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BLACK HOLE EVAPORATION IN A NONCOMMUTATIVECHARGED VAIDYA MODELM. Sharif *, W. JavedDepartment of Mathematis, University of the Punjab54590, Lahore, PakistanReeived Otober 25, 2011We study the blak hole evaporation and Hawking radiation for a nonommutative harged Vaidya blak hole.For this purpose, we determine a spherially symmetri harged Vaidya model and then formulate a nonommu-tative Reissner�Nordström-like solution of this model, whih leads to an exat (t� r)-dependent metri. Thebehavior of the temporal omponent of this metri and the orresponding Hawking temperature are investigated.The results are shown in the form of graphs. Further, we examine the tunneling proess of harged massivepartiles through the quantum horizon. We �nd that the tunneling amplitude is modi�ed due to nonommuta-tivity. Also, it turns out that the blak hole evaporates ompletely in the limits of large time and horizon radius.The e�et of harge is to redue the temperature from a maximum value to zero. We note that the �nal stageof blak hole evaporation is a naked singularity.1. INTRODUCTIONThe lassi onept of a smooth spaetime man-ifold breaks down at short distanes. Nonommuta-tive geometry o�ers an impressive framework to in-vestigate the short-distane spaetime dynamis. Inthis framework, a universal minimal length sale p�exists (equivalent to the Plank length). In generalrelativity, the e�ets of the nonommutativity an betaken into aount by keeping the standard form ofthe Einstein tensor and using the altered form of theenergy�momentum tensor in the �eld equations. Thisinvolves a distribution of point-like strutures in fa-vor of smeared objets1). Nonommutative blak holes(BH) require an appropriate framework in whih thenonommutativity orresponds to the general relativi-ty. Blak hole evaporation leads to omprehensive andstraightforward preditions for the distribution of emit-ted partiles. However, its �nal phase is unsatisfatoryand annot be resolved due to the semilassial repre-sentation of the Hawking proess. Blak hole evapo-*E-mail: msharif.math�pu.edu.pk1) An objet onstruted by means of a generalized funtion�(t; r) is smeared in spae and is known as a smeared objet.These objets are nonloal. Smearing annot hange the physi-al nature of the objet but the spatial struture of the objet ishanged, being smeared in a ertain region determined by p�.

ration an be explored in urved spaetime by quan-tum �eld theory but the BH itself is desribed by alassial bakground geometry. On the other hand,the �nal stage of BH deay requires quantum grav-ity orretions while the semilassial model is ina-pable to disuss evaporation. Nonommutative quan-tum �eld theory (based on the oordinate oherentstates) treats the short-distane behavior of point-likestrutures, where mass and harge are distributed overa region of size p�.Hawking [1℄ suggested that the radiation spetrumof an evaporating BH is just like a purely thermalblak-body spetrum, i. e., the BH an radiate ther-mally. Consequently, a misoneption [2℄ was develo-ped with respet to the information loss from a BH,leading to the nonunitary of the quantum evolution2).Aordingly, when a BH evaporates ompletely, all theinformation related to matter that has fallen inside theBH is lost. Gibbons and Hawking [3℄ proposed a for-mulation to visualize radiation as tunneling of hargedpartiles. In this formulation, radiation orresponds toeletron�positron pair reation in a onstant eletri�eld, with the energy of a partile hanging sign as it2) Nonunitary quantum evolution is one of the interpretationsof the information paradox to modify quantum mehanis. In aunitary evolution, the entropy is onstant with the usual S-mat-rix, whereas it is not onstant in a nonunitary quantum evolution.1071



M. Sharif, W. Javed ÆÝÒÔ, òîì 141, âûï. 6, 2012rosses the horizon. The total energy of a pair re-ated just inside or outside the horizon is zero when onemember of the pair tunnels to the opposite side. Parikhand Wilzek [4℄ derived Hawking radiation as a tunne-ling through the quantum horizon on the basis of nullgeodesis. In this framework, the BH radiation spe-trum orreted due to bak-reation e�ets is obtained.This tunneling proess shows that the extended radia-tion spetrum is not exatly thermal yielding a unitaryquantum evolution.There are two di�erent semilassial tunnelingmethods to alulate the tunneling amplitude, whihlead to the Hawking temperature. The �rst method,alled the null geodesi method, gives the same tem-perature as the Hawking temperature. The seondmethod, alled the anonially invariant tunneling,leads to a anonially invariant tunneling amplitudeand hene the orresponding temperature whih ishigher than the Hawking temperature by a fator of2 [5℄. It was argued in [6℄ that a partiular oordinatetransformation resolves this problem in the semilassi-al piture.Blak hole evaporation spetra in the Einstein�di-laton�Gauss�Bonnet four dimensional string gravitymodel was disussed in [7℄ using the radial null geodesimethod. It was shown that BHs should not disappearand beome relis at the end of the evaporation pro-ess. The authors of [7℄ numerially investigated thepossibility of experimental detetion of suh remnantBHs and disussed the mass loss rate in analyti form.These primordial BH relis ould form a part of thenonbaryoni dark matter in our universe.Various nonommutative models in terms of oordi-nate oherent states that satisfy the Lorentz invariane,unitarity, and UV �niteness of quantum �eld theorywere found in [8℄. A generalized nonommutative met-ri that does not allow a BH to deay below a min-imal nonzero mass M0, i. e., the BH remnant mass,was derived in [9℄. The e�ets of nonommutative BHshave been studied [10, 11℄ and onsistent results werefound. The evaporation proess stops when a BH ap-proahes a Plank-size remnant with zero temperature.Also, it does not diverge but rather reahes a maxi-mum value before shrinking to the absolute zero tem-perature, whih is an intrinsi property of the manifold.Some other authors [12℄ also explored information lossproblem during BH evaporation.Quantum orretions to the thermodynamialquantities for a Bardeen harged regular BH wereinvestigated in [13℄ using the quantum tunnelingapproah over semilassial approximations. In areent work [14℄, the e�ets of nonommutativity on

the thermodynamis of this BH were disussed. Thetunneling of massive partiles through the quantumhorizon of the nonommutative Shwarzshild BH wasanalyzed in [15℄ and the modi�ed Hawking radiation,thermodynamial quantities, and emission rate wasderived. Stable BH remnants and the information lossissues were also disussed there. The e�ets of smearedmass were studied in [17℄ with the onlusion thatinformation might be saved by a stable BH remnantduring the evaporation proess. In [17℄, this work wasextended to a nonommutative Reissner�Nordström(RN) BH and the emission rate onsistent with a uni-tary theory was determined. The same author [18℄ alsoformulated a nonommutative Shwarzshild-like met-ri for a Vaidya solution and analyzed three possibleausal strutures of the BH initial and remnant mass.He also studied the tunneling of harged partilesthrough the quantum horizon of the Shwarzshild-likeVaidya BH and evaluated the orresponding entropy.The purpose of this paper is two-fold. First, weformulate a nonommutative RN-like solution of thespherially symmetri harged Vaidya model. Seond,we investigate some of its features. In partiular, weexplore the BH evaporation and Parikh�Wilzek tun-neling proess. The paper is organized as follows. InSe. 2, we solve the oupled �eld equations for thespherially symmetri harged Vaidya model. The ef-fet of the nonommutative form of this model is inves-tigated in the framework of oordinate oherent statesin Se. 3. Here, an exat (t� r)-dependent RN-like BHsolution is obtained. In Se. 4, we �nd the behaviorof the temporal omponent of this solution and alsodisuss the BH evaporation in the limits of large timeand harge. In Se. 5, we study the Parikh�Wilzektunneling for suh a Vaidya solution and the Hawkingtemperature in the presene of a harge. The tunnelingamplitude at whih massless partiles tunnel throughthe event horizon is omputed. Finally, the onlusionsare given in the last setion. Throughout the paper, weset ~ =  = G = 1.2. CHARGED VAIDYA MODELThis setion is devoted to the formulation of aspherially symmetri harged Vaidya model in theRN-like form using the proedure given in [19℄. Weskip the details of the proedure beause they are al-ready available and use only the required results. Thespherially symmetri Vaidya-form metri is given byEq. (2.34) in [19℄:ds2 = �e�(t;r)dt2 + e�(t;r)dr2 + r2d
2; (1)1072



ÆÝÒÔ, òîì 141, âûï. 6, 2012 Blak hole evaporation in a nonommutative harged Vaidya modelwheree�(t;r) =  _M�(M)!2 e��; e��(t;r) = 1� 2Mr ;d
2 = d�2 + sin2 �d�2;M(t; r) is a slowly varying mass funtion, and �(M)depends on the details of the radiation. The orre-sponding �eld equations are [19℄�0 = 8�rTrr + 1� e�r ; (2)�0 = 8�re���Ttt � 1� e�r ; (3)_� = 8�rTtr; (4)1� e�� + 12re��(�0 � �0)� 12r2R(0) == 8�T�� = 8�T��sin2 � ; (5)whereR(0) = �8�T aa = � 2r2 (1� e��) + e�(�+�)=2 �� h( _�e(���)=2)� � (�0e(���)=2)0i : (6)The dot and prime respetively denote derivatives withrespet to time and r. We note that Eqs. (2) and (4)represent the respetive Hamiltonian and momentumonstraints [20℄. Equations (2) and (3) lead to12(�0 � �0) = 1� e�r (7)while Eqs. (5) and (6) yieldTrr = e(���)Ttt: (8)For the spherially symmetri Vaidya metri ofform (1), we de�ne e��(t;r) by adding harge Q(t; r)as follows:e��(t;r) = 1� 2M(t; r)r + Q2(t; r)r2 : (9)Using the proedure in [19℄, we an dedue from the�eld equations thatT tre(���)=2 + T tt = 0: (10)Also, using Eqs. (2), (4), (8) and (10), we obtain�0 + e� � 1r + _�e(���)=2 = 0: (11)

Inserting the value of e� from Eq. (9) givese�(t;r) =  2Q _Q=r � 2 _M2M 0 � 2QQ0=r +Q2=r2!2 ���1� 2Mr + Q2r2 ��1 : (12)The orresponding form of the Vaidya solution [21℄ thenbeomesds2 = � 2Q _Q=r � 2 _M2M 0 � 2QQ0=r +Q2=r2!2 ���1� 2Mr + Q2r2 ��1 dt2 ++�1� 2Mr + Q2r2 ��1 dr2 + r2d
2: (13)This is the spherially symmetri harged Vaidyamodel.We now transform this metri to the RN-like form.For this, we write Eq. (12) in the forme(���)=2 = r(2Q _Q� 2r _M)2r2M 0 � 2rQQ0 +Q2 : (14)Di�erentiating Eq. (14) with respet to r and usingEq. (7) yields2Mr�Q2r2�2Mr+Q2 [(Q _Q�r _M )(2r2M 0�2rQQ0+Q2)℄ == (2r2M 0�2rQQ0+Q2)(rQ _Q0+rQ0 _Q+Q _Q�r2 _M 0��2 _Mr)�(2rQ _Q�2r2 _M)(r2M 00+2M 0r�rQQ00�rQ02)whih an also be written as��2M 0 � 2QQ0r + Q2r2 ��1� 2Mr + Q2r2 �����2M 0 � 2QQ0r + Q2r2 ��1� 2Mr + Q2r2 ��0 == �2M � Q2r ���2M � Q2r �0 : (15)This has the solution�2M 0 � 2QQ0r + Q2r2 ��1� 2Mr + Q2r2 � == �(M;Q); (16)4 ÆÝÒÔ, âûï. 6 1073



M. Sharif, W. Javed ÆÝÒÔ, òîì 141, âûï. 6, 2012where �(M;Q) � 0. With the help of this equation, wean write Eq. (12) ase�(t;r) = e2	(t;r)�1� 2M(t; r)r + Q2(t; r)r2 � ; (17)where e2	(t;r) =  �2Q _Q=r + 2 _M�(M;Q) !2 :Consequently, the line element in (1) beomesds2 = �e2	(t;r)�1� 2M(t; r)r + Q2(t; r)r2 � dt2 ++�1� 2M(t; r)r + Q2(t; r)r2 ��1 dr2 + r2d
2: (18)This is the required spherially symmetri hargedVaidya model in the RN-like form. For a spei� hoie�(M;Q) = � �2Q _Qr + 2 _M! ;	(t; r) vanishes and hene (18) redues to the simpleRN-like formds2 = �F (t; r) dt2 + F�1(t; r) dr2 + r2d
2; (19)where F = 1� 2M(t; r)r + Q2(t; r)r2 :3. NONCOMMUTATIVE BLACK HOLEHere, we develop a nonommutative form of theRN-like Vaidya metri in (19) by using the formalismof oordinate oherent states [18℄. The mass/energyand harge distribution an be written as the followingsmeared delta funtions � [17, 18℄:�matt(t; r) = M(4��)3=2 e�r2=4� ; (20)�el(t; r) = Q(4��)3=2 e�r2=4� ; (21)where � is the nonommutative fator. The energy�momentum tensor for self-gravitating and anisotropi�uid soure is given byTab = 0BBBB� Ttt Ttr 0 0Trt Trr 0 00 0 T�� 00 0 0 T�� 1CCCCA : (22)

Here, we takeTtt = �(�matt + �el) = Trr:The orresponding �eld equations beomeF 0r + F + 8�r2(�matt + �el)� 1 = 0; (23)_F � 8�rF 2Ttr = 0; (24)rF 00F 3�2r _F 2+r �FF+2F 3F 0�16�rF 3T�� = 0; (25)Ttr = Trt; T�� = T��: (26)The onservation of the energy�momentum tensor,Tab;b = 0;yields�tTtt + �rTrr + 12gtt�rgtt(Trr � Ttt)�� 12grr�tgrr(Trr � Ttt) ++ g���rg��(Trr � T��) = 0whih leads to�tTtt + �rTtt + g���rg��(Ttt � T��) = 0:Substituting, we obtainT�� = (�matt + �el)�� �r( _M + _Q+M 0 +Q0)2(M +Q) + r24� � 1! : (27)We now onsider the perfet �uid ondition atlarge distanes to determine the mass and harge fun-tions. For this, we take isotropi pressure terms, i. e.,Trr = T��, and the above equation then yieldsM +Q = C exp� t24� + t(r � t)2� � ; (28)where C(r� t) is an integration funtion, whih an bede�ned asC(r � t) = MI ��Q2I �"2�r � t2p� �� 1p� �r � tp2�� "�r � tp2����� �2r �"�r � t2p� ��1 + t22��� rp�� �� exp�� (r � t)24� ��1 + tr����1 : (29)1074



ÆÝÒÔ, òîì 141, âûï. 6, 2012 Blak hole evaporation in a nonommutative harged Vaidya modelHere, MI and QI are the initial BH mass and harge,and the Gauss error funtion is de�ned as"(x) � 2p� xZ0 e�p2dp:Using Eq. (28) in (23), we obtainF (t; r) = 1� 2M�(t; r)r + Q2�(t; r)r2 ; (30)where the Gaussian smeared mass and harge distribu-tions areM�(t; r) =MI 2664"�r � t2p���1 + t22�� �� r exp�� (r � t)24� �p�� �1 + tr�3775 ;Q�(t; r) = QI �"2�r � t2p� � �� 1p� �r � tp2�� "�r � tp2���1=2 :
(31)

This is the nonommutative form of (19).The asymptoti form of (30) redues to the RN met-ri for large distanes at t = 0. Metri (30) hara-terizes the geometry of a nonommutativity-inspiredRN-like Vaidya BH. The radiating behavior of suh amodi�ed BH an now be investigated by plotting gttfor di�erent values ofMI and QI . The oordinate non-ommutativity leads to the existene of di�erent ausalstrutures, i. e., a nonextremal BH (with two horizons),an extremal BH (with one horizon), and harged mas-sive droplet (with no horizon). Thus the nonommuta-tive BH an shrink to the minimal nonzero mass withthe minimal nonzero horizon radius.4. HORIZON RADIUS AND BLACK HOLEEVAPORATIONHere, we investigate some features of the nonom-mutative metri in (30). First, we analyse the tempo-ral omponent gtt = F (t; r) in the form of graphs ver-sus the horizon radius r=p�. The Table [18℄ providesvalues of the minimal nonzero mass as well as hori-zon radius with inreasing time for an extremal BH.This shows that the minimal nonzero mass dereaseswhereas the minimal nonzero horizon radius inreases

Table. Extremal blak holeTime, t Minimalnonzeromass, M0 (appr.) Minimalnonzerohorizon radius,r0 (appr.)0 1:90p� 3:02p�1:00p� 1:68p� 4:49p�2:00p� 0:99p� 5:34p�3:00p� 0:62p� 6:14p�4:00p� 0:43p� 7:18p�5:00p� 0:32p� 8:32p�10:00p� 0:13p� 13:27p�100:00p� 0:01p� 105:05p�!1 ! 0 !1with time, indiating that a miro BH evaporates om-pletely, i. e., M0 ! 0 for t=p� � 1. Consequently, theonept of a BH remnant does not exist. The graphs ofF are drawn for the following three ases: MI > M0,MI =M0, MI < M0.In the �rst ase, the graphs of F are shown in Fig. 1.There, we hoose di�erent values of time t=p� withMI > M0 and �xed MI=p� (i. e., MI = 3:00p�). Theurves are marked from top down on the right side fort = 0, 1:00p�, 2:00p�, 3:00p�, and 4:00p�. Thisdemonstrates that the distane between the horizonsinreases with time. When t ! 1, we have two dif-ferent horizons for the three possibilities of the initialmass and initial harge, i. e.,QIp� < MIp� ; QIp� = MIp� ; QIp� > MIp� :Figure 2 shows the graphs of F when MI = M0. Theserepresent the possibility of an extremum struture withone degenerate event horizon in the presene of harge.The possibilities for MI=p� and QI=p� are given asfollows.1) For QI=p� < MI=p�, it is possible to have onedegenerate event horizon (extremal BH) for all t.2) For QI=p� = MI=p�, there is one degenerateevent horizon for t > 2.3) For QI=p� > MI=p�, it is impossible to have adegenerate event horizon for all t.Figure 3 shows graphs of F in the ase MI < M0 withMI = 0:40p�. For all the three possibilities of the1075 4*
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Fig. 1. a � QI = 1:00p� < MI = 3:00p�; b �QI = 3:00p� = MI ;  � QI = 5:00p� > MI == 3:00p�initial mass and harge, urves do not show any eventhorizon with the passage of time.At t = 0, F in Eq. (30) takes the formF (r) = 1� 2MIr �"� r2p��� rp�� e�r2=4��++ QI2r2 �"2� r2p��� 1p� � rp2�� "� rp2��� : (32)
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Fig. 4, is onsistent with the Table. The initial mass(greater than the remnant mass) yields three possibleausal strutures depending on di�erent values of theinitial harge and the horizon radius with the passageof time.We an summarize the behavior as follows.1) For QI=p� < MI=p�, MI=p� ! 0 asQI=p� !1 and rH=p� !1.In this ase, �gures show the stable phase of theBH. As times pases, the BH starts evaporation (due toharge), its mass redues and approahes to zero for allhorizon radii.2) For QI=p� = MI=p�, MI=p� ! 0 for allrH=p� and QI=p� at large times.Here, we see the initial stage of the BH evaporationin the �gures. The blak hole mass exhibits onstantbehavior (with the passage of time) for a small rangeof the horizon radius indiating no e�et of harge. Forlarge radius, due to e�et of harge, the BH mass tendsto zero for all horizon radii.3) For QI=p� > MIp� , MI=p� ! 0 as QI=p� ! 0and rH=p� !1.This ase yields the �nal stage of the BH evaporation.As time progresses, the BH evaporates ompletely, i. e.,its mass and hene temperature tend to zero for allhorizon radii.These results imply the BH evaporation, whih in-diates the instability of the BH due to harge, andhene the BH must inlude a naked singularity. Thetotal evaporation of the BH is possible when we on-sider a time-dependent BH mass [1, 22℄.5. HAWKING RADIATION AS TUNNELINGIn this setion, we examine the radiation spetrumof an RN-like nonommutative BH by quantum tunnel-ing [4℄. The tunneling is a proess where a harged par-tile moves in dynamial geometry and passes throughthe horizon without any singularity. It provides theemission rate of tunneled partile and depends on thekey idea of energy onservation. The mass of the BHdereases appropriately when the virtual partile isemitted. This leads to a nonzero tunneling amplitude,whih satis�es the original Hawking alulation [23℄.In this proess, the oordinate system used to elimi-nate oordinate singularity at the horizon is known asthe Painlevé oordinate system [24℄. The Painlevé timeoordinate transformation is de�ned asdt! dt� p1� F (t; r)F (t; r) dr: (36)1077
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2;ds2 = ��1� 2M�(t; r)r + Q2�(t; r)r2 � dt2 ++ 2r2M�(t; r)r �Q2�(t; r)r2 dt dr+dr2+r2d
2: (37)The outgoing motion (radial null geodesis, ds2 == d
2 = 0) of massless partiles takes the formdrdt = 1�p1� F (t; r): (38)For an approximate value of F (t; r) (short distanes ina neighborhood of the BH horizon), we expand F (t; r)

up to the �rst order using the Taylor series, i. e.,F (t; r)jt = F (t; rH )jt + F 0(t; rH )jt(r � rH) ++O((r � rH)2)jt: (39)Consequently, Eq. (38) beomesdrdt � 12F 0(t; rH)(r � rH) � �(MI ; QI)(r � rH); (40)where �(MI ; QI) � 12F 0(t; rH)is the surfae gravity.We now alulate the Hawking temperature of theRN-like BH. There are semilassial methods to derivethe Hawking temperature for the Vaidya BH [25℄. FromTH = �2� = 14�F 0(t; rH )jt;1079



M. Sharif, W. Javed ÆÝÒÔ, òîì 141, âûï. 6, 2012it follows thatTH = 14� �� 2664�2M8>><>>:�1 + t22��0BB�exp�� (rH � t)24� �rHp�� �� "�rH � t2p� �r2H 1CCA� exp�� (rH � t)24� �p�� 0BB�� tr2H �� rH � t2rH2� 1CCA9>>=>>;+Q28>>>><>>>>:0BB�2 exp�� (rH � t)24� �r2Hp�� �� "�rH � t2p� �� 2r3H "2�rH � t2p� �� �� 1p2�� 0BBBB�� 1rH � tr2H � s2 exp�� (rH � t)24� �p�� +
+ "�rH � tp2� ��� 1r2H � 2tr3H �1CCCCA9>>>>=>>>>;377775 : (41)For t = 0 = QI , this redues to the Hawking tem-perature of the nonommutative Shwarzshild ase [9℄.Figure 5 shows the behavior of the Hawking tem-perature THp� versus horizon radius rH=p� for �xedMI = 3:00p�. When the BH evaporates, there is noradiation and hene the temperature tends to zero. Thegraphs turn out to be smooth at the �nal stage of theBH evaporation. This an also be explained as fol-lows. After the temperature reahes a maximum de�-nite value at the minimal nonzero value of the horizonradius r0, then it starts dereasing to the absolute zeroand results in the mass tending to zero. For all thethree possibilities of MI=p� and QI=p�, i. e.,QIp� < MIp� ; QIp� = MIp� ; QIp� > MIp� ;the graphs of the Hawking temperature give the follo-wing behavior.1) For QI=p� < MI=p�, the behavior of urves isthe same as in the Shwarzshild ase [18℄.2) ForQI=p� =MI=p�, the temperature inreasesat the minimal horizon radius.
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Fig. 5. a � QI = 2:00p� < MI ; b � QI =MI ;  �QI = 5:00p� > MI3) For QI=p� > MI=p�, the horizon radiushanges its position with inreasing temperature.We next disuss the e�et of an eletromagneti�eld on the emission rate of harged partiles tunne-ling through the quantum horizon of the BH. Here, weassume that an eletromagneti �eld is present outsidethe BH. The Lagrangian funtion for suh a Maxwellgravity system an be de�ned as1080



ÆÝÒÔ, òîì 141, âûï. 6, 2012 Blak hole evaporation in a nonommutative harged Vaidya modelL = Lmatt + Lel; (42)where Lel = �14FabF abis the Maxwell Lagrangian funtion and F ab is theMaxwell �eld tensor given byF ab = �a�b � �b�a; (43)where �a = (�; 0; 0; 0) is the eletromagneti 4-poten-tial. The ation and the rate of emission of a partilein the tunneling proess are de�ned as [17℄I = toutZtin (Lmatt � p� _�) dt; � / exp(�2 Im I); (44)where p� is the anonial momentum onjugate to�. In the tunneling proess, the imaginary part ofthe amplitude for an s-wave, representing the outgoingpositive-energy partiles that ross the horizon outwardfrom rin to rout, is given byIm I = Im routZrin  pr � p� _�_r ! dr == Im routZrin 264 (pr;p�)Z(0;0) dp0r � _�_r dp0�375 dr: (45)The Hamilton equations of motion,drdt = dHdpr ����(r;�;p�) = d(M �E)dpr = � dEdpr ;d�dt = dHdp� ����(�;r;pr) = ��(Q� q) dqdp� ; (46)provide the following relation of momentum and en-ergy:Im I = Im routZrin 264 (H;q)Z(0;0) dH 0_r + �(Q� q0)_r dq0375 dr: (47)In this proess, partiles and antipartiles an be re-spetively desribed as a positive and negative-energysolution of the wave equation. The BH aretes a smallnegative energy, whih dereases its mass. ReplaingMI with MI � E, QI with QI � q, and substitutingEq. (40) in (47), we obtainIm I = � Im routZrin 264 (E;q)Z(0;0) dE0�(MI�E0; QI�q0)(r�rH) �� �(Q� q0) dq0�(MI �E0; QI � q0)(r � rH)� dr: (48)

This integral has a pole at the horizon rH . To avoidthis pole, we perform ontour integration with the on-dition rin > rout and obtainIm I = � Im264 (E;q)Z(0;0) dE0�(MI �E0; QI � q0) �� �(Q� q0) dq0�(MI �E0; QI � q0)375�� routZrin drr � rH == � 264 (E;q)Z(0;0) dE0�(MI �E0; QI � q0) �� �(Q� q0) dq0�(MI �E0; QI � q0)375 : (49)This shows that the partile emission rate is propor-tional to the surfae gravity.Using the �rst law of BH thermodynamis,dM = T dS � � dQ;we write the imaginary part of the ation Im I as [26℄Im I = �12 SNC(M�E;Q�q)ZSNC(M;Q) dS = �12�SNC ; (50)where SNC is the entropy of the nonommutative BHand �SNC is the di�erene in BH entropies beforeand after the emission. At high energies, the tunnel-ing amplitude (emission rate) depends on the �nal andinitial number of mirostates available to the system[27�30℄, implying that the emission rate is proportionalto exp(�SNC), i. e.,� / exp(Sfinal)exp(Sinitial) = exp(�SNC) == exp [SNC(MI �E;QI � q)� SNC(MI ; QI)℄ : (51)It follows that the emission spetrum annot be pre-isely thermal. The modi�ed nonommutative tunnel-ing amplitude � an be omputed if we know the ana-lyti form of exp(�SNC).1081



M. Sharif, W. Javed ÆÝÒÔ, òîì 141, âûï. 6, 2012Aording to quantum theory, a BH is neither anabsolute stationary state nor even a relative stationarystate; it is an exited state of gravity. The vauumstate (exited state) generates spontaneous emission ofvirtual partiles. The emission of harged partiles bya BH is therefore physially equivalent to the sponta-neous emission by an exited state [31℄.6. SUMMARYIn this paper, we have derived a spherially symmet-ri harged Vaidya metri in the RN-like form and itsnonommutative version. Nonommutativity implies aminimal nonzero mass that allows the existene of anevent horizon. In order to investigate the BH horizonradius depending on time, mass, and harge, we haveexamined the behavior of F (t; r) in the form of graphs,shown in Figs. 1�3 for three possible strutures:MI > M0; MI = M0; MI < M0:These have further been disussed for three possibilitiesof the initial mass and the initial harge, i. e.,QIp� < MIp� ; QIp� = MIp� ; QIp� > MIp� :The �rst ase provides two di�erent possible horizons.The seond ase represents the possibility of an ex-tremum struture with one degenerate event horizonwith time in the presene of a harge. In the last ase,the urves do not indiate any event horizon.In Fig. 4, the e�ets of harge on the BH evap-oration are shown. The relations between mass andharge indiate three di�erent stages of the BH massand harge, whih lead to the BH evaporation. Usingthe Table, we have found that the BH mass tends tozero as the horizon radius tends to in�nity with time.This shows that the struture of a stable BH rem-nant having the apability of storing information is vio-lated and information would disappear from our world.Hene, this leads to the evaporation of the BH andthe �nal phase is a naked singularity. We have foundthat the BH evaporates ompletely in the large-timelimit. We also see from these �gures that the asesQI=p� < MI=p� and QI=p� > MI=p� indiate mu-tually reverse behavior.The analysis of the Hawking temperature (Fig. 5)shows a behavior similar to that of the Shwarzshildspaetime. In the presene of a harge, the temperatureattains a maximum position at the minimal nonzerohorizon radius. As the horizon radius inreases, thetemperature vanishes, whih orresponds to the BH
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