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GENERATION OF DISPLACED SQUEEZED SUPERPOSITIONSOF COHERENT STATESS. A. Podoshvedov *Department of General and Theoretial Physis, South Ural State University454080, Chelyabinsk, RussiaDepartment of Physis and Astronomy, Seoul National University151-742, Seoul, KoreaReeived April 1, 2011We study the method of generation of states that approximate superpositions of large-amplitude oherent states(SCSs) with high �delity in free-traveling �elds. Our approah is based on the representation of an arbitrarysingle-mode pure state, and SCSs in partiular, in terms of displaed number states with an arbitrary displae-ment amplitude. The proposed optial sheme is based on alternation of photon additions and displaementoperators (in the general ase, N photon additions and N � 1 displaements are required) with a seed oherentstate to generate both even and odd displaed squeezed SCSs regardless of the parity of the used photon addi-tions. It is shown that the optial sheme studied is sensitive to the seed oherent state if the other parametersare unhanged. Output states an approximate either even squeezed SCS or odd SCS shifted relative to eahother by some value. This allows onstruting a loal rotation operator, in partiular, the Hadamard gate,whih is a mainframe element for quantum omputation with oherent states. We also show that three-photonadditions with two intermediate displaement operators are su�ient to generate even displaed squeezed SCSwith the amplitude 1:7 and �delity more than 0:99. The e�ets deteriorating the quality of output states areonsidered.1. INTRODUCTIONLaboratory realization of shemes for the genera-tion of spei� nonlassial quantum states is one ofthe most exiting hallenges to the researhes. It is wellknown that the range of appliations of the nonlassi-al states of light extends from preision measurements[1℄ to quantum lithography [2℄ and quantum informa-tion proessing [3℄. Most optial proposals for quan-tum information proessing require nonlassial statesin propagating optial modes that an be easily manip-ulated by means of linear optis suh as beam splitters,phase shifters, and so on. The states generated in av-ity experiments are not so useful for the quantum in-formation proessing beause the �eld is on�ned andan be probed only indiretly.One of suh remarkable examples of nonlassialstates is given by Shrödinger-at-like states [4℄. Weare interested in the states realized in harmoni osilla-tors and often alled superpositions of oherent states*E-mail: sapo66�mail.ru

(SCSs). The superposition of two oherent (i. e., mostlassial) states with opposite phases [5℄ exhibits bothsome properties similar to those of statistial mixturesand typial interferene features. For example, one ofthe quadrature-omponent distributions of SCSs showstwo peaks that hange their mutual distane depend-ing on the amplitude of oherent �elds, whereas an os-illatory behavior is observed in another quadrature-omponent distribution [5℄. We note that suh be-havior mainly ours only for large amplitudes of o-herent states omposing SCSs when marosopiallydistinguishable outomes are observed by a homodynemeasurement [6℄. We also note negative values in theWigner funtions of the SCSs [7℄, whih are manifesta-tion of their nonlassial properties.In spite of the manifold usefulness of the SCSs, therehas not been muh progress in the generation of SCSsuntil reently. Shemes have been proposed to gener-ate suh SCSs using strong nonlinearities [8℄ or photonnumber resolving detetors [9℄, whih are hardly fea-sible with the urrent level of tehnology. Reently,more realisti shemes have been proposed by di�er-515 7*



S. A. Podoshvedov ÆÝÒÔ, òîì 141, âûï. 3, 2012ent authors [10�12℄. For example, the simple observa-tion that an odd SCS with a small amplitude (� 1:2)is well approximated by squeezed single photon wasmade in [10℄. It was also noted that a squeezed sin-gle photon an be obtained by subtrating (or adding)one photon from the pure squeezed vauum [13℄. The-oretial analysis of added/subtrated squeezed vauumstates has been performed in [14℄. Single-photon- sub-trated squeezed states, whih are lose to SCSs, weregenerated in [15℄. A squeezed SCS with state size ap-proximately 1.6 was generated and deteted in [16℄.It may be suited for fundamental tests and quan-tum information proessing despite their squeezing [17℄.Subsequent steps were aimed at studying two-photonadded/subtrated squeezed vauum states [18; 19℄. Asheme involving time-separated two-photon subtra-tion to generate large-amplitude SCSs was experimen-tally demonstrated in [20℄. Another remarkable exper-imental result based on subtrating three photons froma squeezed vauum was reently presented in [21℄.Currently, all the proposals to generate free-tra-veling Shrödinger-at-like states are based on use ofadded/subtrated squeezed vauum states. Neverthe-less, it is interesting to develop a general method of theSCSs generation to apply it to quantum omputationwith oherent states. It was shown in [22℄ that an arbi-trary single-mode state an be engineered starting fromthe vauum by applying a sequene of single-photonadditions and displaements. The idea with alternatephoton additions and displaements an be adjusted tothe SCSs generation [23℄. To extend the approah toquantum omputation, we propose to use deomposi-tion of the wave funtions into series on the displaednumber states with arbitrary amplitudes. The deom-position is possible beause the set of displaed statesis omplete and they are orthogonal with respet toan inner produt. The use of displaed number stateswas proposed in dense oding [24℄ and quantum keydistribution [25℄. We note that the displaed vauumis a oherent state, and a displaed single photon wasexperimentally realized in [26℄.2. DISPLACED SQUEEZED SCSs IN TERMSOF THE DISPLACED NUMBER STATESThe even and odd regular SCSs are respetively de-�ned asjSCS�(�SCS)i == N�(�SCS) (j0; �SCS)i � j0;��SCS)i) : (1)

Here, N�(�SCS) = 1=p2 [1� exp(�2j�SCSj2)℄ are theorresponding normalization fators for the even (+)and odd (�) SCSs and the notation j0;��SCS)i foroherent states with amplitudes ��SCS is used. Weassume �SCS > 0 throughout the paper. �Taking�SCS > 0 real� means that the �eld is in phase withthe loal osillator that is used for qubit measurementand for making the displaements required for some ofthe gates. We use the notation jn; �i = D(�)jni for adisplaed n-photon state, where n is an arbitrary num-ber and D(�) = exp(�a+ � ��a) is the displaementoperator, a(a+) is the boson annihilation (reation)operator, and jni is a number state. In partiular,j0; �SCSi = D̂(�SCS)j0i is a displaed vauum stateor the same oherent state with the amplitude �SCS.The in�nite set of displaed number states jl; �i(l = 0; 1; 2; : : : ;1), where � is an arbitrary number, isomplete, whih allows deomposing any single-modestate with respet to the basi states. We all suha deomposition the �-representation of the state. Toobtain the �-representation of a regular (even or odd)SCSs (jSCS�(�SCS ; �)i), we use formulas (A.4) and(A.5) in Appendix A:jSCS�(�SCS ; �)i = N�(�SCS)�� exp �� ��2SCS + j�j2� =2��� 1Xl=0 �lSCSpl! "exp(�SCS��)�1� ��SCS�l ++ exp(��SCS��)(�1)l�1 + ��SCS�l# jl; �i == N�(�SCS) exp �� ��2SCS + j�j2� =2���D(�) 1Xl=0 �lSCSpl! "exp(�SCS��)�1� ��SCS�l �� exp(��SCS��)(�1)l�1 + ��SCS�l# jli == N�(�SCS) exp �� ��2SCS + j�j2� =2���D(�) 1Xn=0 a�njli; (2a)where a�n are the respetive amplitudes of the de-omposition for even and odd SCSs. Two variables,�SCS and �, are used in the notation for an arbitrary�-representation of the SCSs jSCS�(�SCS ; �)i in on-trast to the diret de�nition of the SCSs jSCS�(�SCS)i(Eq. (1)), where �SCS is the SCS amplitude and � isthe amplitude of the omplete set of displaed numberstates. In partiular, if we take � = 0, then we deal516



ÆÝÒÔ, òîì 141, âûï. 3, 2012 Generation of displaed squeezed superpositions : : :with the number state representation (or, equivalently,the 0-representation in our notation) of the SCSs [5℄:jSCS+(�SCS ; 0)i = 2N+(�SCS)�� exp ��2j�SCSj2� 1Xn=0 �2nSCSp(2n)! j2ni;jSCS�(�SCS ; 0)i = 2N�(�SCS)�� exp ��2j�SCSj2� 1Xn=0 �2n+1SCSp(2n+ 1)! j2n+ 1i: (2b)
Beause superpositions (2b) involve either even or oddnumber states, they are alled even and odd SCSs. It isnatural to use the same terms for the SCSs in a general�-representation with � 6= 0 (Eqs. (2a)), although theyinvolve both even and odd displaed number states.Some wave amplitudes a�n with n � 1 are presentedin Appendix B.We next de�ne displaed squeezed (even and odd)SCSs asjDSSCS�(�SCS ; �; r)i == D(�)S(r)jSCS�(�SCS)i == D(�)S(r)N�(�SCS)�� (j0; �SCSi � j0;��SCSi) ; (3)where S(r) = exp �r(a+2 � a2)=2� is the squeezingoperator with r being a squeezing parameter [9�21℄.If we take r = � = 0, we deal with regular SCSs(Eq. (1)), and if we hoose � = 0 and r 6= 0, thenwe have squeezed SCSs [10�21℄; if we use r = 0 and� 6= 0, we obtain displaed SCSs. It is well known itis hardly possible to generate regular large-amplitudeSCSs with the urrent level of tehnology. A naturalway to overome this is to approximate regular (dis-plaed/squeezed) SCSs to any degree of auray bysome states involving N + 1 termsj	�Ni = N�N NXn=0 a�njni; (4)where N�N are the normalization fators for even andodd SCSs and we set a�0 = 1 for the onveniene of al-ulations. In the general ase, there are two main meth-ods for the onstrution of an arbitrary single-mode �-nite superposition (4). Both methods are presented inFig. 1. One is based on alternation of photon addi-tions and displaement operators starting with a seedoherent state, as is shown in Fig. 1a. The general de-sription of the method with alternate photon additionsand displaement operators and some partial ases ofthe method are onsidered in Appendixes C and D.

The other approah to the generation of single-mode�nite superpositions of number states (4) is presentedin Fig. 1b. We onsider an ideal situation where mphotons are added or subtrated from the squeezed o-herent states in Fig. 1b. At the output we then havethe relationsa+mS(r)j0; �Ini = a+mS(r)D(�In)j0i == a+mS+(�r)D(�In)S(�r)S(r)j0i == a+mD(�0)S(r)j0i == D(�0)D+(�0)a+mD(�0)S(r)j0i == D(�0)(a+ + �0�)mS(r)j0i == D(�0)S(r)S+(r)(a+ + �0�)mS(r)j0i == D(�0)S(r)(a+ h r + a sh r + �0�)mj0i == D(�)S(r) h(a++�0�In) h r+(a+�In) sh rim j0i;(5a)amS(r)j0; �Ini = D(�)S(r) �� �(a+ �In) h r + (a+ + ��In) sh r�m j0i (5b)with � = �In h r + ��In sh r, where �In is an ampli-tude of the initial oherent state and we used the rela-tions [27℄ S+(r)a+S(r) = a+ h r + a sh r;S+(r)aS(r) = a h r + a+ sh r:It follows from (5a) and (5b) that j	�N i (Eq. (4)) hasthe formj	�N i = �(a+ + ��In) h r + (a+ �In) sh r�m j0i (5)for the m-photon added squeezed oherent state andj	�Ni = �(a+ �In) h r + (a+ + ��In) sh r�m j0i (5d)for the m-photons subtrated squeezed oherent state.States (5) and (5d) are not normalized.We espeially fous our attention on the approahbased on alternation of the photon additions anddisplaement operators (Fig. 1a) to generate �half-�nished produts� j	�Ni (Eq. (4)) for the SCSs inappliation to oherent quantum omputing, leavingthe study of the optial sheme shown in Fig. 1bto a future investigation. Nevertheless, general fea-tures of the method with alternate photon addi-tions and displaement operators are appliable to them-photon added/subtrated squeezed oherent statesa+mS(r)j0; �Ini and amS(r)j0; �Ini.517
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Fig. 1. Diagram of the optial sheme for onstrution of the even and odd displaed squeezed SCSs with high �delity.(a) The optial sheme involves a set of alternate photon additions and displaement operators with the orrespondingamplitudes. The output of the sheme is sensitive to the input oherent state �In. The displaement operator D(�) isused to obtain the orresponding �In if the input is either j0; �HGi or j0;��HGi where �HG is the Hadamard-gate stateamplitude. (b) The optial sheme onsists of the input squeezed oherent state S(r)j0; �Ini subjet to either them-photonsubtration am or the m-photon addition a+mThe �delity between arbitrary states F = jh'tj'ijis a measure of how lose a state j'i is to the targetstate j'ti. It is unity when the two states are idential,and is zero when the two states are orthogonal to eahother. In our ase, j'i an be j	�N i (Eq. (4)) and j'tian be either regular SCSs or displaed squeezed SCSs(DSSCSs)F�N = jhSCS�N (�SCS)S+(r)D+(�)j	�N ij2:The hoie of the input onditions may be determinedby the aims. The development diretions for the gen-eration of SCSs may be as follows. Oasionally, SCSswith a large amplitude �SCS � 2 have to be generatedfor marosopi tests of quantum theory. For quantuminformation proessing, it is important to onstrutSCSs with higher �delities F > 0:99. The ideal aseis to seek optimal onditions to generate SCSs withlarger amplitudes and higher �delities.It is well known there is no fundamental rea-son for the restrition to physial systems with two-dimensional Hilbert spaes for enoding. It may bemore natural in some ontexts to enode logial statesas a superposition of a large number of basis states, asis the ase with quantum omputations involving o-herent optial states. We an therefore de�ne a loaloperation R(Q) asR(Q)j0; �i = osQj0; �i+ sinQj0;��i; (6a)R(Q)j0;��i = sinQj0; �i � osQj0;��i; (6b)whih is nonunitary due to the nonorthogonality ofj0; �i and j0;��i. But R(Q) beomes approximately

unitary when the overlap between the two oherentstates, h0; �j0;��i = exp(�2j�j2), tends to zero. Wenote that this overlap rapidly tends to zero as � in-reases. If we take Q = �=4, then the loal operationR(Q) beomes an Hadamard gate that transforms j0; �ito the even SCS,R(Q = �=4) = j0; �i = j0; �i+ j0;��i; (6)and j0;��i to the odd SCS,R(Q = �=4) = j0;��i = j0; �i � j0;��i: (6d)Here, we omit the normalization fator. The Hadamardgate is a mainframe elementary quantum gate used forperformane of quantum tasks with oherent states.To ahieve an arbitrary 1-bit rotation, we must applyU(�=4) and U(��=4), whih are respetive rotationsby �=2 and ��=2 around the x axis. The unitary op-erations U(�=4) and U(��=4) an be realized using aKerr nonlinear interation [5℄. The interation Hamil-tonian of a single-mode Kerr nonlinearity isHNL = ~
(a+a)2;where 
 is the Kerr nonlinearity strength. When theinteration time t in the medium is �=
, oherent statesevolve (see Eqs. (6) and (6d)) up to a relative phaseshift by �=2. An optial �ber is the well-known exampleof a medium with a Kerr nonlinearity, but only statis-tial mixing of the states j0; �i and j0;��i (instead of(6) and (6d)) ours at the output of a long �ber dueto deoherene e�ets when optial beams propagate518



ÆÝÒÔ, òîì 141, âûï. 3, 2012 Generation of displaed squeezed superpositions : : :inside the �ber. This may be main drawbak for thedevelopment of quantum protools with oherent opti-al states. In the general ase, it is natural to speakabout a �rotated� superposition of oherent states (6a)and (6b) instead of using the terms even/odd SCSs, be-ause the states in Eqs. (6) and (6d) are a partiularase of the rotation operatorR(Q). In our notation, the�-representation of a rotated superposition of oherentstates beomesjSCSQ(�SCS ; �)i = NQ(�SCS)�� exp �� ��2SCS + j�j2� =2�D(�) 1Xl=0 �lSCSpl! �� osQ exp(�SCS��)�1� ��SCS�l ++ sinQ exp(��SCS��)(�1)�1 + ��SCS�l! jli; (7)whereNQ(�SCS) = �os2Q+ sin2Q ++ osQ sinQ �1 + exp ��2j�SCSj2��	�1=2is a normalization fator and Q = ��=4 respetivelyorresponds to the even and odd SCSs.3. GENERATION OF SCSs ANDAPPLICATION OF THE METHOD TO THECONSTRUCTION OF ELEMENTARYQUANTUM GATESWe analyze all possible ases with N = 1; 2; 3 pho-ton additions. An optial sheme with only one photonaddition is the simplest as an be seen from Fig. 1a,and this sheme allows generating SCSs of moderateamplitudes. Indeed, we have (see Fig. 1a)a+j0; �Ini = a+D(�In)j0i == D(�In)D+(�In)a+D(�In)j0i = D(�In)(a++��In)�� j0i = D(�In) (j1i+ ��Inj1i) ; (8a)where we used the relation D+(�)a+D(�) = a+ + ��.The �half-�nished produt� j	�1i (Eq. (4)) for the op-tial sheme with one photon addition (Fig. 1a) is thengiven byj	�1i = j0i+ a�1j1ip1 + ja�1j2 = j0i+ j1i=��Inp1 + 1=j�Inj2 ; (8b)

if �In = 1=a��1. Hene, output (8a) is a single-photonadded oherent state (SPACS) with the amplitude �In,jSPACS(�In)i = D(�In) j0i+ j1i=��Inp1 + 1=j�Inj2 ; (8)and is the simplest approximation of the SCSs. Indeed,the �delity between SPACS and DSSCSs is given byF�1 = ��hSCS�(�SCS)S+(r)D+(�) �� jSPACS(�In)ij2 == jhSCS�(�SCS)D(�1)S(�r)jSPACS(�In)ij2 == jhSCS�(�SCS ; �1)S(�r)jSPACS(�In)ij2 ; (9)where �1 = h r(�In � �) � sh r(�In � �)� andjSCS�(�SCS ; �1)i is the �1-representation of theSCSs in Eq. (7), where Q = ��=4 is hosen. Here,the parameters �In, �, and r depend on the rotationangle Q (Eq. (7)), but we omit their subsripts in orderto not ompliate the notation. It is possible numeri-ally to seek the parameters a�1, �1, and r with whihthe �delity in (9) takes the highest possible value. Forthe even SCS, these values are�SCS = 1; F+1 = 0:962444;�In = 1:2464i; � = 1:78864i;r = �0:445031; �SCS = 1:1;F+1 = 0:943626; �In = 1:05247i;� = 1:6373i; r = �0:491368; �SCS = 1:2;F+1 = 0:92202; �In = 0:900828i;� = 1:52202i; r = �0:537234:Wigner funtions of the displaed squeezed SPACSwith the orresponding parameters and the regulareven SCS with �SCS = 1 are presented in Fig. 2. Themethod of alulation is appliable to �nding parame-ters of the optial sheme in Fig. 1a to generate an oddSCS. Our alulations are in total agreement with theresults in [10; 13℄. For example, we have�SCS = 1; F�1 = 0:997109;�In � 0; � � 0; r = �0:31257;�SCS = 1:1; F�1 = 0:994411;�In � 0; � � 0; r = �0:36893;�SCS = 1:2; F�1 = 0:99085;�In � 0; � � 0; r = �0:426398:519



S. A. Podoshvedov ÆÝÒÔ, òîì 141, âûï. 3, 2012
2

0

−22

0

−2

0.5

0

W+1

x
p

a

2

0

−22

0

−2

0.5

0

W+SCS

x
p

b

Fig. 2. (a) The Wigner funtion W+1 of the state D(�)S(r) (j0i + j1i=��In) =p1 + 1=j�Inj2 and (b) the Wigner funtionW+SCS of the regular even SCS with �SCS = 1. The �delity between the states is F+1 = 0:962444Beause �In � 0 is taken, this means that the va-uum as an input is used to generate the odd SCS inthe optial sheme in Fig. 1a. With � � 0, the out-put approximates an odd squeezed SCS (not displaed)[10; 13℄. Beause only one photon reation operator a+is used to generate SPACS, the method may look at-trative due to its simpliity. The SPACSs were exper-imentally demonstrated in [28℄. Comparing the resultsin [28℄ with those given above, it is possible to laim theSPACSs generated in [28℄ do not approximate DSSCSsbeause the amplitudes of experimental seed oherentstates were hosen out of the range needed for genera-tion of DSSCSs.For a universal gate operation, a CNOT (ControlNOT) gate is required besides the 1-bit rotation. Itwas found that the CNOT operation an be realizedusing a teleportation protool. To apply this sugges-tion to quantum omputation with oherent states, weneed to use the Hadamard gate (HG), see Eqs. (6) and(6d). Analysis shows that we an start with the statesj0; �HG = 0:6232ii and j0;��HG = �0:6232ii thatform a logial qubit basis in the sheme in Fig. 1a. Wethen apply an additional displaement operator D(�)with � = 0:6232i (dotted retangle in Fig. 1a) and asingle photon addition to obtain the states that appro-ximatej0; �HGi ! D(�+)S(r)SCS+(�SCS); (10a)j0;��HGi ! D(��)S(r)SCS�(�SCS) (10b)with �delities F+1 = 0:962444 and F�1 = 0:969086,where r = �0:445031 and �+��� = 1:78864i. Hene,the output of this Hadamard gate is squeezed even and

odd SCSs shifted relative to eah other by 1:78864i. Itis worth noting that �HG 6= �SCS .The same approah to the generation of SCSs oflarger amplitudes and onstrution of the Hadamardgate an be developed in the ase N = 2, where the�half-�nished produt� j	�2i of the SCSs in Eq. (4) forthe optial sheme with two photon additions (Fig. 1a)is given by j	�2i = j0i+ a�1j1i+ a�2j2ip1 + ja�1j2 + ja�2j2 : (11a)A displaed version of (11a) an be onstruted usingtwo photon additions with one intermediate displae-ment operator shifting by �1 (Fig. 1a) asa+D(�1)a+j0; �Ini = a+D(�1)a+D(�In)j0i == ei�D(�1 + �In)D+(�1 + �In)a+D(�1 + �In)��D+(�In)a+D(�In)j0i �� ei�D(�1+�In) �a+ + (�1 + �In)�� (a++��In)j0i == ei�D(�1 + �In) ha�In(��1+��In)j0i+(��1+2��In)j1i ++ p2 j2ii ; (11b)where � is some general phase shift and the normali-zation fator is omitted. Expression (11b) is the wavefuntion j	�2i shifted by �1 + �In ifa�1 = ��1 + 2��In��In(��1 + ��In) ; a�2 = p2��In(��1 + ��In) :The state (11b) an approximate DSSCSs with the �-delity520



ÆÝÒÔ, òîì 141, âûï. 3, 2012 Generation of displaed squeezed superpositions : : :F�2 = ��hSCS�(�SCS)S+(r�) �� D+(��)D(�1 + �In)j	�2i��2 == jhSCS�(�SCS)D(�2)S(�r�)j	�2ij2 == jhSCS�(�SCS ; �2)S(�r�)j	�2ij2 ; (12)where �2 = h r�(�In + �1 � ��)� sh r�(�In + �1 �� ��)�, with ertain parameters.Following the proedure developed forN�1, we annumerially �nd the parameters a�1, a�2, �2, and r�at whih the �delity in (12) takes the maximum value.This allows estimating the parameters �In, �1, and ��for the optial sheme in Fig. 1a as�In = �ij�Inj = �iqp2=a+2 ; (13a)�1 = �2ij�Inj; (13b)�+ = �ij�Inj (13)for an even SCS (Q = �=4), where a+2 > 0 and a+1 = 0[16; 18℄, and ��In = a�1=p2a�2 �pD=2; (14a)��1 = �pD ; (14b)D = 2(a�1=a�2)2 � 4p2 =a�2 (14)for an odd SCS (Q = �=4), while the amplitude of theshift �� follows from �2. Knowing a�1, a�2, and r�and using formulas (13) and (14), it is possible to alu-late the orresponding parameters of the optial shemein Fig. 1a at whih the maximum �delity is ahieved.These parameters are olleted in Table 1.Analysis shows that it is possible to hoose the shift-ing amplitude �1 of the intermediate displaement op-erator in Fig. 1a equal for both even and odd SCSs on-strution with equal r+ = r� = r, and only to hangethe amplitude of the seed oherent state �In. Thenthe output of suh a devie in Fig. 1a is squeezed evenand odd SCSs with equal r+ = r� = r, shifted relativeto eah other by some value �+ � ��. This outomeof the devie in Fig. 1a is desribed by Eqs. (10a) and(10b). We ollet the parameters that an be used forthe onstrution of the Hadamard gate in Table 2.For example, we onsider the ase �SCS = 1:3.It follows from Table 2 that the amplitude �1 == �2:87582i of the intermediate displaement opera-tor in Fig. 1a is used. Then the output of the opti-al sheme in Fig. 1a an approximate either the evenDSSCSD(� = �1:43791i)S(r = �0:351)jSCS+(�SCS = 1:3)ior

D(� = 1:43791i)S(r = �0:351)jSCS+(�SCS = 1:3)iwith �delity F+2 = 0:986582 if the input is a o-herent state with the amplitude �In = 1:43791i or�In = �1:43791i, or the odd DSSCSD(� = �2:87586i)S(r = �0:351)jSCS+(�SCS = 1:3)ior D(� = 0)S(r = �0:351)jSCS+(�SCS = 1:3)iwith �delity F�2 = 0:986539 if the input is a o-herent state with the amplitude �In = 0:344349i or�In = �2:53147i. In the ase, the outome of the op-tial sheme in Fig. 1a depending on �In is given bytwo states that approximate squeezed even and oddSCSs of �SCS with high �delity and are shifted rela-tive to eah other by approximately 1:43791i. Beausethe outome of the optial sheme in Fig. 1a dependson the seed oherent state, we an use an additionaldisplaement operator D(�) with either � = 0:89113ior � = �1:98469i to deal with j0; �HG = 0:546781ii(j0; �HG = �0:546781ii) as the input basis of logialzero and one. The same onsideration is appliable tothe SCSs onstrution with other values of �SCS pre-sented in Table 2. The Wigner funtions of the statej	�2i and odd DSSCS with the amplitude �SCS = 1:3are presented in Fig. 3. The parameters for the plotsare taken from Table 1.We onsider the state j	�3i in Eqs. (4) with N = 3:j	�3i = j0i+ a�1j1i+ a�2j2i+ a�3j3ip1 + ja�1j2 + ja�2j2 + ja�3j2 ; (15)whih an be the output of the optial sheme in Fig. 1aif at least three single photon additions with two in-termediate displaement operators between them areused. This ase allows inreasing the amplitude ofthe generated DSSCSs beause the squeezing opera-tor ats ampli�ation fator. We only present valuesof the parameters used, omitting their detailed studyfor future investigation. We have F+3 = 0:993875 be-tween D(�)S(r)j	+3i and the regular even SCS with�SCS = 1:6 for the following values:a+1 = 0:131109; a+2 = 0:976048; a+3 = �0:509043;r = 0:478936; � = 0:253028:The �delity F+3 = 0:990606 between D(�)S(r)j	+3iand the regular even SCS with �SCS = 1:7 is observedfor the following values:a+1 = 0:164725; a+2 = 1:02245; a+3 = �0:57829;r = 0:527901; � = 0:264123:521



S. A. Podoshvedov ÆÝÒÔ, òîì 141, âûï. 3, 2012Table 1. Values of the initial oherent seed �In and the intermediate displaement operator �1 in Fig. 1a at whih theoutput approximates either the even DSSCSD(�+)S(r+)jSCS+(�SCS)i or the odd DSSCSD(��)S(r�)jSCS�(�SCS)iwith maximum �delity�SCS Q = �=4 Q = ��=41.3 F+2 = 0:998728, r+ = �0:293054, F�2 = 0:987245, r� = �0:368812,a) �In = 1:25598i, �1 = �2:251196i, a) �In = 0:344249i, �1 = �2:87582i,�+ = �1:25598i, �� = �2:87586i,b) �In = �1:25598i, �1 = 2:51196i, b) �In = �2:53147i, �1 = 2:87582i,�+ = 1:25598i �� = 01.4 F+2 = 0:997583, r+ = �0:334228, F�2 = 0:981078, r� = �0:407125,a) �In = 1:18095i, �1 = �2:3619i, a) �In = 0:373226i, �1 = �2:64328i,�+ = �1:18095i, �� = �2:64334i,b) �In = �1:18095i, �1 = 2:3619i, b) �In = �2:27005i, �1 = 2:64328i,�+ = 1:19095i �� = 01.5 F+2 = 0:995765, r+ = �0:376383, F�2 = 0:987245, r� = �0:445339,a) �In = 1:11822i, �1 = �2:23643i, a) �In = 0:399473i, �1 = �2:45894i,�+ = �1:11822i, �� = �2:45903i,b) �In = �1:11822i, �1 = 2:23643i, b) �In = �2:05947i, �1 = 2:45894i,�+ = 1:11822i �� = 01.6 F+2 = 0:993085, r+ = �0:419055, F�2 = 0:964491, r� = �0:483419,a) �In = 1:06794i, �1 = �2:13588i, a) �In = 0:423166i, �1 = �2:31033i,�+ = �1:06794i, �� = �2:31047i,b) �In = �1:06794i, �1 = 2:13588i, b) �In = �1:88716i, �1 = 2:31033i,�+ = 1:06794i �� = 0
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Fig. 3. (a) The Wigner funtion W�2 of the state j	�2i (11a) and (b) the Wigner funtion W�DSSCS of the odd DSSCSwith �SCS = 1:3. The �delity between the states is 0:987244. The orresponding parameters are taken from Table 1522



ÆÝÒÔ, òîì 141, âûï. 3, 2012 Generation of displaed squeezed superpositions : : :Table 2. Values of the initial parameters used in the optial sheme to generate output Eqs. (10a) and (10b)�SCS , r, �1,�HG, � Q = �=4 Q = ��=4�SCS = 1:3, r = �0:351,�1 = �2:87582i, F+2 = 0:986582, F�2 = 0:986539,a) �HG = 0:546781i, a) �In = 1:43791i, a) �In = 0:344349i,� = 0:89113i, � = �1:43791i, � = �2:87586i,b) �HG = 0:54678i, b) �In = �1:43791i, b) �In = �2:53147i, � = 0� = �1:98469i � = 1:43791i�SCS = 1:4, r = �0:40712,�1 = �2:64328i, F+2 = 0:986162, F�2 = 0:981078,a) �HG = 0:474207i, a) �In = 1:32164i, a) �In = 0:373226i,� = 0:847433i, � = �1:32164i, � = �2:64334i,b) �HG = 0:474205i, b) �In = �1:32164i, b) �In = �2:27005i, � = 0� = �1:79585i � = 1:32164i�SCS = 1:5, r = �0:445339,�1 = �2:45894i, F+2 = 0:985525, F�2 = 0:973453,a) �HG = 0:414998i, a) �In = 1:22947i, a) �In = 0:399473i,� = 0:8144715i, � = �1:22947i, � = �2:45903i,b) �HG = 0:415i, b) �In = �1:22947i, b) �In = �2:05947i, � = 0� = �1:64447i � = 1:22947i
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S. A. Podoshvedov ÆÝÒÔ, òîì 141, âûï. 3, 2012a�1 = �20:6595; a�2 � 0; a�3 = �15:1713;r = 0:364104; � = �0:012192:Our approah is based on the use of single photonadditions. It is well known that a single photon addi-tion an be obtained probabilistially with the help ofa parametri down onverter. The probability of suhan event is low. Nevertheless, SPACSs were experimen-tally generated in [28℄ and the probability to registeronly one photon in the anillary mode at the outputof the down onverter prevails over the probabilities toregister more than one photon. This an mean that theproblem of resolving number states beomes negligibleand we an therefore use silion avalanhe photodiodesoperating in the visible wavelength having a relativelyhigh e�ieny and a small dark ount rate. If the darkount rate of a photodetetor is negligible, then theoutput state an be in a mixed state represented as(1� P )WSPACS(�) + PW0(�);where WSPACS(�) is the Wigner funtion of theSPACS and W0(�) is the Wigner funtion of the va-uum and P is the probability to register an oasionalphoton. The onstrution of higher-order states j	�2irequires an intermediate displaement operator and anextra single-photon addition that dereases the suessprobability of the devie in Fig. 1a. The displaementoperator D(�) with the amplitude � an be approx-imated by a beam splitter with high transmittivityT ! 1 mixing the input �eld with the anillary strongoherent �eld j0; �i (� � 1). Then the output an beevaluated as (1� P )W�2(�) + PW�(�);where W�2(�) is the Wigner funtion of j	�2i andW�(�) is the Wigner funtion of the oherent state,if we neglet the probability to register two oasionalphotons. Hene, the �delity of the generated states inpratie depends on the dark ount rate and the suessprobability of the method dereases as N inreases.4. CONCLUSIONThe ability to investigate the elementary ations ofthe boson reation operators on a seed oherent stateis of interest both as a tool to take a loser look atfundamental events in quantum physis and as a nat-ural extension toward exoti quantum entities, suh asSCSs. For this, we proposed a new representation ofthe SCSs in terms of displaed number states with ar-bitrary amplitudes (�-representation). We were able

to show that the type of generated SCSs (even or odd)is independent of the photon parity in the �-represen-tation. A photon parity an be de�ned only for SCSsin the 0-representation. The main motivation to usethis representation is to onsider problems of genera-tion and rotation (Eqs. (10a) and (10b)) of SCSs ingeneral position, involving di�erent methods of gener-ation and measurements [9�21℄, and to apply this toquantum omputation with oherent states. This al-lows determining the range of parameters of the opti-al shemes with whih output states an approximateSCSs with high �delity.We used a method developed in [22℄, as is shownin Fig. 1a, to onstrut the states that approxi-mate DSSCSs. Another possible method is to usephoton added/subtrated squeezed oherent statesa+mS(r)j0; �Ini and amS(r)j0; �Ini (Fig. 1b), onsid-ering whih deserves a separate analysis. Our analysisshows that it is possible to hoose the parameters ofthe optial sheme in Fig. 1a suh that the output be-omes sensitive to the seed oherent state, whih allowsonstruting loal rotations of qubits, in partiular theHadamard gate, onsisting of oherent states with high�delity. We note that these are not rotations beausethey are de�ned by expressions (6a) and (6b). The out-omes are the squeezed SCSs shifted relative to eahother by some quantity along the p-axis (Eqs. (10a)and (10b)). Moreover, the amplitudes of input qubitsare not equal to those of output qubits. Nevertheless,we an supply the optial sheme in Fig. 1a addition-ally by a phase shifter by �=2 and an absorbing medium(not shown in Fig. 1a) to make the amplitude of the ini-tial qubit equal to the amplitude of the output qubit,j0; �SCSi ! j0; i�SCSi ! j0; i�SCSe��i == j0; �HGi;j0;��SCSi ! j0;�i�SCSi ! j0;�i�SCSe��i == j0;��HGi;where � is the absorbing fator of the medium. TheHadamard gate that e�ets a transformation as inFig. 1a annot be unitary. Possible use of theHadamard gate for quantum omputations with oher-ent states deserves a separate investigation [17℄. Allparameters needed to onstrut either even or oddDSSCSs depending on seed oherent states are pre-sented in Tables 1 and 2. It was also shown that theSPACS generated in [28℄ does not approximate the evenDSSCS beause the amplitudes of the seed oherentstate were hosen outside the required range. An opti-al sheme with three single photon additions and with524



ÆÝÒÔ, òîì 141, âûï. 3, 2012 Generation of displaed squeezed superpositions : : :two intermediate displaement operators between themallows onstruting an even DSSCS with the amplitude1.7 and �delity more than 0.99. Consideration of pho-ton added/subtrated squeezed oherent states may bepreferable from the pratial standpoint, whih may be-ome the subjet of a future study. In the short term,this approah extends the set of the states that may beused for quantum information proessing and adds newmethods for manipulations with oherent state qubits.APPENDIX ADeomposition in terms of displaed numberstatesWe use the oherent state representationj0; �SCSi = D(�SCS)j0i = exp ��j�SCS j2=2��� exp(�SCSa+) exp(�SCSa)j0i == exp ��j�SCSj2=2� exp(�SCSa+)j0i == exp ��j�SCS j2=2� exp �(�+ �)a+� j0i == exp �� �j�SCS j2 � j�j2� =2� exp(�a+)�� exp ��j�j2=2� exp(�a+)j0i == exp �� �j�SCS j2 � j�j2� =2� exp(�a+)j0; �i == exp �� �j�SCS j2 � j�j2� =2��� 1Xn=0 (�a+)nn! j0; �i; (A.1)where �SCS = �+ � (� = �SCS � �) and � and � arearbitrary numbers. We onsider a+nj0; �i using thewell known formulas [27℄. Thena+nj0; �i = D(�)D+(�)a+nD(�)j0i == D(�)(a+ + ��)nj0i == D(�) nXk=0Cknpk!��n�kjki == nXk=0 n!pk!��n�kk!(n� k)! jk; �i: (A.2)Using (A.2), it is possible to transformP1n=0 ((�a+)n=n!) j0; �i to

1Xn=0 (�a+)nn! j0; �i = j0; �i+� (j1; �i+ ��)+(�2=2!)�� �p2 j2; �i+ 2��j1; �i++��2j0; �i�+ : : :: : :+ �nn! nXk=0Cknpk!��n�kjki+ : : : == �1 + ��� + �2��22! + : : :+ �n��nn! + : : :� j0; �i++ �(1 + ��� + : : :+ C1n�n�1��n�1=n! + : : : )�� j1; �i+ ��2=p2!��� (1+���+ : : :+C2n�n�2��n�22!=n!+ : : : )j2; �i+ : : :: : :+ ��l=pl!� (1 + : : :+ Cln�n�l��n�l=n! + : : : )�� jl; �i+ : : : == (1+���+�2��2=2!+ : : :+�n��n=n!+ : : : )j0; �i++ �(1 + ��� + : : :+ �n�1��n�1=(n� 1)! + : : : )�� j1; �i+ (�2=p2! )�� (1+���+ : : :+�n�2��n�2=(n�2)!+ : : : )j2; �i+ : : :: : :+ (�l=pl! )(1 + : : :+ �n�l��n�2=(n� l)! + : : : )�� jl; �i+ : : : = exp(���) 1Xl=0 �lpl! jl; �i: (A.3)Finally, we havej0; �SCSi = exp��j�SCS j2 � j�j22 ��� exp(���) 1Xl=0 �lpl! jl; �i == exp���2SCS + j�j22 � exp(�SCS��)�� 1Xl=0 (�SCS � �)lpl! jl; �i == exp���2SCS + j�j22 � exp(�SCS��)�� 1Xl=0 �lSCSpl! �1� ��SCS �l jl; �i: (A.4)The same is appliable to the state j0;��SCSi:j0;��SCSi == exp���2SCS + j�j22 � exp(��SCS��)�� 1Xl=0 �lSCSpl! (�1)l�1 + ��SCS �l jl; �i: (A.5)525



S. A. Podoshvedov ÆÝÒÔ, òîì 141, âûï. 3, 2012Therefore, if we take � = 0 in (A.4), then we havethe following deomposition of the vauum state withrespet to the basis of displaed number states:j0i = j0; �SCS = 0i == exp��j�j22 � 1Xl=0(�1)l �lpl! jl; �i: (A.6)APPENDIX BWave amplitudes of several �rst terms of theSCSsExpressions for the wave amplitudes of the SCSs inan arbitrary �-presentation are given by Eqs. (2a). Ifwe take �SCS = a�SCS + i", where a and " are somereal numbers, then the �rst several wave amplitudes ofthe even SCS are given bya+1(�SCS ; �) = �CSSp1! A+(�CSS ; �) == �SCSp1! �G2(�SCS ; a; ")G1(�SCS ; a; ") � a� i"�SCS� ; (B.1)a+2(�SCS ; �) = �2SCSp2! B+(�CSS ; �) == �2SCSp2! ��1 + a2 � "2�2SCS + i 2"a�SCS� �� �2a+ i 2"�SCS� G2(�SCS ; a; ")G1(�SCS ; a; ")� ; (B.2)a+3(�SCS ; �) = �3SCSp3! C+(�CSS ; �) = �3SCSp3! ���� 3a"2�2SCS�3a�a3+i � "3�3SCS� 3"�SCS� 3a2"�SCS �� ++�1 + 3a2 � 3"2�2SCS + i 6ar�SCS��� G2(�SCS ; a; ")G1(�SCS ; a; ")� ; (B.3)whereG1(�SCS ; a; ") = 2 �os(�SCS") h(a�2SCS) �� i sin(�SCS") sh(a�2SCS)� ; (B.4)G2(�SCS ; a; ") = 2 �os(�SCS") sh(a�2SCS) �� i sin(�SCS") h(a�2SCS)� : (B.5)The wave amplitudes of the odd SCS fol-low from the expressions for the even SCSs ifwe substitute G2(�SCS ; a; ")=G1(�SCS ; a; ") ontoG1(�SCS ; a; ")=G2(�SCS ; a; ") in Eqs. (B.1)�(B.3).

APPENDIX CAlternation of photon additions anddisplaements as a method of generation of anarbitrary single-mode �nite superposition ofnumber statesThe method of onstruting an arbitrary single-mo-de superposition of number states was proposed in [22℄.We brie�y reall it. An arbitrary wave funtionj	i = NXn=0'njni = NXn=0 'npn! a+nj0i; (C.1)an be rewritten asj	i = 'npn! (a+ � ��N )(a+ � ��N�1) : : : (a+ � ��2)�� (a+ � ��1)j0i;where ��1; ��2; : : : ; ��N are the N omplex roots of theharateristi polynomialNXn=0 'n��npn! = 0:The relation a+ � ��i an be ensured by applying thereation operator a+ to j0;��ii = D(��i)j0i [27℄:a+j0;��ii = D(��i)D+(��i)a+D(��i)j0i == D(��i)(a+ � ��i )j0i:Hene, an arbitrary single-mode superposition of thenumber states an be obtained by a sequene ofalternate single-photon additions and displaementsstarting with j�Ini with the orresponding amplitude�In [22℄:j	i = �'n=pn!�D+(��N )�� a+D(��N )D+(��N�1)a+D(��N�1) : : :: : :�D(��3)D+(��2)a+D(��2)��D+(�In)a+j�Ini: (C.2)We an use the relation D(�)D(�) = exp [i Im(���)℄��D(�+ �) to simplify the expression (C.2):j	i = ei' �'n=pn!�D+(��N )�� a+D(�N�1 � �N )a+D(�N�2 � �N�1) : : :: : :�D(�2 � �3)a+D(��2 � �In)a+j�Ini; (C.3)where ' is the total phase shift.526



ÆÝÒÔ, òîì 141, âûï. 3, 2012 Generation of displaed squeezed superpositions : : :In partiular, in the 0-representation or the samenumber state representation (Eqs. (3a) and (3b)), forthe even SCSs, we havejSCS+N (�SCS ; 0)i = N+N(�SCS ; 0)(�2nSCS=n!)�� (a+2 � ��2N )(a+2 � ��2N�1) : : : (a+2 � ��22 )�� (a+2 � ��21 )j0i; (C.4)where ��21 ; ��22 ; : : : ; ��2N are the roots of the polynomialNXn=0 �2nSCS(2n)! (��2)n = 0: (C.5)The same is appliable to the generation of the oddSCS if we start with the input state j1; �InijSCS�N (�SCS ; 0)i == N�N(�SCS ; 0)(�2nSCS=(n+ 1)!)(a+2 � ��2N ) : : :: : :� (a+2 � ��22 )(a+2 � ��21 )j1i; (C.6)with the roots of the equationNXn=0 �2nSCS(2n+ 1)! (��2)n = 0: (C.7)APPENDIX DSome partiular ases of the use of the methodof alternate single-photon additions anddisplaementsThe roots of the harateristi polynomials given inAppendix C an be obtained in the general ase onlynumerially. Nevertheless, some partiular solutionsan be found analytially. We show this with the exam-ples of onstruting the SCSs in the 0-representation.We then havea+D(�2�In)a+j0; �Ini = a+D(��In)�� (a+ + ��In)j0i == D(��In)D+(��In)a+D(��In)(a+ + ��In)j0i == D(��In)(a+ � ��In)(a+ + ��In)j0i == D(��In)(a+2 � ��2In)j0i == D(��In)�p2 j2i � ��2Inj0i� == D(��In)j�Inj2 �j0i+ �2SCS j2i=p2!� ; (D.1)if �In = ij�Inj and �2SCS = 2=j�Inj2. The output of(D.1) is a state that approximates the even SCS dis-

plaed by �In up to a normalization fator. A furtherextension of (D.1) is given bya+D(�2�1)a+D(�1+�In)a+D(�2��In)a+j0; �Ini == a+D(�2�1)a+D(�1+�In)D(��In)(a+2���2In)j0i == D(��1)(a+2���21 )(a+2���2In)j0i == D(��1)�p4! j4i�p2 (a�21 +��2In)j2i+��21 ��2Inj0i� == j�1j2j�Inj2D(��1)�� �j0i+ �2SCS j2i=p2! + �4SCS j4i=p4!� ; (D.2)where the roots of harateristi polynomial (C.5) are��21;2 = �2�3�p3� =�2SCS:Beause �SCS > 0, it follows that �In = ij�Inj, �1 == ij�1j, where j�Inj2 = 2 �3 +p3 ��2SCS ;j�1j2 = 2 �3�p3 ��2SCS ; �2SCS = 2j�Inj2 :Finally, the output operator D(�1) is applied to gen-erate a trunated version of the even SCS with threeterms.For the odd SCS, we havea+D(�2�In)a+j1; �Ini == D(��In)(a+ � ��In)(a+ + ��In)j1i == ��2InD(��In)��j1i+p3! j3i=��2In� == ���2InD(��In)�j1i+ �2SCS j3i=p3!� (D.3)if �In = ij�1j and �2SCS = 6=j�Inj2. The output of(D.3) is a two-level approximation of the odd SCS dis-plaed by �In. If we extend (D.3), thena+D(�2�1)a+D(�1+�In)a+D(�2�In)a+j1; �Ini == D(��2)D+(��2)a+D(��2)D+(�2)a+D(�2)ei �� ei D(��1)(a+2 � ��2In)(a+2 � ��2In)j1i == ei ��2In��21 D(��1)"j1i � 3!(��21 + ��2In)j3ip3!��21 ��2In ++ 5!j5ip5!��21 ��2In # = ei ��21 ��2InD(��1)���j1i+ �2SCS j3ip3! + �4SCS j5ip5! � ; (D.4)527



S. A. Podoshvedov ÆÝÒÔ, òîì 141, âûï. 3, 2012where ��2In = �5 + ip5 � =�2SCS and ��21 == �5� ip5 � =�2SCS. The output state is a three-levelapproximation of the odd SCS displaed by ��1.Higher-order harateristi polynomials (C.5) and(C.7) an be solved numerially. Numerial values ofthe �delities areF+1(�0:99SCS+1 = 0:861557) == F�1(�0:99SCS�1 = 1:04403) == F+2(�0:99SCS+2 = 1:27247) == F�2(�0:99SCS+2 = 1:45741) = 0:99;where �0:99SCS+N is the size of the SCS for whih the�delity takes the value 0.99 (F�N (�0:99SCS�N ) = 0:99).Comparing the �delities, we see that �0:99SCS�1 == 1:04403 > �0:99SCS+1 = 0:861557 and �0:99SCS�2 == 1:45741 > �0:99SCS+2 = 1:27247.APPENDIX EWigner funtionsWe have onsidered the presentation of SCSs andtheir approximations on the phase plane. The Wignerfuntions of even/odd SCSs an be expressed asW�SCS(�) = N�(�SCS)�� [W0(�) +W�0(�)� 2X�SCS(�)℄ ; (E.1)where � = x+ ip, �SCS = xSCS + ipSCS andW0(�) = 2� �� exp ��2(x� xSCS)2 � 2(p� pSCS)2� ; (E.2)W�0(�) = 2� �� exp ��2(x+ xSCS)2 � 2(p+ pSCS)2� ; (E.3)X�SCS (�) = 2� �� exp(�2x2 � 2p2) os [4(xpSCS � pxSCS)℄ : (E.4)The Wigner funtion of a two-level superposition(N = 1, Eq. (8b)), being the simplest approximationof the DSSCSs, is given byW�1(�) = 11 + ja�1j2 �� �W0(�) + ja�1j2W1(�) +X�01(�)� ; (E.5)

W0(�) = Y (�); (E.6)W1(�) = Y (�)(4x2 + 4p2 � 1); (E.7)X�01(�) = 2Y (�) �a��1(x + ip) + a�1(x� ip)� ; (E.8)Y (�) = 2� exp(�2x2 � 2p2): (E.9)The Wigner funtion of a three-level superposition(N = 2, Eq. (11a)), being the next approximation ofthe SCSs, is given byW�2(�) = 11 + ja�1j2 + ja�2j2 �� �W0(�) + ja�1j2W1(�) + ja�2j2W2(�) ++ X�01(�) +X�02(�) +X�12(�)℄ ; (E.10)whereW2(�) = Y (�) �1 + 4(2x2 + 2p2 � 1) + 3 ++ 4(2x2 � 3)x2 + 4(2p2 � 3)p2 ++ (1� 4x2)(1� 4p2)� ; (E.11)X02(�) = 2p2Y (�) �a�2(x� ip)2 + ..� ; (E.12)X12(�) = 2p2Y (�)�� �a�1a��2 �(x+ ip)(2x2 + 2p2 � 1)�+ ..	 : (E.13)Higher-order Wigner funtions W�N (�) with N > 2an be alulated only numerially beause of theiromplexity. Marginal distributions for the momentumand position are given by R W (x; p) dx = hpj�jpi andR W (x; p) dp = hxj�jxi, where � is a density matrix.If the Wigner funtions of the SCSs are given byW�SCS(�), then it is possible to show that the Wignerfuntion transforms asW�SCS(�)!W�DSSCS �� [h r(� � �)� sh r(�� � ��)℄ (E.14)for the DSSCSs, where r is the squeezing parameterand � is the displaement amplitude. Then, the Wignerfuntions of the even/odd DSSCSs an be expressed asW�DSSCS(�) = N�(�SCS)�� [W0(�) +W�0(�) � 2X�DSSCS(�)℄ ; (E.15)where � = x+ ip, �SCS = xSCS + ipSCS, � = x� + ip�andW0(�) = 2� exp"�2�x� x�er � xSCS�2 �� 2�p� p�e�r � pSCS�2# ; (E.16)528
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