

$$D^{\rm O-Pb} = 2100 \pm 90 \ \rm c^{-1}.$$

Оценив дипольную константу, мы можем выделить вклад косвенного взаимодействия в гетероядерную константу:

$$J^{\rm O-Pb} = a^{\rm O-Pb} - D^{\rm O-Pb}.$$

На рис. 7 приведены значения констант косвенного гомоядерного $J^{\rm Pb-Pb}$ [19] и гетероядерного $J^{\rm O-Pb}$ взаимодействий в зависимости от сдвига Найта ²⁰⁷ K_s в BaPb_{0.9}Sb_{0.1}O₃. Константы $J^{\rm O-Pb}$ соответствуют участкам ²⁰⁷ K_s неоднородно уширенной линии ЯМР ²⁰⁷Pb, приведенной на этом же рисунке, которые возбуждались в ходе ДРСЭ-экспериментов. Обе константы возрастают пропорционально сдвигу Найта:

$$J^{\rm Pb-Pb} \propto {}^{207}K_s, \quad J^{\rm O-Pb} \propto {}^{207}K_s$$

Поскольку сдвиг Найта в BPSO определяется плотностью состояний $N(E_F)$ на уровне Ферми,

$$^{207}K_s = 2\mu_B H_{hf}^{\rm Pb} N(E_F),$$

нелокальная спиновая восприимчивость, согласно выражению (5), пропорциональна $N(E_F)$,

$$\chi_s(\mathbf{r}) \propto J^{II,IS} \propto N(E_F),$$

Рис. 7. Константы косвенного гомоядерного $J^{\rm Pb-Pb}$ и гетероядерного $J^{\rm O-Pb}$ взаимодействий в зависимости от сдвига Найта ${}^{207}K_s$ в ${\rm BaPb}_{0.9}{\rm Sb}_{0.1}{\rm O}_3$. Данные соответствуют участкам ${}^{207}K_s$ неоднородно уширенной ЯМР-линии ${}^{207}{\rm Pb}$, приведенной сверху

что характерно только для нормальных изотропных металлов с поверхностью Ферми, близкой к сферической [26, 27].

В предыдущих ЯМР-экспериментах на ²⁰⁷Pb [19] мы показали, что данные о затухании амплитуды спинового эха ядер свинца и значения констант косвенного взаимодействия ядер ближайших соседей (атомов Pb) свидетельствуют о развитии в оксидах BPSO микроскопически неоднородного по кристаллу состояния электронной системы при частичном замещении свинца сурьмой. Эксперименты, выполненные на ¹⁷О, подтверждают данный вывод. Действительно, относительные интенсивности ЯМР-линий ¹⁷О, входящие в состав полного спектра кислорода, соответствуют статистически равномерному распределению по образцу ионов сурьмы. Объяснить наблюдаемые интенсивности линий кислорода в предположении макроскопического фазового расслоения в составах BPSO не представляется возможным. Кроме того, полученные результаты свидетельствуют о том, что повышенная спиновая плотность носителей формируется в пределах двух первых координационных сфер вокруг ионов Sb. Дальнейшее увеличение концентрации сурьмы приводит к появлению в составах с x = 0.25 и x = 0.33 дополнительных резонансных линий в спектрах ²⁰⁷Pb

и ¹⁷О со значениями сдвига близкими к нулю. Мы полагаем, что эти линии соответствуют областям оксида с повышенным содержанием сурьмы, которые представляют собой зародыши полупроводниковой фазы. Взаимное перекрытие этих областей приводит к концентрационному переходу сверхпроводящий металл-полупроводник. Что касается экспериментов по двойному резонансу на ядерных парах ¹⁷O–¹²¹Sb, обнаружить ДРСЭ-сигнал $m(2\tau, \nu_{\rm Sb})$ в этих измерениях не удалось. Данный отрицательный результат может быть обусловлен слишком низкой концентрацией изотопа сурьмы ¹²¹Sb $(^{121}c = 0.14)$ в образце Ва $Pb_{0.75}Sb_{0.25}O_3$, на котором выполнялся ДРСЭ-эксперимент. Кроме того, вследствие большой ширины ЯМР-спектра ¹²¹Sb $((\delta \nu)_{0.5} \approx 3 \text{ M}\Gamma_{\text{I}})$ импульсом π_{Sb} реально возбуждалось только около 20 % ядер ¹²¹Sb, что еще в пять раз уменьшало концентрацию ядер сурьмы ¹²¹Sb, дающих вклад в ДРСЭ-сигнал.

4. ЗАКЛЮЧЕНИЕ

Методами ЯМР экспериментально исследовано влияние зарядового беспорядка на формирование неоднородного состояния электронной системы зоны проводимости в сверхпроводящих оксидах $BaPb_{1-x}Sb_xO_3$ с x = 0, 0.10, 0.18, 0.25, 0.33. Впервые выполнены систематические измерения ЯМР-спектров ¹⁷О с помощью методики спинового эха при разных временах задержки τ между импульсами, формирующими эхо. Использование специальной программы анализа спектров и результатов статистического анализа изменения с концентрацией сурьмы относительной интенсивности отдельных линий в спектрах, а также выполнение уникальных экспериментов по ДРСЭ ¹⁷О-²⁰⁷Рb позволило идентифицировать вклады в ЯМР-спектры ¹⁷О атомов кислорода, имеющих различное ближнее окружение катионов в допированных оксидах $BaPb_{1-x}Sb_xO_3$. Установлено, что в пределах двух координационных сфер вблизи ионов сурьмы формируются микрообласти с повышенной спиновой плотностью носителей. Обнаружены микроскопически распределенные по образцу зародыши полупроводниковой фазы оксида (области с повышенным содержанием сурьмы) в составах с x = 0.25 и x = 0.33. Предложено рассматривать концентрационный переход сверхпроводящий металл-полупроводник как перколяционный переход, возникающий в результате взаимного перекрытия областей с зародышами полупроводниковой фазы.

Впервые выполнены эксперименты по измерению сигнала ДРСЭ ¹⁷О-²⁰⁷Pb, ¹⁷О-¹²¹Sb в металлической фазе оксидов BaPb_{1-x}Sb_xO₃. Определены константы косвенного гетероядерного $^{17}\mathrm{O-}^{207}\mathrm{Pb}$ спин-спинового взаимодействия ядерных спинов в зависимости от величины локального найтовского сдвига ${}^{207}K_s$. Обнаружено, что константы взаимодействия J^{O-Pb} пропорциональны локальной спиновой восприимчивости. Оценки констант косвенного взаимодействия ядер ближайших соседей, атомов О-Рb и Pb-Pb, а также анализ эволюции ЯМР-спектров ¹⁷О при изменении концентрации сурьмы дают убедительные свидетельства в пользу развития микроскопически неоднородного состояния электронной системы в металлической фазе оксидов BPSO, для которых, по данным рентгеновской дифракции, отсутствуют признаки макроскопического фазового расслоения.

Авторы благодарны И. А. Леонидову за синтез и рентгеноструктурный анализ оксидов $BaPb_{1-x}Sb_xO_3$, А. Ю. Якубовскому за обогащение образцов изотопом кислорода ¹⁷ О. Работа выполнена при финансовой поддержке РФФИ (грант № 08-02-00789-а) и УрО РАН (проекты №№ 09-П-2-1005, 3-М).

ЛИТЕРАТУРА

- A. W. Sleight, J. L. Gilson, and P. E. Bierstadt, Sol. St. Comm. 17, 27 (1975).
- R. J. Cava, B. Batlogg, G. P. Espinosa et al., Nature (London) 339, 291 (1989).
- T. Itoh, K. Kitazawa, and S. Tanaka, J. Phys. Soc. Jpn. 53, 2668 (1984).
- B. Batlogg, R. J. Cava, L. Rapp, Jr. et al., Phys. Rev. Lett. 61, 1670 (1988).
- B. Batlogg, R. J. Cava, L. Rapp, Jr. et al., Physica C 162–164, 1393 (1989).
- K. Kitazawa, A. Katsui, A. Toriumi, and S. Tanaka, Sol. St. Comm. 52, 459 (1984).
- M. Itoh, T. Sawada, I.-S. Kim et al., Physica C 204, 194 (1992).
- M. Yasukawa, A. Kadota, M. Maruta et al., Sol. St. Comm. 124, 49 (2002).
- H. Namatame, A. Fujimori, H. Takagi et al., Phys. Rev. B 48, 16917 (1993).

- 10. A. P. Menushenkov, S. Benazeth, J. Purans et al., Physica C 277, 257 (1997).
- L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 28, 4227 (1983).
- 12. J. P. Julien, D. A. Papaconstantopoulos, F. Cyrot-Lackmann et al., Phys. Rev. B 43, 2903 (1991).
- D. T. Marx, P. G. Radaelli, J. D. Jorgensen et al., Phys. Rev. B 46, 1144 (1992).
- 14. S. Tajima, S. Uchida, A. Masaki et al., Phys. Rev. B 32, 6302 (1985).
- M. Eibschutz, W. M. Reiff, R. J. Cava et al., Appl. Phys. Lett. 56, 2339 (1990).
- 16. F. M. Mulder and R. C. Thiel, Physica C 201, 80 (1992).
- 17. W. T. Fu and R. J. Drost, Physica C 304, 51 (1998).
- 18. F. J. M. Benschop, H. B. Brom, H. W. Zandbergen, and R. J. Cava, Physica C 235–240, 2527 (1994).

- **19**. А. Ф. Садыков, Ю. В. Пискунов, В. В. Оглобличев и др., Письма в ЖЭТФ **891**, 263 (2010).
- 20. Yu. Piskunov, A. Gerashenko, A. Pogudin et al., Phys. Rev. B 65, 134518 (2002).
- **21**. А. Абрагам, *Ядерный магнетизм*, Изд-во иностр. лит., Москва (1963).
- 22. D. E. Kaplan and E. L. Hahn, J. Phys. Radium 19, 821 (1958).
- M. Emshwiller, E. L. Hahn, and D. Kaplan, Phys. Rev. 118, 414 (1960).
- 24. C. P. Slichter, Principles of Magnetic Resonance, Springer-Verlag, New York (1990).
- Сверхтонкие взаимодействия в твердых телах. Избранные лекции и обзоры, Мир, Москва (1970).
- 26. Ж. Винтер, *Магнитный резонанс в металлах*, Мир, Москва (1976).
- 27. M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).