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RING-SHAPED SPATIAL PATTERN OF EXCITON LUMINESCENCEFORMED DUE TO THE HOT CARRIER TRANSPORTIN A LOCALLY PHOTOEXCITED ELECTRON�HOLE BILAYERA. V. Paraskevov a;b*aNational Researh Center �Kurhatov Institute�123182, Mosow, RussiabDepartment of Physis, Loughborough UniversityLoughborough LE11 3TU, United KingdomReeived September 7, 2011A onsistent explanation of the formation of a ring-shaped pattern of exiton luminesene in GaAs/AlGaAsdouble quantum wells is suggested. The pattern onsists of two onentri rings around the laser exitationspot. It is shown that the luminesene rings appear due to the in-layer transport of hot harge arriers athigh photoexitation intensity. Interestingly, one of two auses of this transport might involve self-organizedritiality (SOC) that would be the �rst ase of the SOC observation in semiondutor physis. We test thisause in a many-body numerial model by performing extensive moleular dynamis simulations. The resultsshow good agreement with experiments. Moreover, the simulations have enabled us to identify the partiularkineti proesses underlying the formation of eah of these two luminesene rings.1. INTRODUCTIONNon-equilibrium olletive e�ets in the exitonand exiton�polariton systems in semiondutor het-erostrutures are a subjet of intensive studies [1�26℄. Apartiular attention has been foused on the beautifulphenomenon disovered experimentally in the systemof interwell exitons in GaAs/AlGaAs double quantumwells (QWs) [6℄: at su�iently high exitation inten-sity, a loal photoexitation of eletrons (e) and holes(h) above the exiton resonane gives rise to a maro-sopi ring-shaped pattern of spatial distribution of theexiton luminesene. The radius of the pattern an bevaried in a wide range by tuning external parameterssuh as the exitation intensity or gate voltage. Re-markably, at sub-Kelvin lattie temperatures the exter-nal ring of the stationary pattern exhibits a sharp frag-mentation, whih ould be the signature of a non-equi-librium marosopi quantum e�et.Understanding the nature of the ring-shaped pat-tern requires building a many-body model that ap-tures loal generation of eletron�hole pairs and theirspatial dynamis aompanied by the proesses of for-*E-mail: avp.workbox�yandex.ru

mation and reombination of exitons. If the exitonlifetime is su�iently long, the spatial dynamis of theexitons should also be onsidered.The �rst theoretial explanation that met these re-quirements was based on the di�usive transport model(DTM) applied to the loally photogenerated holes andequilibrium eletrons, whih were initially distributeduniformly in the quantum-well plane [13, 14, 16, 17, 24℄.The overlapping region for the hole and eletron spatialdistributions apparently gave rise to the ring of exitonluminesene.However, this explanation has a lot of evident short-omings [27℄. For example, if the same number of pho-togenerated eletrons is added to the model (in prini-ple, they must be added to maintain the eletroneutral-ity), then the ring of exiton luminesene an disap-pear due to the exiton formation term, whih is simplyproportional to the produt of the eletron and holedensities. (If these densities derease monotoniallyfrom the exitation spot enter, then the lumineseneintensity would apparently follow them.) More spei�shortomings an be found in Appendix A.In this paper, a novel onsistent explanation of thering-shaped pattern formation is given. The main ideais that an essential in-plane eletri �eld ours in the1167
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−Fig. 1. Left: Shemati of a double quantum well (DQW). The DQW struture is bordered by highly-doped GaAs layersthat serve as external eletrodes forming a plane apaitor. In the experiments [6; 13; 24℄, the widths of the layers betweenthe eletrodes are (200 nm) (8 nm) (4 nm) (8 nm) (200 nm), respetively. Right: (Top) Shemati of the DQW energypro�le along the �growth� axis (z axis) when a voltage is applied between the external eletrodes (it results in a linear bias ofthe pro�le) and interwell exiton formation (arrows show the path of a photoexited eletron). (Bottom) Interwell exitonsas o-direted lassial dipolesexitation spot region at su�iently high exitationpower. This �eld strongly a�ets the spatial dynam-is of the photogenerated eletrons and holes. (We donot onsider any equilibrium arriers at all.) We showthat there are ontributions to the eletri �eld fromtwo quite di�erent physial proesses. Essentially, dueto one of these ontributions, the ring-shaped patternformation ould be understood in the paradigm of self-organized ritiality (SOC) [28℄. To test the ontribu-tion, we have performed extensive moleular dynamissimulations. They have shown that this ontributionalone is quite enough for a detailed qualitative expla-nation of the ring-shaped pattern. (However, this pa-per does not onsider the transition to the SOC regime.The parameters for the simulations have been hosento be in this regime from the very beginning.)This paper is organized as follows. Further in thissetion, we introdue some essential properties of dou-ble quantum wells and interwell exiton formation,some experimental results we fous on, and the for-mulation of the problem to be studied. In Se. 2, wesuggest two qualitative explanations (�senarios�) forthe ring-shaped pattern formation and make the orre-sponding estimates. Setion 3 desribes a many-bodydynamial model and onditions of the moleular dy-namis simulations performed to investigate the seondsenario in more detail. Setion 4 ontains the resultsof the simulations. Setion 5 is onlusion and disus-sion. Finally, Se. 6 onsists of three Appendies.

The struture of double QWs used in the experi-ments [6, 13, 24℄ is shown in Fig. 1 (left). The ele-tron band-gap energy Egap of the �barrier� (B) lay-ers is larger than Egap of the �well� (W) layers (Fig. 1(right)), and hene GaAs layers form two retangularpotential wells with the depthUQW = (Egap (B)�Egap (W )) =2 � 0:4 eV:At a moderate oupation of the wells (i. e., when thenumber of eletrons in the GaAs ondution band isnot marosopially large; see the next setion for thedetails), a voltage applied to the external eletrodesprovides a onstant tilt of the DQW potential pro�le(Fig. 1 (right)). This �gate� voltage Vg is needed to sep-arate eletrons and holes in the di�erent wells, failitat-ing the formation of interwell exitons. The rossoverbetween the interwell and intrawell exiton �ground�states ours at Vg � 0:3 V [29℄. (Sine Vg > 0:3 Vin the experiments [6, 13, 24℄, the intrawell exitonsare not disussed in what follows.) The stationarylaser pumping omes along z axis and is used for theformation of a marosopi number of photogeneratedeletron�hole pairs. In the experiments [6, 13, 24℄, thetypial laser power was several hundreds of �W and wasfoused in a spatial spot of few tens of �m. The pum-ping energy was well above the exiton resonanes, andhene an eletron was photoexited to a high-energylevel of the QW near the ontinuum. Due to the ap-plied gate voltage, the eletron an then tunnel to the1168
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Fig. 2. Experimental urves taken from Ref. [6℄: the lu-minesene intensity of interwell exitons vs the distaner from the exitation spot enter at di�erent exitationpowers (the numbers near the urves are expressed in�W). The exitation spot radius is about 20 �m. Inset:Dependene of the external ring radius on the exitationpowerorresponding QW. (The e�etive mass of an eletronin GaAs is seven times smaller than the mass of a heavyhole, so the tunneling is muh more probable for ele-trons than for holes. We note that the energy of heavyholes is lower than the energy of light ones in GaAs.)The tunneling might also be failitated by the volta-ge-indued triangular pro�le of the barrier. Finally,after a spatiotemporal in-layer relaxation of the hargearriers, the interwell exitons are formed; they livesome �nite time and then annihilate, giving rise to thephotoluminesene (PL) pattern in the QW (xy) plane.We now turn to the experimental results that weintend to explain (Fig. 2). At a small exitation power,the PL spatial pro�le pratially follows the exitationspot (see the details in [6℄). When the exitation powerexeeds a ertain value, a thik ring of luminesene ap-pears near the edge of the exitation spot. In Ref. [6℄,it was already seen at the exitation power 220 �W.Hereafter, we all this ring the �internal� ring. Fi-nally, when the exitation power exeeds another riti-al value (Fig. 2), a thin �external� ring of lumineseneappears around the exitation spot and the inner ring.Everywhere in this paper, the words �ring-shaped pat-tern� mean these two onentri rings.The formation mehanism of the ring-shaped lumi-nesene pattern is the subjet of the researh desribedbelow. In partiular, we pose the following questions.(i) Why does the ring-shaped pattern appear only when

the laser exitation power exeeds some ritial val-ues? (ii) What are the kineti proesses that under-lie the formation of the internal and external rings?(iii) Why does the external ring radius depend stronglyon the stati gate voltage Vg [30℄? (iv) Why does theluminesene of intrawell exitons (i. e., purely �two-dimensional� exitons) not exhibit the ring-shaped pat-tern [6℄?2. TWO SCENARIOS OF THE RING-SHAPEDLUMINESCENCE PATTERN FORMATIONIn general, we believe that the ring-shaped PL pat-tern appears due to the transport of hot unoupled ele-trons and holes from the exitation spot at a su�ientlyhigh exitation power. During the spatial spread, thearriers relax in kineti energy, emitting phonons andan eventually form exitons relatively far away fromthe exitation spot (�far away� in omparison with thespot radius). We suppose that the hot harge arriersare formed due to (i) in-layer eletri �elds that ourat high pumping power in the exitation spot regionand (ii) high mobilities of the harge arriers in GaAs.We suggest two partiular mehanisms of the eletri�eld ourrene, they are desribed in detail in Ses. 2.1and 2.2.2.1. First senario: hot arrier transportindued by the external gate voltageThe �rst senario onerns the sreening of the gatevoltage Vg by photogenerated arriers in the exitationspot (Fig. 3) at high exitation power.The eletri indution in the bilayer volume at thelaser exitation spot isD = E+4�P. Here E = E0ez isthe stati uniform eletri �eld generated by Vg and Pis the polarization of the medium. If n is the density ofeletron�hole pairs in the exitation spot of area S andd is the average distane between the pairs in di�erentwells (i. e., d is the dipole length), thenP = � (nS) (ed)Sd ez = � (ne) ez; D = (E0 � 4�ne) ez:In the experiments [29℄, the DQW struture was re-garded as an insulator. This means that the onditionE0 � 4�en; (1)must be satis�ed in the exitation spot region. In thisase, the gate voltage results in a linear slope of theDQW potential energy pro�le along the z axis on thevalue ÆU (z) � �eE0z (Fig. 1 (right)).48 ÆÝÒÔ, âûï. 6 1169
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Fig. 3. Shemati of the eletri �eld distribution alongthe growth axis (z axis) of the DQW struture in theviinity of laser exitation spot at high exitation power.(It is supposed that the exitation spot is far away fromthe DQW edges and external ontats.) In the spotregion (ovals in the enter), the stati eletri �eld in-dued by the external gate voltage is urved due to thepresene of a marosopially large number of photo-generated harge arriers. The horizontal projetionsof the �eld ause in-layer transport (shown by thikarrows) of the arriers from the exitation spotHowever, at typial values Vg � 1 V and n �� 1010 m�2 [29℄, we obtain eE0 � eVg=2L �� 104 eV/m, where L = 200 nm is the width of exter-nal barrier of the DQW struture (Fig. 1 (left)), and4�ne2 � 104 eV/m. So at the expeted densities n �� 1011�1012 m�2 in the exitation spot at high pump-ing power, ondition (1) is therefore not satis�ed there.This means that the z-axis omponent of the resulting�eld Ez is essentially dependent on z in the exitationspot region. More importantly, in this ase there ex-ists an in-plane omponent Er of the eletri �eld thatpushes both eletrons in one layer and holes in anotherlayer away from the exitation spot (Fig. 3).2.2. Seond senario: hot arrier transportindued by the repulsive in-layer interationIf the photogenerated eletrons and holes do notleave the exitation spot for any reason, then the higherthe pumping power Pex is, the higher the arrier densi-ties in the spot. (Beause the exitation is o�-resonant,the value of the exiton formation time is always largerthan the time of energy relaxation of the arriers toreah the exiton transition.) Due to the bilayer geo-metry, there exists a value of exitation power at whih

the arrier densities in the spot reah the values whenrepulsive in-layer Coulomb fores between arriers be-ome stronger than the attrative interlayer fore. Tobe more spei�, we estimate the interation strengthin the exitation spot in terms of the dimensionless in-teration parameter rs. At small arrier densities, theinteration in the spot is the dipole�dipole one ratherthan the Coulomb as in the ase of a monolayer. Inpartiular, for an eletron (or hole) monolayer,rs = e2=�r~2=m�r2 = �raB � 1pna2B ; (2)where aB = ~2=me2 is the Bohr radius, n is the ar-rier density in the spot, and �r � n�1=2 is the averagedistane between arriers. (Hereafter, we omit diele-tri onstant in the formulas unless making numerialestimates.) Thus, for a monolayer, an inrease in thedensity n leads to a derease in the interation. How-ever, in the ase of an eletron�hole (e�h) bilayer at�r > d, where d is the interlayer distane, the intera-tion is dipole�dipole: U = e2d2=�r3 rather than e2=�r.This leads tors = U~2=m�r2 = d2�raB � daBpnd2; (3)where n < n . d�2 � 1012 m�2 at d � 10�6 m [29℄.It follows that in this ase the interation inreases inaord with the densities. At n = n (whih orre-sponds to some ritial exitation power (Pex)) theharater of the interation hanges: the repulsive in-layer interation beomes dominating and, moreover,one should e�etively put n = 0 in estimate (2), i. e.,the repulsive interation beomes huge. This leads tothe appearane of in-layer eletri �elds ejeting theeletrons and holes from the exitation spot region.Then the e�h densities in the spot grow to the riti-al values again and the ejetion proess reurs. Thereis a diret orrespondene between this self-organizedejetion, whih maintains the ritial values of arrierdensities in the spot, and the avalanhes in the lassisand-pile model of SOC [28, 31℄.Beause the mobilities of harge arriers in GaAsQWs are very high (up to 107 m2/V�s for eletronsat sub-Kelvin temperatures [32�35℄), the initial kinetienergies of some part of the ejeted partiles an ex-eed the optial phonon emission threshold. Their re-laxation in energy is then so fast that these arriersare likely to form exitons not far away from the exi-tation spot. In turn, the arriers with kineti energyless than the optial phonon energy ~!opt go further.These arriers relax relatively slowly by emitting aous-ti phonons. In GaAs, ~!opt � 37 meV, and hene the1170



ÆÝÒÔ, òîì 141, âûï. 6, 2012 Ring-shaped spatial pattern : : :veloities of the arriers ontributing to long-distanetransport are less than vmax � 107 m/s. (More detailsabout arrier energy relaxation due to phonon emissionan be found in Appendix B.)In addition, there is an essential di�erene in mo-bilities, and in e�etive masses, for eletrons and heavyholes in GaAs [32�34℄. This an lead to some dif-ferene in in-layer �stream� veloities of eletrons andholes. The di�erene, in turn, would result in a sup-pression of the attrative interlayer Coulomb fore (seeAppendix C for the details) until the veloities beomesmall enough due to the aousti phonon emission. Inthese onditions the interlayer exiton formation is alsosuppressed in some range of distanes from the exita-tion spot. (We reall, for example, that the lassialsattering ross-setion for the Coulomb potential, theRutherford ross-setion, is proportional to V �4, whereV is the initial relative veloity at in�nite distane.)The suppression leads naturally to the formation of aluminesene ring that would de�ne a irumferene ofthe total luminesene pattern.Thus, the internal ring of luminesene (Fig. 2)might appear due to the eletrons and holes that hademitted optial phonon(s) and then quikly formed ex-itons. In turn, the external luminesene ring an ap-pear due to the arriers that were below the optial-phonon emission threshold and therefore needed moretime (and longer distanes) to relax by emitting aous-ti phonons.In general, we suggest that at high photoexitationpower there exists an in-plane eletri �eld Er that on-sists of two ontributions, �gate-voltage-indued� and�in-layer interation-indued�. Due to high mobilitiesof harge arriers in GaAs, even a moderate value ofEr results in high initial veloities of the arriers di-reted outside the exitation spot. Large relative ve-loities of the ejeted eletrons and holes lead to asuppression of the interlayer Coulomb attration be-tween them. This results in the suppression of the ex-iton formation in some range of distanes from theexitation spot. In turn, the formation dynamis ofthe ring-shaped luminesene pattern an be dividedinto three stages: (i) radial aeleration of arriers inthe exitation spot region due to the in-plane ompo-nent of the stati eletri �eld that appears at relativelyhigh arrier density in the exitation spot and due tothe in-layer Coulomb repulsion at high pumping power;(ii) deeleration of unbound arriers due to emission ofoptial and aousti phonons and due to the ambipolareletri �eld (�Coulomb drag�); and (iii) the regime ofstrong interlayer Coulomb orrelations: formation andoptial reombination of interlayer exitons.

In what follows, we fous on the seond senarioand test it by moleular dynamis (MD) simulations.3. MOLECULAR DYNAMICS SIMULATIONS:NUMERICAL MODELTo desribe the spatial dynamis of N hot eletronsand holes, we use the lassial equations of motionm�e�rie + e _rie =Xj 6=i e2(rie � rje)���rie � rje���3 ��Xk e2 �rie � rkh�h�rie � rkh�2 + d2i3=2 ; (4)m�h�rih + h _rih =Xj 6=i e2(rih � rjh)���rih � rjh���3 ��Xk e2(rih � rke )�(rih � rke )2 + d2�3=2 ; (5)ombined with the onditions of exiton formation andoptial phonon emission (see below). Here, vetors rieand rjh are in-plane positions of ith eletron and jthhole (1 � i; j � N),m�e(h) is the eletron (hole) e�etivemass, e is the eletron harge, and d is the interlayerdistane (see Fig. 4).In addition to the inertia terms, the left-hand sidesof Eqs. (4) and (5) ontain phenomenologial momen-tum damping terms due to the interation with aoustiphonons with onstants e(h) = e=�e(h), where �e(h) iseletron (hole) mobility. The dimensionless equationsare given by�rie + _rie =Xj 6=i (rie � rje)���rie � rje���3 ��Xk �rie � rkh�h�rie � rkh�2 + d2i3=2 ; (6)�rih + 1 _rih =Xj 6=i 2(rih � rjh)���rih � rjh���3 ��Xk 2(rih � rke )�(rih � rke )2 + d2�3=2 ; (7)with the onstants 1 = m�e�e=m�h�h and 2 = m�e=m�h.Hereafter, we normalize time by te = p�m�e�e=e, where� is the dieletri onstant of the layers, and all dis-tanes by �e = 3pm�e�2e. To estimate the parameters,we use the well-known experimental values for high-quality undoped GaAs/AlGaAs QWs. In partiular,1171 48*
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Fig. 4. Qualitative shemati of optially exited eletron�hole bilayer. Both stationary laser pumping in the enter andspatially distributed luminesene are perpendiular to the layers. The harge separation between the layers postulated inthe numerial model is due to the external gate voltage Vgatetaking a typial value �e � 107 m2/V�s [32, 33℄ fortemperatures T . 1 K, m�e � 0:067me, m�h � 0:5me(where me is the bare eletron mass), � = 12:8 and�h � 0:1�e [34℄, we obtain te � 10�9 s, �e � 10�4 m,1 � 1, and 2 � 0:1.The optial phonon emission was modeled in the fol-lowing way: if the kineti energy of a arrier exeededthe energy of an optial phonon, this last energy wassubtrated from the �rst and the new diretion of thearrier veloity beame random.Simulation of laser pumping. Stationary op-tial pumping of arriers was simulated by generatingthem in random positions inside the exitation spot ofradius r0 with some generation rate that was modeledin two di�erent ways. In fat, during a MD simulationthe time is hanged by disrete steps, with the elemen-tary time step �t. Aording to the �rst way [25, 36℄,the generation rate p was de�ned as the probabilityper �t to reate one e�h pair in the exitation spot,so that p�t < 1. We name this ase the single gen-eration regime (SGR). Alternatively, one an onsiderthe formation of several e�h pairs during �t. Then thearrier generation rate (CGR) is de�ned as the numberof e�h pairs generated in the exitation spot during thetime step �t. We all it the multiple generation regime(MGR). We note that the results of MD simulationsdi�er essentially in the single and multiple regimes. In-deed, it is intuitively lear that the SGR is likely toorrespond to weak pumping, whereas the MGR de-sribes high-power exitation.The initial veloities of arriers in the exita-tion spot were also hosen randomly in the intervals

j _riej � v0 and j _rihj � �v0, where we took � = 0:5 in allsimulations.During the spatial dynamis of the arriers, the ex-iton formation ourred if an eletron and a hole werelose enough to eah other, jre � rhj < a, where a(d) isa phenomenologial in-layer exiton radius, and theirrelative veloity was smaller than some ritial value,j _re � _rhj < V [25℄ (see also Appendix C). We note thatthe dependene of the exiton formation rate on the e�hrelative veloity is one of the most ruial ingredientfor the ring-shaped pattern formation: assuming theabsene of that dependene, one always obtains a spa-tially monotoni derease of the luminesene outsidethe exitation spot [25℄.To simplify the simulations, we did not onsider theexiton dynamis. This means that as soon as an ele-tron and a hole had formed an exiton, their dynamiswas no longer onsidered and the position of the forma-tion event was reorded as a position of photon emis-sion. Qualitatively, this orresponds to zero exitonlifetime.We note that sine both the internal and externalring radii are temperature independent [6, 29℄, it isnot advisable to inlude temperature (i. e., to add astohasti fore to Eqs. (4) and (5)) into the onside-ration. In turn, beause the low-temperature fragmen-tation of the external ring [6℄ apparently depends onthe exiton dynamis, we do not expet to observe thefragmentation in the simulation results.Finally, due to the inevitable restritions in om-putational power it was only possible to simulate thedynamis of N . 104 interating partiles. For this1172



ÆÝÒÔ, òîì 141, âûï. 6, 2012 Ring-shaped spatial pattern : : :reason, we had to modify the values of a, v0, V, det. in omparison with realisti values to failitate theexiton formation. However, it was learly seen thatthe loser the values of those model and real parame-ters were, the better was the orrespondene betweenthe MGR simulation results and the experimental ones.We note that the in-plane motion of the arriers wasnot restrited by any spatial boundaries.4. MOLECULAR DYNAMICS SIMULATIONS:RESULTSSome preliminary results for the SGR were pub-lished in Ref. [25℄. In partiular, quasi-1D simulationsand the ruial dependene of the ring pattern forma-tion on the ritial relative veloity V in the exitonformation ondition were disussed there. In what fol-lows, some new essential results are desribed.4.1. Single generation regime (SGR)The results of MD simulations of Eqs. (6) and (7)in the SGR for several sets of parameters indiate thatthere are two qualitatively di�erent pitures. In gen-eral, the in-layer distribution nlum(r) of stationary lu-minesene exhibits a ring-shaped pattern around theexitation spot. But the pattern always ontains onlyone ring. More importantly, the ring an originate bytwo qualitatively di�erent ways.Aording to the �rst way, the in-layer distributionsof eletrons and holes are separated from eah other andthe ring ours in the region of their overlap (Fig. 5).The dependene of the ring position on the genera-tion rate p (Fig. 6), whih mimis the exitation power,shows that although the luminesene ring intensity in-reases with p, its position is virtually independent on p(top inset in Fig. 6). This behavior di�ers from that ob-served experimentally (Fig. 2), where the radius of theexternal luminesene ring grows nearly linearly withan inrease in the photoexitation intensity and thegrowth of the internal ring radius is also quite notie-able. Interestingly, the same behavior, i. e., the inde-pendene of the ring position on p, was observed in thequasi-1D ase [25℄.However, there exists an another way of the ringpattern formation. It was observable at other sets ofparameters, in partiular, when maximal initial veloi-ties of the arriers, the ritial relative veloity V, andthe distane a were relatively small. We note that theCGR p was taken in the same range of values as previ-ously.Aording the seond way, the in-layer distributionsof eletrons and holes pratially oinide with eah
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In partiular, the internal luminesene ring appearsdue to the eletrons and holes emitting optial phonons,whereas the external ring forms due to the relaxation ofthe arriers that are initially below the optial phononemission threshold. To form exitons, these arriers re-lax emitting aousti phonons and, in addition, due tothe interlayer Coulomb drag.The ring-shaped pattern formation is partiularlyinteresting as a possible bright signature of self-or-ganized ritiality [28, 31℄. Although the �seondsenario� naturally involves the SOC regime, theMGR simulations reported have been performed in theritial state. Thus, the transition to the SOC regimeas well as its statistial properties (e. g., 1=f -noise) inthis system are still open questions.The author thanks L. P. Paraskevova and L. I. Kon-drashova for the enouragement, and Yu. M. Kagan andF. V. Kusmartsev for the helpful disussions.APPENDIX ADi�usive model of harge arrier transportThe di�usive transport model [13℄ used to explainthe experiments [6℄ was based on two reation-di�usionequations1177



A. V. Paraskevov ÆÝÒÔ, òîì 141, âûï. 6, 2012_ne = Der2ne � wnenh + Je (r) ; (8)_nh = Dhr2nh � wnenh + Jh (r) ; (9)where ne and nh are eletron and hole 2D densities andw is eletron�hole binding rate to form an exiton. Thesoure term Jh (r) = PexÆ (r) for photoexited holes isfoused in the loal exitation spot. The density ofphotoexited eletrons is supposed to be negligible inomparison with the equilibrium eletron density n1in the absene of laser exitation. When n1 is spa-tially disturbed due to the presene of holes, there ap-pears the eletron urrent Je (r) = I�ane (r), whih isspread in the quantum-well plane. Here, I and ane arethe urrents in and out of the system, respetively, suhthat n1 = I=a. (We note that a here is not the ritialrelative distane used in the simulations but an inde-pendent parameter.) Implying the stationary regimeand the symmetry with respet to the polar angle, andnegleting the exiton di�usion [15℄, one obtains theexiton PL intensity IPL(r) / ne(r)nh(r).The authors of Ref. [13℄ have assumed that a lumi-nesene ring with radius R appears at the overlap ofthe eletron and hole densities (see Fig. 15) so thatnh � ne at r < R and nh � ne at r > R withne (r !1) = n1 (Fig. 15). Negleting the exitonformation term wnenh far from the boundary r = R,we obtainr2nh � d2nhdr2 + 1r dnhdr = �PexDh Æ (r) (10)for holes. Using the boundary ondition nh (r = R) = 0results in nh (r � R) = Pex2�Dh ln Rr : (11)Aordingly, for eletrons one obtainsr2ne = � (I=De) + (a=De)ne (r)with boundary onditions ne (r = R) = 0,ne (r !1) = n1.Denoting � = (ne � n1) =n1 and x = r=�, where� �pDe=a =pDen1=I is a harateristi length, wearrive at d2�dx2 + 1x d�dx �� = 0: (12)The last equation is the modi�ed Bessel equation ofzero order. The solution is�(x) = AK0 (x) ; (13)

Holes Exitons Eletrons0 Distane r from the exitation spot n1
Density

Fig. 15. The density distributions obtained in Ref. [13℄with the use of the di�usive transport modelwhere A is a onstant andK0 (x) is the zero-order mod-i�ed Hankel (or MaDonald) funtion, suh thatK0 (x! 0) � ln 1x ; K0 (x!1) = 0:Hene, ne (r) =n1 = 1 +AK0 (r=�) : (14)If � � R, as supposed in [13℄, then the eletron den-sity ne (r) =n1 � 1 + A ln (�=r) at R < r � �. Usingthe boundary ondition ne (r = R) = 0, we �nd theoe�ient A. Finally,ne (R < r � �) � n1 �1� ln (�=r)ln (�=R)� : (15)Then it has been assumed that at the boundary bet-ween the eletron and hole densities the total urrentis zero, i. e.,De �ne�r ����r=R = �Dh �nh�r ����r=R : (16)From Eq. (16) it follows thatDen1ln (�=R) = Pex2� ; (17)and therefore the ring radius an be expressed asR = � exp (�2�Den1=Pex) : (18)If we set Dh = 0, then the ring radius R must be equalto zero beause, aording to the model [13℄, the di�u-sion of holes is the only reason why they move out ofthe exitation spot. But Eq. (18) does not depend on1178



ÆÝÒÔ, òîì 141, âûï. 6, 2012 Ring-shaped spatial pattern : : :Dh, and hene the ring radius is not zero at Dh = 0,i. e., the ring exists even if all holes are left in the ex-itation spot. This learly unphysial result is not aonsequene of the limit ase �� R, but rather omesfrom wrong initial assumptions. (In Ref. [17℄, the re-sult, Eq. (18), has been generalized but even then Rdoes not depend on Dh.)We note that in the original paper [13℄, the erro-neous formula for R has been given [27℄Rorig = � exp��2�Den1DhPex � : (19)The presene of Dh in the exponent denominatorould be deeiving beause at �rst sight (i. e., with-out the dimensionality hek: [De℄ = [Dh℄ = m2=s,[n1℄ = m�2, [Pex℄ = s�1) it looks reasonable.In addition, both the DTM [13℄ and its modi�a-tions [14; 16�18℄ ould not explain in priniple why theexternal luminesene ring appears only when the ex-itation power exeeds some ritial value.Nevertheless, the drift-di�usion regime an be ap-pliable for slow harge arriers near the luminesenering at r � R. (As before, we do not onsider equilib-rium arriers and are only foused on photogeneratedones.) In partiular, the ontinuity equations in thisregime are given by_ne(h) + div ie(h) = ge(h) � �; (20)_nX + div iX = �� nX=�X : (21)Here ne, nh and ie = �ne�eE�Derne, ih = nh�hE�� Dhrnh are 2D densities and partile �ux densi-ties of unoupled eletrons in the plane z = d=2 andholes in the plane z = �d=2, and �e(h) is the eletron(hole) mobility. The partile �ux density for exitonsis iX � �DXrnX , where nX is the interlayer exitondensity. The ontribution from the dipole�dipole inter-ation between the exitons is omitted in iX beauseit appears as an above-linear orretion on nX . Thearrier generation rates ge(h) (r; t) are some given fun-tions. The exiton formation rate an be written as(inessential onstant prefators are dropped hereafter)� (r; t) = Z w (jv1 � v2j)�� fe (r;v1; t) fh (r;v2; t) d2v1d2v2; (22)where fe(h) (r;v; t) is the eletron (hole) distributionfuntion, suh thatne(h) (r; t) = Z fe(h) (r;v; t) d2v;

and w (v) is the spei� exiton formation rate. Theexiton lifetime �X is supposed to be density indepen-dent. Finally, the Poisson equation for the eletri �eldis given by (time dependene is dropped; � is the di-eletri onstant)div (�E(r; z)) = 4�e[(nh(r) + nX(r)) Æ(z + d=2)�� (ne(r) + nX(r)) Æ(z � d=2)℄: (23)It inludes the ontribution of the interlayer exitondipole �elds and keeps the eletroneutrality for thefree arrier system when the exiton formation is sup-pressed (nX(r) = 0).At r � R, one an set w (v) � wmax, then � (r) �� wmaxne (r)nh (r) and Eqs. (20), (21), and (23) withge(h) = 0 beome a losed system.We note that the ambipolar eletri �eld E mightplay an important role in the formation of a sharp in-tensity pro�le of the external luminesene ring. In thisregard, it is useful to note that the FWHM of the ex-ternal ring intensity is almost independent of the ringradius R at high exitation powers (see Fig. 2).APPENDIX BIf e2pn > ~!opt at n > d�2, then the in-layerCoulomb repulsion in the exitation spot might be �ex-hausted� at small distanes: the potential energy of thearriers transforms into kineti energy, whih, in turn,is spent on the fast optial phonon emission so that thearriers do not go far from the exitation spot.To estimate whether the values of arrier densitiesin the exitation spot are su�ient for suh proess,we onsider two eletrons resting at distane r0 fromeah other at the moment t = 0. We neglet the en-ergy dissipation due to aousti phonon emission �rst,to failitate the e�et desribed above. Then the equa-tion of motion is m�r = e2=r2;with m = m�e=2 and r = jr1 � r2j. (The dieletri on-stant � is introdued by substituting e2 ! e2=� in the�nal expression.) The solution is expressed through theinverse funtion,t=t0 =px2 � x+ 12 ln�x+px2 � x� ;where x = r=r0 and t0 =pmr30=2e2. At t > (3� 4)t0,with a good preision, the veloity is v � v1 = r0=t0,i. e., the eletrons move nearly uniformly at large times.The ondition of optial phonon emission is given bymv22 = e2r0 � e2r � ~!opt;1179



A. V. Paraskevov ÆÝÒÔ, òîì 141, âûï. 6, 2012whene it follows thatr � r = r01� ~!opt= (e2=r0) :Substituting r0 � n�1=2 in the expression for r givesn � ��~!opt=e2 + 1=r�2 :The value n� = ��~!opt=e2�2 � 4 � 1013 m�2 (with� � 12:8 and ~!opt � 37 meV for GaAs) at r = 1is the smallest density at whih the proess of optialphonon emission is dominant. We note that at n > n�the e�et is extremely pronouned, e. g., r � 1 �m atn = 1:003n� (extra 0.3% to n�). At n = n� , we obtainr0 � 0:1aB for GaAs.To �nd a qualitative dependene of the arrier �uxveloity on in-plane oordinates when the arrier ki-neti energies are below the optial phonon emissionthreshold, we onsider the previous model adding thedissipation due to aousti phonons. Then for two ele-trons we have (unit vetors are dropped)m�e�r1 = e2= jr1 � r2j2 �  _r1;m�e�r2 = �e2= jr1 � r2j2 �  _r2;where  = e=�e is the dissipation oe�ient and �e isthe eletron mobility. Substituting R = (r1 + r2) =2and r = r1 � r2, in the enter-of-mass frame ( _R = 0),we obtain the equation of motionm�r = e2r2 � 12 _r:Dissipation of the energy E(r) = mv2 (r) =2 + e2=ris given by dE=dr = �v (r) =2 (beause dE=dt == �v2=2), whih leads to the equationmv (r) dvdr = e2r2 � 12v (r) :In the dimensionless form (r = r0x; v = v1u), we haveu(x) �dudx + a� = 12x2 ; (24)where a = p2r30=8me2, x � 1, and u(x = 1) = 0.(To avoid a onfusion, we note again that this a hasits own meaning.) Using the relation  = e=�e, we anrewrite the parameter as a = (1=2) (r0=�e)3=2, where�e = 3pm�e�2e is the harateristi length sale. Ta-king �e � 1 �m for GaAs (see the desription of thenumerial model in the main text) and r0 � n�1=2 �� d � 10�6 m, we obtain a � 10�3. Equation (24) anbe redued to the Abel equation of the seond kind. Its
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ÆÝÒÔ, òîì 141, âûï. 6, 2012 Ring-shaped spatial pattern : : :height (see Fig. 16). We note that in the laboratoryframe ve;h = v=2 and re;h = r=2.It is also interesting to note that the MGR sim-ulations indiate that the external luminesene ringappears only if the arrier stream veloities Ve(h)(r) asfuntions of the distane r from the exitation spot (seeFig. 10) have a non-monotoni dependene similar tothat in Fig. 16, i. e., the veloities inrease at smallr, reahing the maximal values at some �nite r (oftenwithin the exitation spot region), and then dereaseto zero at large r. APPENDIX CSuppression of exiton formation in the bilayerat high e�h relative veloityHere, we illustrate how the ritial relative veloityV appears in priniple in the exiton formation ondi-tion. We an distinguish two mehanisms referred to inwhat follows as �geometri� and �kineti� ones, whihlead to the existene of the ritial e�h relative veloityabove whih the interlayer exiton formation is stronglysuppressed.1. �Geometri� mehanism. Due to the bilayergeometry, at su�iently large relative e�h veloity theinterlayer Coulomb attration, whih results in an exi-ton formation, is suppressed. To show this, we onsiderthe Fourier transformUq = Z d2r exp (iq � r)U (r)of the pair interation potentialU (r) = �e2=pr2 + d2between an eletron from one layer and a hole fromanother (r is the in-plane relative distane). We obtainUq = �2�e2 1Z0 J0 (qr) r drpr2 + d2 = �2�e2q exp (�qd) ; (25)the �sreened Coulomb potential� in the momentumspae. (The e�ets of harge sreening studied in therandom phase approximation [37℄ lead to a hange inthe preexponential fator, whih is not important inthis onsideration.) Hene, if the eletron�hole relativeveloity V = ~qm > V = ~md;then the interation between the arriers dereases ex-ponentially as V inreases. This means that we an

neglet the interation as well as the exiton formationat V > V. At d � 10�6 m [29℄ and the redued e�hmassm � 0:06me in GaAs, we obtain V � 3�107 m/s,whih is of the same order of magnitude as the thresh-old veloity vmax of optial phonon emission in GaAs(vmax=V � 1:5).2. �Kineti� mehanism. The seond meh-anism is based on the fat that to form an exiton,the unbound eletron�hole pair must emit an aoustiphonon. (Here, we suppose that the arrier veloitiesare below the optial phonon emission threshold.)To illustrate this, we onsider a model system: anin�nite train of eletrons separated from eah other bydistane L uniformly moves with veloity V along athread and an immovable hole is loated at distaned from the thread. The interation potential betweenthe eletron train and the hole as a funtion of time isgiven by U(t) = � 1Xk=�1 e2�k ;where �k =q(kL+ V t)2 + d2:Although the sum diverges as 1= jkj, the relative valueof the potential ÆU(t) = U(t)�U(0) is onvergent. Theomponents of the orresponding fore ating on thehole along and perpendiular to the thread are givenbyFk(t) = 1Xk=�1e2 (kL+ V t)�3k ; F?(t) = 1Xk=�1e2d�3k :Both the potential and the fore are periodi funtionsof time with the period T = L=V .In the 2D ase, when there exists relative �ow (withveloity V ) of eletrons in one layer and holes in an-other, the interlayer interation potential between theeletron �ow and a given hole osillates with the fre-queny ! � Vpn, where n is the 2D density of ele-trons in the �ow. If this frequeny is higher than ��1,where � = min(�e�a; �h�a) is the minimal arrier�aousti phonon sattering time, the exiton formationin real spae is not possible. We an therefore writethe exiton formation ondition asV < V � 1=pn�2: (26)If the arrier densities are essentially di�erent, oneshould take n = max(ne; nh) in (26). At n � 1010 m�2and � � 10�9 s, the ritial relative veloity is V �� 104 m/s.1181
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